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Abstract: Climate change (CC) affects millions of people directly or indirectly. Especially, the effect
of CC on the hydrological regime is extensive. Hence, understanding its impact is highly essential.
In this study, the Bharathapuzha river basin (BRB) lying in the Western Ghats region of southern
India is considered for CC impact assessment, as it is a highly complex and challenging watershed,
due to its varying topographical features, such as soil texture, land use/land cover types, slope,
and climatology, including rainfall and temperature patterns. To understand the CC impact on
the hydrological variables at BRB in the future, five downscaled global circulation models (GCMs)
were used, namely BNU-ESM, Can-ESM, CNRM, MPI-ESM MR, and MPI-ESM LR. These GCMs
were obtained for two representative concentration pathway (RCP) scenarios: 4.5 representing
normal condition and 8.5 representing the worst condition of projected carbon and greenhouse
gases concentration on the lower atmosphere. To obtain the continuous simulation of hydrological
variables, the SWAT hydrological model was adopted in this study. Results showed that rainfall
pattern, evapotranspiration, and soil moisture will increase at moderate to significant levels in the
future. This is especially seen during the far future period (i.e., 2071 to 2100). Similar results were
obtained for surface runoff. For instance, surface runoff will increase up to 19.2% (RCP 4.5) and 36%
(RCP 8.5) during 2100, as compared to the average historical condition (1981–2010). The results from
this study will be useful for various water resources management and adaptation measures in the
future, and the methodology can be adopted for similar regions.

Keywords: climate change impact; SWAT; hydrological modeling; streamflow estimation

1. Introduction

Climate change, along with some anthropogenic activities, constantly adds to the
carbon concentration level and other greenhouse gases in the lower atmosphere. In turn,
the atmosphere easily becomes heated up, increasing the land and sea surface temperature.
Because of this phenomenon, the hydrological processes become adversely affected, which
can be experienced even at a small catchment scale [1,2]. The effect of climate change
results in the reduction of surface and sub-surface water levels [3,4], increased air and
surface temperature [5,6], changes in the land cover pattern [7], and other ecological and
socioeconomic problems [8,9]. Among other factors, the shortage of water resources is the
most adverse effect of climate change because water resources are an integral part of society,
and the spatiotemporal distribution of the available fresh water, in particular, is highly
critical for the proper development of the country. The per capita annual water resource
(AWR) is an index used to specify whether a country is under water stress or not [10]. At
present, more than 30 countries in the world are already facing severe water scarcity, and it
is projected to increase much further in many countries. If this situation continues until
2075, 2/3rd of the world’s population will face a shortage of freshwater resources [11,12].
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An IPCC [13] report indicated a steady increase in the global air temperature. By the end
of the 19th century, the earth had already witnessed an increase of 0.3 to 0.6 ◦C, and it
is anticipated to increase up to 1 to 3 ◦C by 2100. These changes, along with changes in
precipitation patterns, heavily influence the streamflow regime and, in turn, pose a severe
change in the flooding level and inundation area [14]. On the other hand, hydrological
drought intensifies and further depletes the freshwater source greatly [15,16]. To cope with
these effects, it is imperative to enforce effective water resources planning and management
practices [17–19]. However, these practices and decisions cannot be easily applied to a
larger spatial extent because the hydrological response to climate change varies from place
to place [20,21]. Hence, adaptation measures and management practices taken at the
catchment scale will have a greater influence over the place and people.

Due to this reason, studies related to the impact of climate change on the hydrological
process have gained considerable attention in recent years [22–28]. This includes the studies
analyzed at country level [29,30], regional level [31,32], and basin level [33,34]. Analyzing
these impacts on countries such as India is especially crucial because the population is
increasing at an exponential rate, along with expanding socio-economic disparities [25]. Fur-
ther, various studies [35–37] have concluded that, in the future, there are high chances of the
depletion of groundwater resources. However, more research is always warranted, account-
ing for the various levels of complexity that may arise due to climatological, geophysical
characteristics, and socioeconomic factors. Likewise, simulation models are continuously
evolving with better and improved tools and techniques that must be applied for a better
understanding and evaluation of water resource issues and possible solutions. Considering
these aspects, analyzing the climate change on the hydrological regime at the basin scale
across the Indian subcontinent has to be explored further.

