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Abstract: Morocco often faces significant intense rainfall periods that can generate flash floods and
raging torrents, causing serious damage in a very short period of time. This study aims to monitor
wetland areas after a flash-flood event in an arid region, Saquia El hamra Saharan of Morocco, using a
technique that combines hydraulic modeling and remote sensing technology, namely satellite images.
The hydrological parameters of the watershed were determined by the WMS software. Flood flow
was modeled and simulated using HEC HMS and HEC-RAS software. To map the flooded areas,
two satellite images (Sentinel-2 optical images) taken before and after the event were used. Three
classifications were carried out using two powerful classifiers: support vector machines and decision
tree. The first classifier was applied on both dates’ images, and the resulting maps were used as input
for a constructed decision tree model as a post-classification change detection process.

Keywords: flash flood; hydraulic modeling; remote sensing; Saquia El Hamra; Southern
Morocco; semi-arid

1. Introduction

Floods are the most visible and destructive hydrologic phenomenon in terms of human
and economic loss. Typically, flash floods are caused by large amounts of runoff due to
short duration and high-intensity rainfall. Floods also lead to environmental and social
problems, such as damage to roads, farms, and infrastructures and sometimes pollute
surface water resources via the transfer of industrial waste [1,2], creating many health
problems. About 20,000 lives are claimed by flash floods annually [3], and, from 1995 till
today, approximately 110 million people have been affected by those catastrophes [1,4].

In late October 2016, a flash flood severely damaged the surroundings of the city
of Laayoune in the Saquia El Hamra basin in southern Morocco. The country’s climate
is arid and semi-arid and is prone to destructive floods. Therefore, flood mapping and
the determination of the extent of flooded areas is an essential way of creating flood
management and prevention strategies (Figure 1).

In the recent years, food hazard assessment has greatly improved, especially with the
use of geographic information systems (GIS) integrated with hydrological and hydraulic
modeling [5]. The needed hydrological variables can be obtained from a good-quality
digital elevation model (DEM), such as catchment shapes, flow directions, slopes, path
lengths, and watershed delimitation [6,7]. The monitoring of flood-affected areas resulting
from extreme precipitation and changing land use can be helpful for better understanding
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flood events [8–10]. Efforts have also been made to integrate some hydrological models
with the GIS environment. Most of these models are physically based distributed models,
e.g., HEC-HMS, and HEC-RAS. This integration allows the assessment and prediction of
the impact of watershed management practices [11–14]. In this work, HEC-RAS and WMS
are integrated to the ArcGIS software for the hydraulic modeling of the flash flood events.
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The novelty of this work can be defined in two ways: Using remote sensing technol-
ogy and hydraulic modeling is an innovative method for examining an event from two 
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through modeling, the hydrological regime of the Saquia El Hamra watershed to prevent 
floods in the future and improve warning systems. The hydrological parameters of the 
watershed were determined by HEC-RAS and WMS softwares, namely: zone extent, pe-
rimeter, slope, basin’s average elevation, Gravelius compactness index, Horton shape in-
dex, average altitude, drainage density, and concentration time; (2) to approach the prob-
lem from the perspective of remote sensing technology to cover the region of interest, to 
map the affected areas, and to locate the settlements in danger of flooding at the northern 
part of the city of Laayoune; and (3) to provide a document to support decision-makers in 
implementing the required protective works and to precisely estimate the financial com-
pensation (e.g., to estimate the destroyed infrastructure and vegetation areas). 

  

Figure 1. The national road N1 linking Laâyoune and Tarfaya submerged on the left, breach opening
in the body of the dam embankment by the flash flood.

In the past decades, remote sensing and geographic information systems (GIS) have
also opened new opportunities to monitor large areas and create more accurate and valuable
flood hazard maps [3,15,16]. High spatial–temporal resolution Sentinel images has been
freely provided by the European Space Agency (ESA) for a variety of purposes. In this
study, Sentinel-2 optical data was applied for floods analysis. Two techniques were used
to extract information from those images: (1) land-cover/land-use classification and (2) a
change detection technique. Although no model has proven its superiority, machine
learning models have been proven to be better suited for sophisticated flood assessment
and have greatly improved flood assessment [1,15,17–20]. In our case, we used support
vector machines [21–23] and decision tree models [17–24] for classification and change
detection, respectively.

The novelty of this work can be defined in two ways: Using remote sensing tech-
nology and hydraulic modeling is an innovative method for examining an event from
two perspectives, especially given that remote sensing has made the surveillance of wide
areas cost-effective. To summarize, the objective of this study is threefold: (1) to inves-
tigate, through modeling, the hydrological regime of the Saquia El Hamra watershed to
prevent floods in the future and improve warning systems. The hydrological parameters of
the watershed were determined by HEC-RAS and WMS softwares, namely: zone extent,
perimeter, slope, basin’s average elevation, Gravelius compactness index, Horton shape
index, average altitude, drainage density, and concentration time; (2) to approach the
problem from the perspective of remote sensing technology to cover the region of interest,
to map the affected areas, and to locate the settlements in danger of flooding at the northern
part of the city of Laayoune; and (3) to provide a document to support decision-makers
in implementing the required protective works and to precisely estimate the financial
compensation (e.g., to estimate the destroyed infrastructure and vegetation areas).

