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Abstract: (1) Background: In this investigation, a composite of MgO nanoparticles with Itsit biochar
(MgO-IBC) has been used to remove arsenate from contaminated water. The reduced adsorption
capacity of biochar (IBC), due to loss of functionalities under pyrolysis, is compensated for with the
composite MgO-IBC. (2) Methods: Batch scale adsorption experiments were conducted by using MgO-
IBC as an adsorbent for the decontamination of arsenate from water. Functional groups, elemental
composition, surface morphology, and crystallinity of the adsorbent were investigated by using FTIR,
EDX, SEM and XRD techniques. The effect of pH on arsenate adsorption by MgO-IBC was evaluated
in the pH range of 2 to 8, whereas the temperature effect was investigated in the range of 303 K
to 323 K. (3) Results: Both pH and temperature were found to significantly influence the overall
adsorption efficiency of MgO-IBC for arsenate adsorption with lower pH and higher temperature
being suitable for higher arsenate adsorption. A kinetics study of arsenate adsorption confirmed an
equilibrium time of 240 min and a pseudo-second-order model well-explained the kinetic adsorption
data, whereas the Langmuir model best fitted with the equilibrium arsenate adsorption data. The
spontaneity and the chemisorptive nature of arsenate adsorption was confirmed by enthalpy, entropy,
and activation energy. Comparison of adsorbents in the literature with the current study indicates that
MgO-IBC composite has better adsorption capacity for arsenate adsorption than several previously
explored adsorbents. (4) Conclusions: The higher adsorption capacity of MgO-IBC confirms its
suitability and efficient utilization for the removal of arsenate from water.

Keywords: Itsit biochar; adsorption; arsenic; composites

1. Introduction

Arsenic is a poisonous and harmful chemical present in the Earth. It is a slow poi-
sonous chemical that has a negative impact on human health. Arsenic is found naturally
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in minerals and rocks. Arsenic encounters ground water due to erosion and weathering
of earth materials as well as volcanic emissions and causes contamination of the water
resources. In contrast with natural sources, man-made activities such as mining, indus-
trial chemical waste, fossil fuel combustion and arsenic pesticides contribute to arsenic
contamination [1]. It has been utilized in paints, pigmenting substances, and dyes and
is primarily employed as a wood preservative in industry. Also, it is used in the glass
and electronics sectors, as well as in the tanning of leather [2]. Arsenic is utilized in tiny
amounts in the medication of living organisms and in care items and is found in many
dietary supplements [3]. As a result, the use of arsenic-containing compounds causes
hyperkeratosis, conjunctivitis, hyperpigmentation, peripheral vascular system and central
nervous system disorders, limb gangrene, skin cancer and cardiovascular diseases [4].
Therefore, arsenic-contaminated water must be treated before ingestion.

Different countries, including India, China [5], Vietnam, Taiwan, United States, Chile [6,7],
Argentina, Mexico [8], Bangladesh [9], Poland, New Zealand, Japan, Canada and Hun-
gary [10] are badly affected by arsenic-contaminated water. West Bengal (India) and
Bangladesh are two of the most arsenic-polluted countries in the world, with arsenic levels
in drinking water well above the WHO standard of 10 µg L−1 [11]. Arsenic occurs in a
variety of oxidation states in nature. It can arise in both organic and inorganic forms in
water. Arsenic in its inorganic forms, such as As (III) and As (V) is very hazardous to
humans and is not removed by simple treatment methods. A number of methods, such
as membrane filtration, reverse osmosis and ion exchange [12], precipitation and oxida-
tion [13], adsorption [14], nanofiltration [15] and coagulation–flocculation [16], have been
employed for arsenic mitigation. Each of these techniques has its own set of advantages
and drawbacks, making it difficult to choose the best one. Traditional methods have several
drawbacks, including high sludge generation, membrane fouling, high cost and, in the case
of ion exchange, constant ions concentration monitoring [17]. With all the disadvantages of
the above-mentioned techniques to be considered, adsorption is concluded to be the best
among these common methods for removing arsenic from aqueous solutions, and it is now
regarded as an efficient and cost-effective method of water treatment [18,19].