Among other parts of the Indian subcontinent, the western Ghats is reported to face
more environmental and ecological changes, due to climate impact [32,38]. Additionally,
the western Ghats is termed one of the important biodiversity hotspots of India. The
Bharathapuzha river basin (BRB), lying in the central part of the western Ghats, is the
largest basin among other west flowing river basins [39]. Additionally, the challenging
aspect of this basin is that Bharathapuzha is the most heterogeneous and complex basin
among its adjacent basins, with 74% of the basin lying in the rain-fed tropical region (lies
in the downstream region of the Indian state Kerala), whereas 26% of the basin lies in the
rain shadow semi-arid region (upstream region of Indian state Tamil Nadu). Due to this
reason, the soil taxonomy, land use, and land cover patterns are also entirely different.
For instance, in the Kerala region, the majority of the land cover is densely cultivated
with water-intensive crops, whereas in the Tamil Nadu region, most of the land cover
is either barren or sparsely vegetated. Especially, the vegetation cover is high in the
downstream Kerala region, and the upstream side does not have much vegetation area.
The catchment, thus, responds differently at different places within the basin, and different
recommendations and adaptation measures have to be adopted based on its response.
Another challenging aspect is that, since the basin is relatively large and falls inside two
administrative boundaries (Kerala and Tamil Nadu), the future CC impact assessments will
have an effect on people from both sides of the Western Ghats. The resultant hydrological
projections may pave way for both state governments to take decisive decisions that benefit
all the people. Further, within the Indian Western Ghats region, CC impact analysis on
such a heterogeneous catchment has not been studied previously.

In this context, general circulation models (GCMs) and regional climate models (RCMs)
are usually used to simulate and project future hydrometeorological variables and find
their impact on their hydrological counterparts. GCMs results are generally predicted
using varying aerosols, CO2, and other greenhouse gas concentration levels under different
representative concentration pathway (RCP) scenarios [17]. Nevertheless, these GCM flux
results are typically in the order of a 2◦ to 5◦ spatial scale, and climate change impact on
a basin scale at this coarse resolution would yield sub-optimal results. Moreover, climate
models are not designed to predict all hydrological variables. Intuitively, specialized
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hydrological models are used by coupling with the GCM data. To generate the model result
at such a finer resolution requires the input data to be at the same spatial scale. For this
purpose, GCM data are downscaled to 0.25◦ or 0.1◦, based on the model used and the size
of the catchment.

Among the various hydrological models developed for climate change studies, em-
pirical and conceptual models were preferred less. Though these models require less
parameters to simulate the hydrological variables and are easier to execute, they often
lack a proper physical representation of the basin [40,41]. On the other hand, the physics-
based distributed model can represent the catchment dynamics through a definite physical
process. Further, as stated before, representing the climate impact assessment at a much
finer scale (sub-basin, response unit level) helps in taking effective and efficient man-
agement practices. Taking all of these into account, the soil and water assessment tool
(SWAT) hydrological model [42] was adopted to analyze the climate change response on
the Bharathapuzha river basin, South India. In the present study, climate change analysis
was performed using a statistically downscaled five GCM dataset (BNU-ESM, Can-ESM,
CNRM, MPI-ESM MR, and MPI-ESM LR), under RCP 4.5 and 8.5 scenarios in the future,
until 2100, to understand CC’s impact on the BRB.

2. Materials, Study Area, and Methodology
2.1. Study Area

Bharathapuzha River Basin lying in the central part of Western Ghats, India, was cho-
sen as the study area (Figure 1). It has an elevation range between 0 and 1123 m (Figure 2b).
It has a total river length of 209 km between source and outlet, with a drainage area of
6186 km2 fed by its four main tributaries, namely Kalpathypuzha, Gayathripuzha, Thootha,
and Chitturpuzha. The main river formed by these tributaries finally discharges to the
Arabian Sea at Ponnani on the west coast. As per the 2018 land cover analysis (Figure 2d),
the basin was mainly covered by forests (20.27%), plantations (45.22%), agriculture (16.1%),
built up (10.41%), barren land (5.8%), and waterbody (2.16%).
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Two types of crops (paddy and pulse) are typically grown in the area during the two
seasons of Kharif (July–November) and Rabi (December–March), respectively. Additionally,
arecanut and rubber plantations are predominantly planted in this basin. There are four
streamflow gauging stations in the basin, which include Ambarampalayam in Tamil Nadu
state and Mankara, Pulamanthole, and Kumbidi in Kerala state. There are three small dams
on the upstream side that are used for irrigation water supply in the upstream river basin.
They are Walayar, Mamgalam, and Pothundi. Further, there is a big reservoir, Malampuzha
constructed in the northern part of Palakkad city that supplies the whole water needed by
the city.