2. Materials and Methods
2.1. Study Area

Laayoune represents the largest city of southern Morocco. This area is located between
latitudes 27.00; 27.25 and longitudes −12.92; −13.38 and is bounded by the North Atlantic
Ocean to the west. In addition, this city is close to the Saquia El Hamra basin, which is
a part of the geological unit of Tarfaya–Laayoune–Boujdour. The watershed of Saquia El
Hamra covers an area of 82,000 km. This catchment is characterized by a fairly developed
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hydrographic network that drains Oued Saquia El Hamra, which occupies the central part
of the Sahara (about 447 km long) (Figure 2).
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Figure 2. Location of the study area.

The climate is generally mild along the oceanic coast, while it becomes more hostile
in the interior of the Saharan lands. The rainfall is particularly scarce (Figure 3), and the
annual average observed for the past decade is around 60 mm (DNM, 2020).
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2.2. Data Collection
2.2.1. Hydraulic Model

Due to the insufficiency of precipitation data, the principal hydraulic data employed
in the study considered climatic data: maximum annual precipitation and flow data
(From 1985 to 2016) provided by the watershed agency of Laayoune Saquia El Hamra
Oued Eddahab (ABHSHOD) and the regional directorate of meteorology (DRM) Laayoune
Morocco, temperatures (min, max). We used the discharge data recorded on the only
station in Laayoune: airport station Hassan I, located at 27.1488◦ N, 13.2253◦ W (see
Figure 1). Field supplementary measurements from the flooded areas after the event
were also received through the ABHSHOD (flow velocity, water height, . . . ). During
the years 1993 to 2002, evaporation measurements were taken. The significance and rate
of evaporation are primarily determined by the evaporative power of the atmosphere,
which, in our case, is measured by a Piche evaporometer. This evaporation represents the
atmosphere’s evaporative demand.

A DEM (digital elevation model) and the TOPAZ (topographic parameterization) module
for simulating the flow direction were integrated in the WMS software for determining the
morphological parameters, the boundaries of the watershed, and the hydrographical network.

2.2.2. Remote Sensing Data

The Copernicus Sentinel-2 mission comprises a constellation of two polar-orbiting
satellites, Sentinel-2A, launched in 2013, and its twin Sentinel-2B, put in orbit later on, in
2015. They have a wide swath width of 290 km and a high revisit time (10 days at the
equator with one satellite and 5 days with the 2 satellites under cloud-free conditions). The
MSI optical sensor onboard provides 12 spectral bands (458–2294 µm) from RGB and NIR
(near infrared), to SWIR (shortwave infrared), with a high resolution of 10 m, 20 m, and
60 m, respectively [25].

Two Sentinel-2 images were acquired for the present study (Figure 4), one before and
one after the flash-flood event (Table 1). These images are freely available, atmospherically,
and geometrically corrected from the Theia-Land platform (https://www.theia-land.fr/)
accessed on 1 September 2022.

Water 2022, 14, x FOR PEER REVIEW 5 of 19 
 

 

Table 1. Data images used in this study. 

Satellite Instrument Acquisition Date Use 

Sentinel 2 MSI 20 October 2016 
One week before flash-flood event; 
used to calculate reference image 

Sentinel 2 MSI 30 October 2016 One day after the flash-flood event; 
used for flood-extent mapping 

 
Figure 4. (a) Sentinel-2 RGB image (bands 2 to 4) eight days before flash flood; (b) Sentinel-2 RGB 
image (bands 2 to 4) one day after flash flood. 

2.3. Modeling Approaches 
The present study is based on a unique coupling between surface hydraulic modeling 

and high-resolution satellite optical images classification to monitor flooded areas after 
the flash flood that occurred in Laayoune city in the southern part of Morocco late in 2016. 
Figure 5 presents the methodological approach followed to achieve this work. 

 
Figure 5. Flowchart for the different steps of the methodological approach for flash-flooded area 
mapping. 

Figure 4. (a) Sentinel-2 RGB image (bands 2 to 4) eight days before flash flood; (b) Sentinel-2 RGB
image (bands 2 to 4) one day after flash flood.

https://www.theia-land.fr/


Water 2022, 14, 3582 5 of 18

Table 1. Data images used in this study.