There are many adsorbents which have been used for the decontamination of arsenate
from water, including oxides/hydroxides of iron, activated carbon, zinc oxide and many
biosorbents [20–22]. Popular among these adsorbents and widely considered as being
suitable due to their high surface area and adsorption capacity are magnesium oxide and
activated alumina P [23,24]. However, application of activated alumina for arsenate decon-
tamination is restricted due to the hazardous nature of aluminum. In contrast, nanoparticles
of magnesium oxide are better for arsenate detoxification due to greater interaction between
arsenate ions and magnesium ions [25]. However, the metallic nanoparticles often exhibit
the problem of particle aggregation during adsorption, which is complicated for adsorption
studies. To get rid of this difficulty, nanocomposites with carbon rich materials, e.g., biochar,
are considered a better option for the decontamination of several contaminants from water.
Hence, biochar with high porosity is found to be efficient as a carrier for magnesium
nanoparticles and is very cost effective compared to the popular activated carbon. Biochar
alone, however, cannot offer the desired adsorption potential for arsenate due to loss of
functionalities owing to heat treatment which results in a decrease in adsorption sites [26].

The current investigation deals with studying the potential of the Itsit plant for syn-
thesizing its biochar and its nanocomposite with magnesium oxide nanoparticles for the
decontamination of arsenate from water. The MgO nanoparticles play a significant role in
enhancing the sorption capacities of biochar by improving surface characteristics (func-
tional groups and adsorption sites) with greater interaction for arsenate on the surface of
the biochar [27,28]. Batch scale adsorption experiments were used in this study to test the
potential of arsenate adsorption on the surface of a composite of magnesium oxide with
Itsit biochar (MgO-IBC).
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2. Materials and Methods
2.1. Synthesis of Itsit Biochar (IBC)

To prepare Itsit biochar (IBC), Trianthema portulacastrum (Itsit) biomass (TPB) was first
collected from the field, washed with distilled water, and then air dried. Subsequently, TPB
was cut into small pieces (1–1.5 cm) and biochar of TPB, also known as Itsit biochar (IBC),
was prepared at 400 ◦C at 8–10 ◦C/min. During biochar preparation, nitrogen was injected
at a rate of 50 cm3/min.

2.2. Synthesis of IBC Composite with Magnesium Oxide Nanoparticles

To prepare the composite of IBC with magnesium oxide nanoparticles (MgO-IBC),
magnesium chloride (MgCl2) salt and potassium hydroxide (KOH) were used. A 0.1 M
solution (1 L) of MgCl2 and 0.12 M KOH solution (1 L) were prepared in distilled water.
The solution of MgCl2 (100 mL) and 0.5 g of IBC was thoroughly mixed for 10 min. Subse-
quently, this mixture was titrated with KOH (100 mL), dropwise, to prepare the MgO-IBC
nanocomposite. The resultant MgO-IBC nanocomposite was filtered and dried in an oven
at 90 ◦C for 36 h.

2.3. Characterization of Materials

A Fourier-transform infrared (FTIR) spectrometer (Alpha, Brucker, Germany) was
run in the range of 4000–400 cm−1 using KBr pellets to identify the functional groups of
the biochar composite. Scanning electron microscopy (SEM) (NOVA FEISEM 450, Tokyo,
Japan) was used to analyze the morphological aspects of MgO-IBC. While the elemen-
tal composition of biochar composite was determined with an energy dispersive X-ray
spectrophotometer (EDX 2800B ROHS analyzer X, Oxford instruments, Oxfordshire, UK).
The point of zero charge (PZC) was determined to evaluate the overall surface charge of
the adsorbent’s surface using a KCl electrolyte solution [18,19]. For PZC determination,
40 mL of 0.1 M KCl solution was taken in various flasks. The initial pH of these solutions
was adjusted (2–8) and 0.1 g of MgO-IBC was added into each flask. The flasks were
shaken in a shaker bath, at a temperature of 298 K, for 24 h. After an equilibrium time,
the final pH was noted after 24 h; change in pH (∆pH) was plotted with initial pH and
the point crossing the zero of ∆pH was taken as the PZC. Moreover, the crystallinity in
the biochar and its composite was analyzed with an X-ray diffractometer (XRD) (Malvern
Pananalytical, Malvern, UK) having a current voltage of 40 mA and a adiation source of Cu
at 45 kV. The Scherrer equation [18] was used to calculate the crystallite size from the XRD
data of MgO-IBC.