The annual precipitation of the BRB in the Western Ghats has decreased over the
last 20 years, from 2420 mm in 1981 to 1980 mm in 2010. The rainfall in the study area is
contributed mainly by the southwest monsoon, and the average annual precipitation is
2042.3 mm (based on 1971 to 2015 data). Most of the precipitation (approximately 75%)
occurs during June to September monsoon months. Further, the average minimum and
maximum temperatures of the basin are 23.5 ◦C and 32.2 ◦C, respectively. As per the soil
map, which was procured from the National Bureau of Soil Survey (NBSS), sandy clay loam
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and clay loam are predominant (Figure 2a) in BRB. Here, the river basin was divided into
41 sub-basins for hydrological parameter studies (Figure 1). Further, the salient features of
the BRB are given in Table 1.

Table 1. Salient features of the BRB study area.

S. No. Feature Descriptions

1 Basin extent 10◦ 15′ N–11◦ 10′ N latitude
75◦ 50′ E–76◦ 55′ E longitude

2 Area (Sq.km) 6186
3 States in the basin Kerala (74%) and Tamil Nadu (26%)
4 Mean annual rainfall (mm) 2042.3
5 Mean max and min temperatures (◦C) 32.2 and 23.5
6 Highest elevation (m) 1123
7 Number of sub-basins for study 41

8 Number of streamflow gauging station 4 (Ambarampalayam, Mankara,
Pulamanthole, and Kumbidi)

9 Length of mainstream (km) 209

2.2. Data Used
2.2.1. Historical Input Data

The details of the digital elevation model, soil, land cover, and meteorological data,
including rainfall and temperature data that are used as inputs for the simulation of
the hydrological model, are shown in Table 2. It should be noted that the Landsat data
were collected during February month to minimize the effect of cloud cover during the
non-monsoon period. This helped in preparing accurate LULC maps during supervised
classification, as shown in Figure 2c,d.

Table 2. Details of the input data used for running the SWAT model.

Input Data Spatial Resolution Temporal Resolution Source

Digital elevation model (DEM) 30 m 2010 Cartosat: National Remote
Sensing Centre

Land use land cover map (LULC) 30 m 2004 and 2018 Landsat

Soil data toposheet - National Bureau of Soil
Survey (NBSS)

Meteorological data (rainfall and
min-max

temperature)
0.25◦ Daily India Meteorological

Department (IMD) [43]

Meteorological data (solar radiation,
relative humidity, and wind velocity) 0.25◦ Daily Climate Forecast System

Reanalysis (CFSR)

Streamflow Point Daily Central Water Commission
(CWC)

The relative humidity, solar radiation, and wind velocity data collected from Climate
Forecast System Reanalysis (CFSR) [44] were interpolated to 0.25◦ at the same grid points
as precipitation data. For calibration and validation purpose, the observed runoff was
collected from Central Water Commission of India (CWC) on a daily time scale. In this
study, two gauging stations, located at Mankara and Kumbidi, were considered for this
purpose. The relevant details of the input data, resolutions, and sources are listed in Table 2.

2.2.2. GCM Climate Data

Statistically downscaled climate variables, including precipitation, minimum and max-
imum temperature, wind speed, and relative humidity, were procured from five Coupled
Model Intercomparison Project 5 (CMIP5) [45] using general circulation model (GCM) sim-
ulation at daily time steps. These include Beijing Normal University Earth System Model
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(BNU-ESM) [46], Canadian Earth System Model 2nd generation (CanESM2) [47], Centre
National de Recherches Météorologiques (CNRM-CM5) [48], and Max Planck Institute
Earth System Model (MPI-ESM MR, and MPI-ESM-LR) [49]. All the five GCMs outputs
that were procured during both historic and future periods for this study were downscaled
using a kernel regression-based statistical method [50]. The data was on a daily scale, and
further details about the data are explained in [50]. Since the product was prepared for the
whole Indian subcontinent, it showed some climatological differences at the basin level,
due to local geophysical processes. To account for these systematic biases between model-
simulated variables and observed values, a bias correction approach had to be performed
before further analysis. In this study, the methodology used by [25], a quantile mapping
based bias correction (QMBC), was adopted and performed on each grid separately. QMBC
is used because it can easily characterize the probability distribution. Further, it can flexibly
adjust the tails (ends) of the cumulative distribution frequency (CDF), which is essential
before projection [51]. Further, to understand the nature of the bias-corrected data and its
error, the spatial averaged temporal correlation of these variables was plotted against IMD
historical data before the actual analysis.