Satellite Instrument Acquisition Date Use

Sentinel 2 MSI 20 October 2016 One week before flash-flood event;
used to calculate reference image

Sentinel 2 MSI 30 October 2016 One day after the flash-flood event;
used for flood-extent mapping

2.3. Modeling Approaches

The present study is based on a unique coupling between surface hydraulic modeling
and high-resolution satellite optical images classification to monitor flooded areas after
the flash flood that occurred in Laayoune city in the southern part of Morocco late in 2016.
Figure 5 presents the methodological approach followed to achieve this work.
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2.3.1. Hydraulic Model

The delimitation of the watershed is the first step for hydraulic modeling, using the
WMS and software developed by the Environmental Modeling Research Lab at Brigham
Young University in collaboration with the US Army of Engineers and currently being
developed by Aquaveo LLC based in Provo, Utah, USA. It consists of extracting from the
DEM the boundaries of the SAKIA EL HAMRA catchment area and its hydrographical
network (flow directions). Morphological parameters and physical characteristics of the
watershed are also extracted. The methodology for hydraulic modeling is based on coupling
WMS and HEC-RAS. The latter is described in the next section.

The daily stream flows were computed using the HEC-HMS 3.4 model, which incor-
porated the prepared data maps. Meteorological and watershed data were combined to
simulate the hydrologic responses.

The hydraulic model implemented in the open-source HEC-RAS software that has
been successfully applied and yielded in several international publications and thesis



Water 2022, 14, 3582 6 of 18

works [26,27] uses the 1D Saint-Venant shallow-water equations to link water heights
and discharges:

y2 + z2 +
α2 v2

2
2g

= y1 + z1 +
α1v2

1
2g

+ be (1)

In this equation, y1 and y2 are water depth in two cross-sections, z1 and z2 are the
floor heights of the main channel, v1 and v2 are average velocities of discharge, α1 and α2
are coefficients of mass momentum speed, g is acceleration due to gravity, and be is the
head loss of the energy level.

This equation is deduced from the Navier–Stokes equations through simplifications
related to the river model. The application of the HEC-RAS model is based on three
fundamental steps: (1) Creating, using the ArcGIS tool, the Hec-GeoRAS extension, the
Digital elevation model (DEM), and aerial images, the geometrical data of Saquia El Hamra
River with the minor and major riverbeds and cross-sections; (2) Applying permanent
flow modeling with the Hec-RAS 4.1.0 model, which generates an export file for ArcGIS
Hec-Ras, software independent of ArcMap but complementary to the analysis processes;
and (3) generating the results of water stain: flood surfaces and depth grids.

Steady flow is a condition in which depth and velocity at a given channel location
do not change with time. Therefore, gradually varied flow is characterized by minor
changes in water depth and velocity from one cross-section to another [28]. The cross-
section sub-division for the water conveyance is calculated within each reach using the
following equations:

Q = KS
1
2
f ; While K =

1.486
n

AR
2
3 (2)

where K is the conveyance for subdivision, n is the Manning roughness coefficient, A is
the flow-area subdivision, R is the hydraulic radius for subdivision (wetted area/wetted
perimeter), and Sf is the friction slope.

2.3.2. Satellite Images Classification

Images collected by satellites provide reliable, extensive, and high temporal and spatial
resolution data describing surface parameters. Currently, image classification algorithms
are the most common mapping method used in satellite imagery. Using this remotely
sensed approach, we focus on the classification and identification of the changes in land
cover/land use (LCLU) before and after a flash-flood event based on a survey of affected
areas, ground truth samples, and temporal images gathered from the Sentinel-2 before and
after the event. RGB images were checked visually and showed that reliable discrimination
would be based on four main classes: water, vegetation, urban areas, and barren soil. In
addition, flooded water was apparent due to the existence of mud. However, to locate
vegetation, a spectral index was needed. The normalized difference vegetation index
(NDVI) was computed because it is the most used vegetation index [29]. It is calculated
using the red (R) and near-infrared (NIR) bands as follows:

NDVI =
(NIR − R)
(NIR + R)

(3)

We used two classification models: the support vector machine classifier and the decision
tree model. A brief description of the two methods is presented in the following subsections.

Support Vector Machines (SVM)

SVM are based on statistical learning theory and have the aim of determining the
location of decision boundaries that produce the optimal separation of classes [30]. In the
case of a two-class pattern-recognition problem in which the classes are linearly separable,
the SVM selects from among an infinite number of linear decision boundaries the one that
minimizes the generalization error. Thus, the selected decision boundary will be the one
that leaves the greatest margin between the two classes, wherein the margin is defined as
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the sum of the distances to the hyper plane from the closest points of the two classes [30].
For more details and equations, we invite the readers to refer to the work of [30].

Decision Tree Model (DT)

A decision tree is defined as a connected, acyclic, undirected graph, with a root node,
zero or more internal nodes (all nodes except the root and the leaves), and one or more leaf
nodes (terminal nodes with no children), which will be termed as an ordered tree if the
children of each node are ordered (normally from left to right). A decision tree is built from
a training set, which consists of objects, each of which is completely described by a set of
attributes and a class label. Attributes are a collection of properties containing all of the
information about one object.