2.4. Adsorption Studies of Arsenic onto MgO-IBC

A batch study was conducted to examine the performance of the MgO-IBC nanocom-
posite at varying temperatures, arsenic concentrations, and solution pH. The influence of
pH on arsenic adsorption was studied by adding 0.05 g MgO-IBC nanocomposite to 40 mL
of arsenate solution (500 µg L−1) at 298 K and by adjusting the pH from 2–8 with the help of
0.1 M HNO3 and 0.1 M NaOH. The influence of temperature was evaluated by taking 0.05 g
of adsorbent in 30 mL of arsenate solutions of various concentrations (20 to 500 µg L−1)
while maintaining the pH at 5 in the temperature range of 303 to 323 K. The arsenic contain-
ing flasks, after shaking in a shaker bath, were finally filtered and analyzed for remaining
arsenic concentration using an atomic absorption spectrophotometer.

The kinetic effect of arsenate adsorption by MgO-IBC nanocomposite was investigated
by taking 40 mL of 500 µg L−1 arsenate solution with a 0.1 g dose of MgO-IBC nanocom-
posite. These flasks were shaken well in a shaker bath from 5 min to 24 h at 298, 308 and
313 K and at pH 5. The samples were collected at different times and were analyzed for
remaining arsenic concentration in water after the interaction with MgO-IBC.
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2.5. Reusability and Stability Study of MgO-IBC

Thirty mL of arsenate solution (500 µg L−1) was taken in a flask and 0.05 g MgO-
IBC composite was added to it at pH 5. This suspension was shaken well for 3 h and
then filtered to determine the residual arsenic concentration in water. This arsenic-loaded
adsorbent was rinsed with 30 mL of 6% HCl solution, for desorption of arsenic, and then
was oven-dried. The dried MgO-IBC, after rinsing with acid solution, was again used
for arsenic adsorption and this process of desorption/adsorption was repeated in four
cycles. Magnesium concentration was measured in the acidic solution after each rinsing to
evaluate the stability of MgO-IBC.

3. Results
3.1. FTIR Analysis

FTIR patterns of Itsit biochar (IBC) and its composite with MgO (MgO-IBC) are
shown in Figure 1a,b, respectively. The broad band around 3400–3600 cm−1 indicates the
OH vibrational stretch of the hydroxyl phenolic functional group containing hydrogen
bonding due to adsorption of water molecules. Similarly, the peaks around 1611 cm−1

and 1396 cm−1 can be attributed to the secondary amine and bending vibration of O–H
or C–O phenolic vibrational stretch, respectively [29], while a small band in the range of
1124–1274 cm−1 indicates the existence of C-H bending due to the presence of alkanes or an
alkyl group [30]. The small band at 614 cm−1 is due to C-H vibrational stretch. Some extra
peaks are observed in the composite biochar in Figure 1b. The peaks observed at 1715 cm−1

can be assigned to C=C, whereas the peak at 1633 cm−1 indicates C=O vibrational stretch
of the carboxylic group. The band in the range of 1367–1228 cm−1 is attributed to C–O–C
symmetric stretch whereas the peak at 1101 cm−1 shows the presence of alcohol. The small
peaks around 538 cm−1 confirmed the Mg-O vibration [31].
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Figure 1. FTIR spectra of (a) IBC (b) MgO-IBC composite.

3.2. XRD Analysis

The XRD results (Figure 2a) of IBC identified the amorphous nature of the biochar
sample, whereas MgO-IBC crystallinity was observed in the structure of biochar as con-
firmed by the appearance of peaks in Figure 2b. These peaks in the composite of biochar
appeared at 2θ values of 50.8◦ and 58.6◦, having miller indices (110) and (111), respectively,
which indicates the hexagonal crystalline planes of Mg(OH)2 [32]. Moreover, peaks at
2θ = 37.2◦, 43.3◦, 62.5◦ and 79.3◦, with miller indices (111), (200), (220) and (222), show the
appearance of MgO nanoparticles with cubic polycrystalline structure (JCPDS No. 87-0653).
The crystallite size of MgO-IBC composite was 14.7 nm indicating the particle size in the
nano-range.
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3.3. SEM Analysis

The surface morphology of IBC and MgO-IBC was investigated with scanning electron
microscopy (SEM) as shown in Figure 3a–d. SEM images of IBC (Figure 3a,b) show
irregularities in size. However, the micrographs of MgO-IBC (Figure 3c,d) clearly show the
deposition of MgO on the biochar surface. Owing to the presence of the small-sized MgO
nanoparticles, the surface roughness of the IBC increases, which is suitable for heavy metal
adsorption [33,34].
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3.4. EDX Analysis