2.3. Methodology

To understand the impact of CC on hydrological variables at the river basin scale in
the Western Ghats region, the Bharathapuzha basin located within this region was analyzed
using the SWAT model. Before performing the SWAT simulation, all the input data were
resampled to the same spatial scale at 0.25◦. The details of the hydrological model, LULC
preparation, and climate change impact analysis are explained in the subsequent sections.
The methodology is shown in Figure 3.
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2.3.1. LULC Preparation

Landsat MSS level 2 data was procured from the NASA–USGS database for LULC
preparation. Level 2 products were delivered after atmospheric and radiometric correction.
Therefore, the data can be used as such, without any preprocessing. For LULC map
preparation, a maximum likelihood classifier was used under a supervised classification
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approach provided within ERDAS Imagine software. Six major classes were identified
in the current study area, namely plantation, waterbody, agriculture, barren land, built
up, and forest. For calibration of the SWAT model, the 2004 LULC map was prepared
(Figure 2c) because it lies within the calibration–validation period to reflect the realistic
situation. Further, the 2018 LULC map was prepared and was used as the base map
during the base period (1981–2010) for CC impact analyses during the future time period
(Figure 2d). The overall accuracy in both the LULC maps was more than 80% during
supervised classification.

2.3.2. Climate Change Analysis

Climate change impact assessment for projected future scenarios was analyzed for the
entire basin on variables including surface runoff, soil moisture, and evapotranspiration.
The projection was performed under two RCP scenarios, namely 4.5 (representing the
normal case) and 8.5 (representing severe degradation in atmospheric conditions). Further,
the analysis was performed at three levels in the future. (a) Near future (NF) ranging
between 2011 and 2040, (b) mid-future (MF) between 2041 and 2070, and (c) far future
(FF) between 2071 and 2100. Additionally, the outputs from the five GCMs were analyzed
separately to understand the nature of each GCM product on the catchment dynamics.
Further, to minimize the effect of epistemic uncertainty, an ensemble averaging technique
of all the GCMs was determined for all the variables following [25].

2.3.3. SWAT Model Description

SWAT is a physics-based distributed continuous hydrological model, mainly devel-
oped to understand the hydrological physics of a catchment [42]. The model allows the
user to perform the model preprocessing by merging with ArcGIS/QGIS platform. Because
of this reason, it has been extensively used in various studies related to the different aspects
of the hydrological component [52,53]. This includes climate change and LULC change
impacts on the hydrological variables [54–59]. The success of the proper implementation
of the model lies in the identification of the precise value of the model parameters. For
this purpose, SWAT provides an algorithm called sequential uncertainty fitness (SUFI-2) to
effectively calibrate and validate the model by identifying the sensitive parameters from
the available global parameter space. In the current study, 10 parameters were identified
as sensitive parameters. Based on the sensitivity results obtained, the SWAT model was
calibrated for the two gauging locations from 1993 to 2000, followed by validation for the
period from 2001 to 2013. It should be noted that LULC generated for the year 2004 was
used as the base map, and other variables, such as DEM and soil, were assumed to be static
during the calibration and validation period. Further details about the model can be ob-
tained from Gassman et al. [60]. To evaluate the performance of the model, Nash–Sutcliffe
efficiency (NSE) [61], percentage bias (PBIAS) [62], and correlation coefficient (R2) [63] were
determined. It should be noted that the SWAT model was run at a monthly time step.

3. Results
3.1. GCM Data Analysis

To understand the agreement between the observed and GCM-simulated climate
variables at a monthly scale for the BRB, before incorporating it into the SWAT model, a
statistical analysis was determined and illustrated in Table 3 below. All the GCM model
results, in general, have been clustered together because all the GCM outputs were from
the same modeling center. For precipitation data, in particular, the model results were
marginally away from the observed point. Still, the NSE and R2 values were around 0.75
to 0.85, which shows that the GCM models can capture the overall trend reasonably well.
However, the model-simulated maximum and minimum temperatures had a significant
correlation of more than 0.9 value. In addition, the peaks of both variables captured the
observation very well, and they were correctly reflected in the NSE values.
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Table 3. Historical GCM statistical analysis, including NSE, PBIAS, and R2 values, for monthly
precipitation, maximum temperature, and minimum temperature datasets during 1981 and 2010.

GCMs BNU CAN—ESM CNRM MPI—ESM—LR MPI—ESM—MR

Evaluation Criteria
(Unit) Precipitation

NSE (−) 0.78 0.73 0.78 0.83 0.81

PBIAS (%) 5.05 4.33 5.41 8.31 6.38

R2 (−) 0.79 0.74 0.79 0.86 0.83

Maximum Temperature

NSE (−) 0.89 0.82 0.83 0.89 0.85

PBIAS (%) −0.25 −0.16 −0.35 −0.17 −0.25

R2 (−) 0.9 0.83 0.84 0.89 0.85

Minimum Temperature

NSE (−) 0.91 0.9 0.87 0.91 0.91

PBIAS (%) 0.62 0.79 0.27 0.85 0.7

R2 (−) 0.92 0.91 0.87 0.93 0.92

In addition, to visually interpret the correlation of GCMs variables with the obser-
vations, the long-term monthly averaged observed data were compared with long-term
monthly averaged GCM-simulated data from 1981 to 2010. It should be noted that the
time series data represented in Figure 4 is an average value of all grids lying within the
BRB. From Figure 4, it can be seen that the GCMs could successfully represent the rainfall
and temperature climatology after applying the bias correction. Hence, the downscaled
variables satisfactorily represent the climatic conditions of the study area and can be further
used in the SWAT model, for further simulation.