To exploit the maximum spectral information, a layer stack of four bands was created
for each date: red, green, blue, and NDVI. The resulting raster was fed to the SVM classifier.
Using calibration samples from ground truth data, the SVM was trained to detect each
class, then compared to decide the classification of each pixel.

The DT model was constructed based on the post-classification maps for both dates
before and after the event. This approach is different to the SMV classification technique,
as this can be described as a change detection process. The purpose of this procedure is to
give more details about the LCLU and to clarify the change that happened in the area. The
figure bellow (Figure 6) is an illustration of the change detection DT model constructed
(using ENVI 5.3 created by L3Harris Geospatial, based in Boulder, CO, USA).
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2.4. Calibration and Validation

As part of this study, we conducted a field visit to a preliminary investigation survey
in order to identify the situation in areas vulnerable to flooding at the level of Laayoune
city and the rural commune of Foum El oued after the flash flood, with the help of the team
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of the Water Basin Agency of Saquia El Hamra Oued Eddahab. The hydraulic model was
validated using cross-sections and water-line profiles realized at the tributary level.

LCLU samples were collected from different parts of the area during field campaigns
using a GPS system and labeling the nature of each observed LCLU type in the field using
a map of the area. A total of 276 parcel-like polygons of ground-truth data representing all
of the classes (resampled into 119 polygons as closer and similar ones were merged) were
divided into calibration and validation samples and overlaid on the images (Figure 7). The
calibration samples helped training the models, while the validation samples were used in
a confusion matrix to assess the evaluation of the performances of the classification, i.e., the
overall accuracy and kappa coefficient.

The confusion matrix is calculated by comparing land cover derived from the image
against ground-truth land-cover data. Each column of the confusion matrix represents a
ground-truth class, and the values in the column correspond to the image’s labeling of the
ground-truth pixels. The Kappa coefficient, a statistical measure of inter-rater reliability, is
calculated as follows [31,32]:

Kappa =
N ∑n

i xii − ∑(xi+.x+i)

N2 − ∑(xi+.x+i)
(4)

where n is the number of rows in the matrix, xii is the number of observations in row i and
column i, xi+ and x+i are the marginal totals of row i and column i, respectively, and N is
the total number of observations.

The overall accuracy is calculated by summing the number of correctly classified
values and dividing by the total number of values.
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3. Results and Discussion
3.1. Hydraulic Modeling

A physically based study of the watershed has the purpose of determining the ge-
ometrical characteristics of the basin, which covers an area of about 52,000 km2 and has
a perimeter of 2033 km. The Gravelius compactness index (Musy 1914), which further
decides the relation between the basin’s shape and the flow behavior equals 2.4, which
means that the basin is elongated. The Horton index indicating the relation of the basin’s
mean width to the principal water stream’s length (221 km) is 0.05, which also indicates
that the basin is elongated (KH less than 1). The hypsometric map shows a mean, min, and
max altitudes of 293.45 m, 6 m, and 621 m, respectively. The knowledge of slope indices
is of great importance, as the water flows more when the slopes are important; it is thus
in mountains, we observe, for a given downpour, more important floods than in the plain
where the slopes are much lower. The mean, min, and max slopes observed are 0.03 m, 0 m,
and 35 m, respectively. The concertation time Tc, defined as the time of the most distant
water droplet to reach the outlet, is about 21.3 h.

The highest amount of evaporation occurs in August, the hottest month of the year,
and the lowest amount occurs in December. The annual mean evaporation value is approx-
imately 158.99 mm (Figure 8).

An estimate of the periods of return of the extreme values of rain can be obtained by
adjusting the laws on pluviometric data. Using the Hyfran-Plus (Hyfran, 1998) and several
statistical distributions, such as normal, log-normal, Gamma, Weibull, and exponential, to
validate the results, the rainfall depth for various return periods was determined (5, 10,
25, 50, and 100 years). According to the analyses of the graphs of the adjustment of the
statistical laws from the data of annual maximum precipitations from a series recorded at
the Laayoune rainfall station over a period spanning 31 years (1985–2016) (Figure 9), the
exponential distribution is the law best-adapted to the data for analyzing the periods of
return, followed by the normal distribution; the other distributions have poor adjustment.
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Figure 9. Saquia El Hamra’s probability distribution curve based on the normal, log-normal, Gamma,
Gumbel, and exponential distributions.

The following Table 2 displays the precipitation estimate along with its respective
exponential law confidence intervals for various return times.

Table 2. The results at different return periods of extreme rainfall events.