From the historical analyses, it is understood that the bias-corrected data is sufficiently
representing the observation trends. Hence, it can be used in the future for further analysis.
However, to visually interpret the future trend of these variables during different RCP
scenarios, a time series plot was prepared, as shown in Figures 5–7. Subsequently, a time
series of all the GCMs and an ensemble case from 2011 to 2100 for both the RCP 4.5 and
8.5 scenarios were plotted. Apart from future periods, Figures 5–7 also show the time series
plots of historical IMD rainfall and maximum and minimum temperature, respectively,
with historical GCMs variables from 1981 to 2010. From Figure 5, it can be seen that the
rainfall pattern and the magnitude of all GCMs, as well as the ensemble case, are showing
a slightly increasing trend for historical and projected future GCMs for both the future RCP
4.5 and 8.5 emission scenarios. It should be noted that, during the historical period (2005),
there was a sudden dip in the IMD observed value. Otherwise, the overall trends between
both values were consistent with the observed values.

Figure 6 gives a comparison of the maximum temperature (Tmax) from IMD and the
maximum temperature of different GCMs, including the ensemble case. All the trends
show a very good correlation. The future maximum temperature of RCP 4.5 and 8.5 for all
five GCMs, as well as the ensemble case, indicated that the RCP 8.5 scenario will have a
maximum temperature of 2 to 4 degrees Celsius more than the RCP 4.5 scenario. The trend
for both RCP 4.5 and 8.5 for maximum temperature is acceptable for the future time period.

Similarly, the minimum temperature (Tmin) time series plot for the historical and
future time periods is plotted in Figure 7. It also shows a good correlation with IMD
observed data. Both Figures 6 and 7 show an acceptable range for future maximum and
minimum temperatures for BRB after bias correction. Hence, these data can be used for the
estimation of hydrological simulations in the basin.
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3.2. Calibration and Validation of the SWAT Model

SWAT simulation in the current study was conducted on a monthly scale. The to-
pography (DEM) was used for the delineation of the basin into several sub-basins. The
automatic watershed delineation tool of ArcGIS calculates the stream densities and divides
the area based on topographical characteristics. The number of sub-basins resulting from
the automatic delineation was adjusted by adding/deleting the outlets to adequately de-
lineate the watershed for the hydrologic simulation [64]. The model was first run using a
five-year warm-up period, from 1986 to 1990. Table 4 lists the sensitive parameters, with
the minimum, maximum, and fitted values used for calibration.

In the BRB, there are four gauging stations, as mentioned in Section 2. However, for
the current study, two gauging stations, namely Kumbidi (downstream end) and Mankara
(central region), were used during the calibration of the SWAT model. By considering these
two gauging stations within the basin, spatial variability can also be accounted for, which
is helpful during climate change impact. It is because both the gauging stations represent
different climatologies of the basin. The observed and simulated monthly calibration
period (1991–2000) and validation period (2001–2013) for streamflow are plotted in Figure 8.
From the results, it can be observed that both the R2 and NSE values for streamflow were
greater than 0.75 during the calibration and validation periods, which suggests good model
performance (Table 5), according to [62].

From Figure 8, it can be observed that the trends between the simulated and observed
discharges were well-captured in both gauging locations. This shows that the SWAT model
has simulated the spatial variability of the hydrological responses, such as streamflow.
Further, from Table 5 it can be seen that model simulation was well-correlated with the
observations. The NSE and R2 value were more than 0.7 consistently during both the
calibration and validation periods.
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Table 4. SWAT parameters, description, range, and the fitted values used during calibration at
Mankara and Kumbidi gauging stations.