Return Period
(Years) Precipitation (mm) Confidence at 95%

100.0 153 95.7 211
50.0 127 83.6 171
20.0 96.7 67.8 126
10.0 75.6 55.7 95.4
5.0 56.1 43.4 68.8
2.0 31.7 25.6 37.9
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The stream flows were computed using the HEC-HMS 3.4 model, which incorporated
the prepared data maps. Meteorological and watershed data were combined to simulate
the hydrologic responses. The adjustment of laws to hydrological data yields an estimate
of the return periods of extreme flow values, which is crucial for planning, forecasting, and
protection activities. The results of the frequency analyses of samples of the maximum
annual flows recorded at the Laayoune hydrometric station during the selected 31-year
chronicle between 1985 and 2016. The statistical adjustments of each Qmax sample are
performed in accordance with various distributions (log-normal, Gamma, Gumbel, and
exponential) to identify the distribution that best fits the sample under consideration.
Figure 10 depicts the empirical and theoretical probabilities of the distributions of the
various statistical adjustments to the maximum daily flow data. We observe that the law
best suited to the data for analyzing the return periods is the log normal law, followed by
the Gamma law; the other distributions do not fit the data well.

After selecting the law best suited and adjusted to the maximum annual flows of the
Laayoune station over a 31-year period, the estimated return periods by this law are shown
in the table below (Table 3).

Table 3. Estimation of the return period by the normal Log law at the Laayoune station.

Return Period (Years) Qmax (m3/s) Confidence at 95%

100.0 1570 1491.5 1644.575
50.0 1070 1016.5 1120.825
20.0 608 577.6 636.88
10.0 366 347.7 383.385
5.0 198 188.1 207.405
2.0 61.4 58.33 64.3165
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As a conclusion, the Log normal rule is optimal for forecasting yearly maximum flows,
while the exponential law is optimal for forecasting annual maximum rainfall.

There are many outputs available in the HEC-RAS that may be analyzed after simula-
tion such as: cross-sections and flow directions (Figure 11), water surface profiles, general
profile plot, rating curves, and property plots. We are mostly interested in the 3D cross-
section (Figure 11) in order to be able to compare it with the results from the remotely
sensed monitoring of the event.
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Figure 11. Cross-sections and flow direction. The axis of the stream in blue, the sections in green and
the banks in red.

Figure 12 shows the flood extent of the studied event, and Figure 13 depicts the flood
propagation outcomes for various return periods. Arc GIS uses the results of the hydraulic
simulation to produce maps of the floodplain and its limits for various return periods (Q20,
Q50, Q100). The results showed that, during flash floods with known flows, the water
level can reach up to 13 m, with high flow velocities flooding hundreds of hectares of the
surrounding plains at the northern part of the city of Laayoune and agricultural lands near
Foum El Oued.

The passage of this exceptional flood caused the wadi’s waters to overflow onto the
crest of the Saquia El Hamra dam, resulting in the degradation of the “downstream slope”
and the opening of two 100 m-long breaches in the dam’s body at the level of the wadi’s
minor bed.
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Based on the flood propagation map, a hazard map depicting flood-prone areas at
the level of the simulated section was generated in ArcGIS (Figure 14). There are tens
of hectares of threatened land throughout the entire floodplain. The conclusion of this
simulation study reveals the following flood-related issues:

� At the city of Laayoune’s level:

• The destruction of current infrastructure (the national road, N1, linking Laayoune
and Tarfaya and the dyke of the Sakia El Hamra dam);

• The destruction of the banks;
• A few homes sustained damage, as well as residents of neighboring communities

on the left bank of the Oued (douar Lamkhaznia).

� At Foum El Oued:

• The inundation of agricultural lands;
• The inundation of the cornice;
• A few houses sustained damage as well.
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3.2. Remote Sensing Mapping

The resulting map for the first-date classification using the SVM classifier (Figure 15)
shows four dominant classes that give a detail about land cover/land use in the area before
the flashflood. Three main classes are distinguishable here: (1) seawater around the coastal
areas (in the west) and stored dam water (in the east); (2) vegetated areas in farms next to
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the sea, in the central zone, and alongside the river; and (3) built-up areas, mainly Laayoune
city and port on the coast.
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Figure 15. SVM classifier’s results for the date before the event (20 October 2016).

This first map shows a great match when confronted with ground-truth samples,
which is mainly due to the choice of three sufficient and distinguishable classes. The
situation in the dam appears to be normal and usual amounts of water stored with small
evacuations. The overall accuracy reached 94.41% and a Kappa coefficient of 0.91.

One day after the flash flood, the resulting map using the same classifier (SVM) is
shown in the figure below (Figure 16). Two other classes were added for this date, the
flooded areas then the clouds and shadow, as, at the acquisition time of the satellite image,
some clouds were passing by.
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The overall accuracy and kappa coefficient are 87.31% and 0.82, respectively. The
presence of clay in flooded water helped to distinguish the flooded areas, and the reflectance
in the visible range and specifically the blue, red, and green spectra were enough to detect
it. The added NDVI band separated the vegetation from the other classes and made the
decision rule easy for the classifier. This map shows the impact that the flash flood had on
the area; the overflow surpassed the dam and affected some neighboring buildings and
half of the farmed zone before discharging into the Atlantic Ocean at the outlet called Foum
El Oued.