S. No Parameters Description Process Range Fitted Value
Kumbidi Mankara

1 CN2 Initial SCS CN II value Q 35–98 67.96 84.8

2 SOL_AWC Available water capacity of the soil layer SM 0–1 0.66 0.25

3 SURLAG Surface runoff lag time Q 0.05–24 10.73 20.17

4 ESCO Soil evaporation compensation factors ET 0–1 0.28 0.37

5 EPCO Plant uptake compensation factors SM 0–1 0.5 0.65

6 ALPHA_BF Base flow alpha factor (day) GW 0–1 0.45 0.88

7 GW_DELAY Groundwater delay (days) GW 0–500 10.15 269.06

8 GW_REVAP Groundwater “revap” coefficient GW 0.02–0.2 0.07 0.1

9 GWQMN Threshold depth of water in the shallow
aquifer required for return flow (mm) GW 0–5000 1441.23 1063.29

10 RCHRG_DP Deep aquifer percolation factor GW 0–1 0.21 0.53

Note(s): Q—Runoff, SM—Soil, ET—Evapotranspiration, GW—Groundwater.
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Table 5. Evaluation performance criteria of the model during the calibration and validation period at
the Mankara and Kumbidi gauging stations.

Evaluation Criteria
LULC 2004—Streamflow

Calibration (1993–2000) Validation (2001–2013)
Kumbidi

NSE 0.87 0.78
R2 0.88 0.9

PBIAS −12.6 −14.2

Mankara
NSE 0.77 0.71
R2 0.77 0.70

PBIAS 3.0 8.31

3.3. Assessment of Climate Change Impact on Hydrological Variables
3.3.1. Precipitation

Figure 9 shows the spatial distribution of the precipitation data projected from five
GCMs ensembled for the different time slices. From Figure 9, it is understood that, in
the future, the rainfall distribution will be more in the downstream areas of the coastal
region and less in the upstream areas lying in the Tamil Nadu state. This shows the strong
heterogeneous nature of the basin. Rainfall values vary predominantly between 600 and
2500 mm in the BRB, but this trend increases slightly when compared with the historical
rainfall trend. When compared between the two scenarios, it is clear that RCP 8.5 showed
more increase in the rainfall value than RCP 4.5. Using these rainfall projections and other
climatological variables, such as temperature, solar radiation, etc., the SWAT model was
run to assess their impacts on the hydrological variables.
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3.3.2. Evapotranspiration (ET)

The ET, in general, depends on the rainfall, temperature variation, and land use types
of the study area (or given sub-basin). In the Bharathapuzha basin, ET is expected to
increase more in the downstream areas and central parts, as compared to the upstream
and hilly regions. This is because of the high rainfall pattern and more plantation and
agriculture in the respective areas (or sub-basin). In addition, there is deforestation in the
hilly region that contributed to less ET value in those sub-basins near the upstream end.
Figure 10 also shows a slight increasing trend in ET along different time periods and RCPs
scenarios. This may be because of an increase in rainfall and temperature values in the
future time period.
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3.3.3. Soil Moisture (SM)

Soil moisture is considered one of the important variables in the hydrometeorological
field because it acts as the bridge between the surface and the lower atmosphere [65,66].
Therefore, spatial variations are plotted (Figure 11) for both scenarios. From Figure 11, it is
clear that the SM variation between the sub-basin reflects a similar pattern, as shown by the
rainfall (Figure 9). Further, it can be noticed that the SM condition is predominantly present
in the high terrain in the north, where the vegetation cover is relatively high, and in the
coastal region, where precipitation is high. In addition, the changes in the SM conditions
from the near and far future are relatively marginal, as compared to the ET variation.

3.3.4. Streamflow (Q)

Figure 12 shows the spatial distribution of the discharge during the future period.
From Figure 12, it is understood that Q is more dominant in the downstream part of
the basin, followed by the central region. However, the upstream end showed a lower
streamflow value in the future time periods. In the coastal area, Q reached a value of more
than 100 (m3/s), whereas in the upstream region lying on the Tamil Nadu side, Q was
less than 10 (m3/s). The major reason behind this is the rainfall and ET pattern over the
basin in the future time period (refer to Figures 9 and 10). Another reason for this trend is
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the accumulation of water over each sub-basin from the upstream side to the downstream
end. Further, the spatial plot of the streamflow showed consistency with the rainfall spatial
plot, as shown in Figure 9. Past studies also stated that rainfall distribution over a region
(sub-basin) heavily influences the streamflow pattern.
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Figure 13 shows an intercomparison of the streamflow time series at the basin outlet
for RCP4.5 and 8.5 scenarios for the future time period. From the time series plot, it is clear
that there will be a moderate increase in the streamflow trend during future time periods.
Further, the average streamflow trend is expected to increase in most of the sub-basins in
the future. The magnitude of the increment is significant in the RCP 8.5 scenario. From
285 (m3/s) during base period, it surpassed 400 (m3/s) in the year 2100. In addition, the
difference between the RCP 4.5 and 8.5 streamflow is visible during the far future time
period. From these two plots, it is expected that the discharge may increase in most of the
sub-basins for the Bharathapuzha basin. Especially, the coastal region will experience more
impact, due to the changes in the climatic conditions.
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Figure 13. Comparison of simulated time series of streamflow at the basin outlet for both RCP 4.5
and 8.5 scenarios between 2011 and 2100.