For change detection, we used the decision tree classifier as a post-classification change
detection tool (Figure 17). It has rarely been used in the literature for this purpose.
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Figure 17. Decision tree classifier’s post-classification change detection model results using both
dates SVM’s resultant maps (20 and 30 October 2016).

The resulting maps of the SVM classification for both dates were integrated into the
constructed decision tree as inputs in order to compare the class before and after the event
for each pixel, then a description for it was decided on, as explained in the tree of Figure 6.

This technique also enabled us to remove the clouds and shadows, being a tempo-
rary class, as fortunately they were not present at the acquisition time of the first scene
(20 October 2016). The results of the decision tree model are shown in the Figure 17. The
added details can be seen on the map, as we mentioned, when we compare the cloudy
date from the SVM classification, and the clouds and their shadows has been successfully
removed by the rules of the constructed decision tree. Another detail is that, on this map,
we can see three types of flooded areas: (1) flooded areas mainly consisting of bare soils,
sands, and built-up areas that have been overflowed by water; (2) flooded water that can
be explained as the permanent water that has been invaded by flooded water containing
clay, which also gives an idea of the situation before and the extent of the water in the
dam; and (3) flooded vegetation indicating the great damage to agricultural lands feeding
the neighboring city of Laayoune, as half of them were destroyed by the overflow. A
comparative mapping of both approaches is shown in Figure 18. It shows an acceptable
consistency between the flooding tasks observed through change-detection-reclassified
satellite images and predictions by HEC-RAS on areas with regular slopes, whether at the
city level or at the cornice.
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4. Conclusions

The purpose of this study is to evaluate the flash flood that happened in late 2016 in the
southern Moroccan city of Laayoune. This work was accomplished using a two-pronged
strategy: a hydraulic approach based on models implemented in WMS and HEC-RAS and
a remote sensing approach based on classification and change detection techniques applied
to Sentinel 2 satellite images from the European Space Agency. Through the use of the
hydraulic study, the delineation of the watershed and the physical features of the flow
were simulated, and the return period was forecasted to behave virtually identically in
the future, with the minimal expansion of the riverbanks. The water level can rise as high
as 13 m, inundating hundreds of hectares of neighboring plains in the northern portion
of the city of Laayoune and agricultural regions near Foum El Oued due to the high-flow
velocity. Before and after the occurrence, the SVM classifier was employed to map land
cover and land use. The overall accuracy (Kappa coefficient) was 94.41 percent (0.91),
and 87.33 percent (0.81), respectively for both dates, when compared to the ground-truth
data. The decision tree was built with the maps produced by the SVM classification for
both dates as inputs, producing a change detection map with increased detail. The remote
sensing technology has enabled us to monitor the damage that has been done to the area
following the catastrophe with details on the buildings affected, farms flooded, and the
extent of the river. As Sentinel-2 has a 5-day revisit interval, a fundamental constraint of
the technique is that the satellite overpass time does not always occur the day after the
events. In the future, however, this might be improved by launching additional satellites
with higher temporal resolution, or for the time being, by combining two or more satellites
in the hope of capturing the after-event. The results of this study, despite being interesting
and promising, could be enhanced with the inclusion of reanalysis data, such as the latest
ERA5-Land product. The results could be refined with the assistance of more experimental
instruments, which are scarce in Saharan regions. Future use of satellite images with a
higher resolution could also enhance the scientific value of this study.

Author Contributions: Conceptualization, E.-A.N., B.S., E.H.B., A.M., N.-E.L. and A.L.; Data curation,
E.-A.N. and B.S.; Formal analysis, E.-A.N., B.S., E.H.B., A.M., N.-E.L. and A.L.; Investigation, E.-A.N.;
Methodology, E.-A.N., B.S. and E.H.B.; Software, E.-A.N., B.S. and E.H.B.; Validation, E.-A.N. and
B.S.; Visualization, E.-A.N. and B.S.; Writing - original draft, E.-A.N., B.S. and A.M.; Writing - review
& editing, E.-A.N., B.S. and E.H.B.; Project administration, N.-E.L. and A.L. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available in this article.



Water 2022, 14, 3582 17 of 18

Acknowledgments: The authors would like to thank the Laboratory of Molecular and Ecophysio-
logical Modeling of Department of Physics, faculty of science at Semlalia Cadi Ayyad University
Marrakech, the watershed agency of Laayoune Saquia El Hamra Oued Eddahab (ABHSHOD), and
the regional directorate of meteorology (DRM) Laayoune, Morocco.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chapi, K.; Singh, V.P.; Shirzadi, A.; Shahabi, H.; Bui, D.T.; Pham, B.T.; Khosravi, K. A novel hybrid artificial intelligence approach

for flood susceptibility assessment. Environ. Model. Softw. 2017, 95, 229–245. [CrossRef]
2. Pradhan, B. Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing. J. Spat. Hydrol.

2010, 9, 2.
3. Tien Bui, D.; Khosravi, K.; Li, S.; Shahabi, H.; Panahi, M.; Singh, V.P.; Chapi, K.; Shirzadi, A.; Panahi, S.; Chen, W.; et al. New

Hybrids of ANFIS with Several Optimization Algorithms for Flood Susceptibility Modeling. Water 2018, 10, 1210. [CrossRef]
4. Alfieri, L.; Bisselink, B.; Dottori, F.; Naumann, G.; de Roo, A.; Salamon, P.; Wyser, K.; Feyen, L. Global projections of river flood

risk in a warmer world. Earth’s Future 2017, 5, 171–182. [CrossRef]
5. Abdessamed, D.; Abderrazak, B. Coupling HEC-RAS and HEC-HMS in rainfall–runoff modeling and evaluating floodplain

inundation maps in arid environments: Case study of Ain Sefra city, Ksour Mountain. SW of Algeria. Environ. Earth Sci. 2019,
78, 586. [CrossRef]

6. Jenson, S.K.; Domingue, J.O. Extracting topographic structure from digital elevation data for geographic information system
analysis. Photogramm. Eng. Remote Sens. 1988, 54, 1593–1600.

7. Wilson, J.P.; Gallant, J.C. (Eds.) Terrain Analysis: Principles and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2000.
8. Dawadi, S.; Ahmad, S. Changing climatic conditions in the Colorado River Basin: Implications for water resources management.

J. Hydrol. 2012, 430–431, 127–141. [CrossRef]
9. Mosquera-Machado, S.; Ahmad, S. Flood hazard assessment of Atrato River in Colombia. Water Resour. Manag. 2006, 21, 591–609.

[CrossRef]
10. Ahmad, S.; Simonovic, S.P. An Intelligent Decision Support System for Management of Floods. Water Resour. Manag. 2006,

20, 391–410. [CrossRef]
11. Zhang, X.; Srinivasan, R.; Debele, B.; Hao, F. Runoff Simulation of the Headwaters of the Yellow River Using The SWAT Model

with Three Snowmelt Algorithms. JAWRA J. Am. Water Resour. Assoc. 2008, 44, 48–61. [CrossRef]
12. Wheater, H.S.; Jolley, T.J.; Onof, C.; Mackay, N.; Chandler, R.E. Analysis of aggregation and disaggregation effects for grid-based

hydrological models and the development of improved precipitation disaggregation procedures for GCMs. Hydrol. Earth Syst.
Sci. 1999, 3, 95–108. [CrossRef]

13. Verma, A.K.; Jha, M.K.; Mahana, R.K. Evaluation of HEC-HMS and WEPP for simulating watershed runoff using remote sensing
and geographical information system. Paddy Water Environ. 2010, 8, 131–144. [CrossRef]

14. Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part i: Model
development. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [CrossRef]

15. Shahabi, H.; Shirzadi, A.; Ghaderi, K.; Omidvar, E.; Al-Ansari, N.; Clague, J.J.; Geertsema, M.; Khosravi, K.; Amini, A.; Bahrami, S.; et al.
Flood Detection and Susceptibility Mapping Using Sentinel-1 Remote Sensing Data and a Machine Learning Approach: Hybrid
Intelligence of Bagging Ensemble Based on K-Nearest Neighbor Classifier. Remote Sens. 2020, 12, 266. [CrossRef]

16. Lee, S.; Kim, J.-C.; Jung, H.-S.; Lee, M.J.; Lee, S. Spatial prediction of flood susceptibility using random-forest and boosted-tree
models in Seoul metropolitan city, Korea. Geomat. Nat. Hazards Risk 2017, 8, 1185–1203. [CrossRef]

17. Chen, W.; Hong, H.; Li, S.; Shahabi, H.; Wang, Y.; Wang, X.; Ahmad, B.B. Flood susceptibility modelling using novel hybrid
approach of reduced-error pruning trees with bagging and random subspace ensembles. J. Hydrol. 2019, 575, 864–873. [CrossRef]

18. Chen, W.; Li, Y.; Xue, W.; Shahabi, H.; Li, S.; Hong, H.; Wang, X.; Bian, H.; Zhang, S.; Pradha, B.; et al. Modeling flood susceptibility
using data-driven approaches of naïve bayes tree, alternating decision tree, and random forest methods. Sci. Total Environ. 2020,
701, 134979. [CrossRef]

19. Mohammadi, A.; Kamran, K.V.; Karimzadeh, S.; Shahabi, H.; Al-Ansari, N. Flood Detection and Susceptibility Mapping Using
Sentinel-1 Time Series, Alternating Decision Trees, and Bag-ADTree Models. Complexity 2020, 2020, 4271376. [CrossRef]