To understand the streamflow variation, with respect to the average value of the
baseline period (1981–2010), the spatial distribution of the changes in the future streamflow
for different time slices is plotted in Figure 14. The results of the spatial distribution for
RCP 4.5 and 8.5 clearly show that only a few sub-basins are indicating a decreasing trend
for Q, while most of the other sub-basins are showing a significantly increasing trend, up
to 20.22 (m3/s) in the near future, 19.56 (m3/s) in the mid-future, and 17.59 (m3/s) in the
far future for RCP 4.5 scenario while similar and more significant results were found in
RCP 8.5 scenario. This includes 21.15(m3/s) in near future, 31.93 (m3/s) in the mid-future,
and 43.32 (m3/s) in far future time periods. Further, these increases in the streamflow
values are predominantly seen in the sub-basins that are near the main river. These results
of streamflow’s increasing trend in both the RCPs scenarios and all three future time
periods, in comparison to the baseline period (1981–2010), indicate that there is a need for
intervention in water resource management in the basin.

To analytically understand the increase in streamflow, with reference to the baseline
period (1981–2010), Table 6 is tabulated as shown below. From this table, it is understood
that mid-future and far future, under RCP 8.5, experience severe changes, as compared to
other scenarios.
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Figure 14. Spatial distribution of changes in the future streamflow, with respect to base period for
three different time slices between 2011 to 2100, representing (a) RCP4.5 (2011 to 2040); (b) RCP4.5
(2041 to 2070); (c) RCP4.5 (2071 to 2100); (d) RCP8.5 (2011 to 2040); (e) RCP8.5 (2041 to 2070); (f) RCP8.5
(2071 to 2100).

Table 6. Change in streamflow, due to climate change for RCP 4.5 and 8.5, as compared against the
average value during the baseline period (1981–2010).

Scenarios Time Slice Change in Surface
Runoff (m3/s)

Change in Surface
Runoff (%)

RCP 4.5
Near 2011–2040 +23.64 14.23
Mid 2041–2070 +23.47 13.4
Far 2071–2100 +24.67 19.18

RCP 8.5
Near 2011–2040 +23.87 15.34
Mid 2041–2070 +23.93 15.63
Far 2071–2100 +28.16 36.06

Note(s): Average value during baseline period: 285 (m3/s).

For further analyses, the changes within the monthly, seasonal, and annual streamflow
are presented in Figure 15a,b, respectively. From Figure 15a, it can be seen that there was a
considerable increase in streamflow from the November to May months and a marginal
decrease in the June, July, and August months under both the RCP 4.5 and 8.5 emissions.
It was also observed that the increasing trend was more significant, compared to the
decreasing trend. For instance, the percentage increase reached values from 120% to 230%
during the summer season, whereas the percentage decrease was only marginal and ranged
from 15% to 85% during the monsoon season.
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Figure 15. Changes in streamflow for the future time periods, relative to the baseline period.
(a) Changes in mean monthly streamflow, (b) Changes in mean seasonal and annual streamflow in
the BRB.

Figure 15b represents seasonal change and confirms more clearly the change in the
streamflow due to climate change in the future. It clearly shows an increasing trend in the
winter and summer seasons and a decreasing trend in the monsoon season. This shows that
the streamflow is generally more sensitive towards precipitation change and temperature
change. As stated, the increasing annual Q could be due to the increased precipitation
trend in the Bharathapuzha basin (refer to Figure 10). Due to extreme climate conditions
prevailing in the future, the wetter season (monsoon) is becoming less wet, while the
summer and winter seasons, which usually receive less rainfall, become significantly wetter
in the future period. This contrary behavior of the climate, as compared to the current
situation, is a serious phenomenon that needs to be dealt with in BRB. Further, Q in this
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region is closely related to ecosystem health, as well. Hence, a new paradigm of water
resource management that considers future climate change and the potential increasing
streamflow is required.