20. Khosravi, K.; Pham, B.T.; Chapi, K.; Shirzadi, A.; Shahabi, H.; Revhaug, I.; Prakash, I.; Bui, D.T. A comparative assessment of
decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Sci. Total Environ. 2018,
627, 744–755. [CrossRef]

21. Janizadeh, S.; Avand, M.; Jaafari, A.; Van Phong, T.; Bayat, M.; Ahmadisharaf, E.; Prakash, I.; Pham, B.T.; Lee, S. Prediction Success
of Machine Learning Methods for Flash Flood Susceptibility Mapping in the Tafresh Watershed, Iran. Sustainability 2019, 11, 5426.
[CrossRef]

22. Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support
vector machine models in GIS. J. Hydrol. 2014, 512, 332–343. [CrossRef]

23. Liong, S.Y.; Sivapragasam, C. Flood stage forecasting with support vector machines. J. Am. Water Resour. Assoc. 2002, 38, 173–186.
[CrossRef]

http://doi.org/10.1016/j.envsoft.2017.06.012
http://doi.org/10.3390/w10091210
http://doi.org/10.1002/2016EF000485
http://doi.org/10.1007/s12665-019-8604-6
http://doi.org/10.1016/j.jhydrol.2012.02.010
http://doi.org/10.1007/s11269-006-9032-4
http://doi.org/10.1007/s11269-006-0326-3
http://doi.org/10.1111/j.1752-1688.2007.00137.x
http://doi.org/10.5194/hess-3-95-1999
http://doi.org/10.1007/s10333-009-0192-8
http://doi.org/10.1111/j.1752-1688.1998.tb05961.x
http://doi.org/10.3390/rs12020266
http://doi.org/10.1080/19475705.2017.1308971
http://doi.org/10.1016/j.jhydrol.2019.05.089
http://doi.org/10.1016/j.scitotenv.2019.134979
http://doi.org/10.1155/2020/4271376
http://doi.org/10.1016/j.scitotenv.2018.01.266
http://doi.org/10.3390/su11195426
http://doi.org/10.1016/j.jhydrol.2014.03.008
http://doi.org/10.1111/j.1752-1688.2002.tb01544.x


Water 2022, 14, 3582 18 of 18

24. Tehrany, M.S.; Pradhan, B.; Mansor, S.; Ahmad, N. Flood susceptibility assessment using GIS-based support vector machine
model with different kernel types. CATENA 2015, 125, 91–101. [CrossRef]

25. Gianinetto, M.; Villa, P. Mapping Hurricane Katrina’s widespread destruction in New Orleans using multisensor data and the
normalized difference change detection (NDCD) technique. Int. J. Remote Sens. 2011, 32, 1961–1982. [CrossRef]

26. Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.;
et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36.
[CrossRef]

27. Gary, W.B. Hec-Ras River Analysis System Hydraulic Reference Manual Version 4.1, Rabat, Rapport Scientfique. Available
online: https://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS_4.1_Reference_Manual.pdf (accessed
on 1 January 2020).

28. Iosub, M.; Minea, O.; Hapciuc, I.; Romanescu, G.H. The Use of Hec-Ras Modelling in Flood Risk Analysis. 2016. Available online:
https://www.researchgate.net/publication/275648572 (accessed on 1 January 2020).

29. Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150.
[CrossRef]

30. Cortes, C.; Vapnik, V. Support-vector networks. Mach Learn. 1995, 20, 273–297. [CrossRef]
31. Echogdali, F.Z.; Boutaleb, S.; Jauregui, J.; Elmouden, A. Cartography of flooding hazard in semi-arid climate: The case of Tata

Valley (South-East of Morocco). J. Geogr. Nat. Disasters 2018, 8, 1000214.
32. Shao, Z.; Fu, H.; Fu, P.; Yin, L. Mapping Urban Impervious Surface by Fusing Optical and SAR Data at the Decision Level. Remote

Sens. 2016, 8, 945. [CrossRef]

http://doi.org/10.1016/j.catena.2014.10.017
http://doi.org/10.1080/01431161003645808
http://doi.org/10.1016/j.rse.2011.11.026
https://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS_4.1_Reference_Manual.pdf
https://www.researchgate.net/publication/275648572
http://doi.org/10.1016/0034-4257(79)90013-0
http://doi.org/10.1007/BF00994018
http://doi.org/10.3390/rs8110945

	Introduction 
	Materials and Methods 
	Study Area 
	Data Collection 
	Hydraulic Model 
	Remote Sensing Data 

	Modeling Approaches 
	Hydraulic Model 
	Satellite Images Classification 

	Calibration and Validation 

	Results and Discussion 
	Hydraulic Modeling 
	Remote Sensing Mapping 

	Conclusions 
	References