4. Discussion

Based on the observations, findings, and impacts of climate change on hydrological
variables, an assessment of spatiotemporal variability on BRB has been performed. The
prediction of these variables gives an idea of the water component within the catchment,
which, in turn, will be influential during the sustainable water resources planning and
adaptation measures. The changes in the water budget lead to an increase or decrease in the
water level. In this study, based on the result, it can be seen that there is a significant increase
in the water resource at both the surface level, in terms of streamflow, and at the subsurface
level in the form of soil moisture. The sub-basin level spatial analysis also reveals that
the downstream end may face an increasing surface runoff and soil moisture level. This
correlation was anticipated, given that there would be a substantial increase in the rainfall
at the respective sub-basins. On the other hand, the upstream end with relatively flat terrain
and the densely populated area are seen to witness a reduction in the water storage levels
at both the surface and subsurface levels. This may lead to a shortage of water availability,
leading to water stress for domestic, industrial, and agricultural purposes. In addition, the
results obtained in this study broadly agree with the past studies [67,68], which primarily
emphasized the Indian monsoon in the future. These studies also have highlighted that, at
the country scale, the rainfall pattern is expected to shift, due to ongoing global warming.
Additionally, the rainfall showed a strong relationship with the increasing temperature
around the Indian subcontinent. All these factors also greatly alter the available water
resources, as shown in this current study. So, the implementation of proper adaptation
measures is warranted, to combat the upcoming drastic changes in Indian water resources.

Sharannya et al. and Sinha et al. [24,25] also performed LULC and climate change
impact studies on the adjacent basins of the Western Ghats region and concluded that
changes in the local climatic conditions influence the water balance components directly. In
this regard, in the Bharathapuzha river basin, rainfall, and temperature are increasing in the
future in all-time slices (near, mid, and far). The ET, water yield, and surface runoff trends
in all three slices in the future were nearly similar. A similar finding was also reported by
Chandu et al. [32], who ran the model at a regional scale using the VIC model. Based on
these findings, the ET, water yield, and surface runoff were predicted and can be used for
developing decentralized policy at the sub-basin scale. This will simplify land and water
management in the river basin and help to improve water availability.

Apart from the impact of climate change on the hydrological variables, LULC changes
also play a role in the catchment regime in the future. With the growing population,
urban and plantation areas are expected to increase at the cost of forest area, and this
will have some impact on the water retention capacity in those areas, leading to changes
in soil moisture and runoff components. However, it should be noted that the previous
studies conducted in the Western Ghats region [25,35] showed that the impact of CC
was predominant, and the effect of LULC change on hydrological components was not
significant. Further, the existing approaches used for LULC projections initiate some
uncertainty, and this adds to the existing modeling uncertainty in the future. This study is
a first step toward estimating the responses of streamflow in the BRB to projected climate
changes. Therefore, a further study needs to be analyzed in detail, as well as incorporate
these factors prior to the adaptation measures.

5. Summary and Conclusions

In this study, the impacts of climate change on the streamflow, SM, and ET of the
Bharathapuzha river basin have been investigated. Data obtained from five downscaled
GCM climate models (BNU-ESM, Can-ESM, CNRM, MPI-ESM MR, and MPI-ESM LR)
were used during the historic and future time periods (1981–2100). For future projections,
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different scenarios of RCP 4.5 and RCP 8.5 were considered to analyze the dynamics
of climate change. A SWAT hydrological model was used to simulate the hydrological
variables, when forced with the aforementioned GCM data. From the SWAT modeling
results, it is understood that, compared to the present condition, the average ET is expected
to increase in the future. The increase will be predominantly seen in the downstream and
hilly terrain, as compared to the upstream end. Further, spatial analysis was performed
at the sub-basin scale to understand the catchment dynamics from the upstream and
downstream ends. From the obtained results, it was concluded that the downstream
coastal region and central region (Kerala state) are more vulnerable to climate change,
in comparison to the upstream region (Tamil Nadu state). Further, the downstream end
may witness severe flood situations, due to increased streamflow value. Specifically, it
was found that those sub-basins in the downstream end that are especially near to the
higher-order streams will be more prone to flood situations in the future. On the other hand,
the upstream side may face an acute shortage of water, considering the high percentage of
urban population and drier climatic conditions. These conclusions will help government
agencies and researchers to identify vulnerable sites easily.

Apart from spatial analyses, basin averaged temporally bisected analyses were also
conducted at monthly and seasonal scales. The results indicated an increase in streamflow
for the winter and summer seasons and a decreasing trend during the monsoon period for
all the future periods under both RCP 4.5 and 8.5 emission scenarios. These results will be
critical, and they can be used as input data for various climate change-related management
and adaptation measures in the future. The methodology used in the present study can be
adopted to other heterogeneous complex basins for future water resource management and
adaptations. Yet, the combined impact of LULC and climate change together represent a
realistic impression of the catchment response in the future. Therefore, a further study has
to be analyzed and incorporate the impact of both future LULC and climate projections on
the hydrological variables, including streamflow during the future, such that the adaptation
measures taken will be more reasonable.
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