EDX analysis of IBC and MgO-IBC was conducted to determine the elemental com-
position of the samples as shown in Figure 4a,b. The EDX indicates a high content of
carbon (62.46%) and oxygen (15.39%) and low contents of Na, Mg, Al, Si, P, S, Cl, K, Ca and
Cu in the IBC biochar. However, the percentage of O was found to increase to 27.19% in
the composite biochar as compared to the IBC (15.39%) in addition to the presence of Mg
(14.04%), which confirms the successful impregnation of MgO in the biochar composite [26].
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3.5. Point of Zero Charge (PZC)

The point of zero charge is the pH at which the adsorbent surface has a net zero charge
and is calculated by plotting ∆ pH vs pH and the intersection point of the curve at zero is
taken as the PZC. The PZC of MgO-IBC composite in the present investigation was pH 6.6
(Figure 5).

3.6. Effect of Contact Time

The effect of contact time on arsenic adsorption by MgO-IBC composite was studied
at times varying from 5 to 420 min, pH 5 and a temperature range of 303 K to 323 K, as
shown in Figure 6. It can be observed from the results that initially, with the increase in
contact time, the arsenate sorption rate increased quickly, which resulted in greater removal
of arsenate by MgO-IBC due to availability of more active sites. As the equilibrium time
approached 300 min, efficiency of removal started to decrease gradually until 420 min, after
which no rise in adsorption rate was observed, which is attributed to the saturation of all
active sites. The influence of temperature on the kinetics of arsenate adsorption by MgO-
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IBC was lower in the first 20 min, after which the sorption process increased significantly
with the increase in temperature. Initially, the arsenate ions at all the temperatures had
the availability of enough adsorption sites on the surface of the adsorbent. However, with
the saturation of adsorbent’s surface, only an increase in temperature created additional
surface sites on the surface of the adsorbent due to bond breakage of Mg-O on the surface
of composite. Moreover, an increase in temperature also led to increased movement of
arsenate ions towards the adsorbent’s surface leading to enhanced adsorption. However,
there was no significant effect of temperature observed at the equilibrium time of this
investigation. A similar trend of initial rise and subsequent fall in adsorption has also been
reported elsewhere [18,35].
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3.7. Effect of pH

Changing the pH of the solution has a significant effect on arsenic adsorption by
the adsorbent and this effect was studied in the pH range of 2 to 8 and at a temperature
of 298 K, as shown in Figure 7. It can be observed that, at lower pH values maximum
adsorption was observed due to development of attractive forces between the negative
arsenate ions (H2AsO4

−1 and HAsO4
−2) and the positive adsorbent surface and pH < PZC

(6.6). The lower the pH, the more negatively charged arsenic ions are adsorbed resulting in
higher arsenic adsorption at low pH. When pH increases, the repulsive forces are generated
between the post PZC negative adsorbent’s surface and the negative arsenate ions, which
decreases the extent of adsorption at higher pH values [36]. Moreover, at higher pH values,
an increase in negative OH ions also offers competition to the negative arsenate anions,
leading to a decrease in the adsorption of arsenate at higher pH values. A similar trend
of higher adsorption at lower pH and lower adsorption at higher pH values has been
observed elsewhere [18,37].
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Figure 7. Effect of pH on arsenate adsorption onto MgO-IBC composite.

3.8. Effect of Temperature and Concentration

Both concentration and temperature are the forces that control the adsorption system.
The effect of concentration and temperature was investigated in the present investigation at
pH 5 in the concentration range of 20 to 500 µg L−1 when the temperature was 303, 313 and
323 K (Figure 8). Results revealed that an increase in concentration and temperature was
found to have a positive effect on arsenate adsorption on the surface of MgO-IBC. However,
the adsorption slows down considerably after a certain increase in concentration leading to
an equilibrium condition. This initial increase in adsorption was due to the availability of
more adsorption sites which became limited as the concentration of arsenate ions increased
leading to equilibrium conditions. At a higher temperature, more adsorption sites are
created at the surface of the composite due to more bond breakage of Mg-O resulting in
displacement of oxygen by arsenate ions and thereby increasing the adsorption at higher
temperature [38,39]. Moreover, increased diffusion of arsenate ions within the adsorbent
pore space is another factor leading to increased adsorption at higher temperatures [40].
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Figure 8. Effect of temperature and concentration on arsenate adsorption onto MgO-IBC composite
at pH 5.

3.9. Ho and Mckay’s- Plot

To have an insight into the mechanism of arsenate adsorption by MgO-IBC, the kinetic
data were subjected to the linearized form of Lagergren (pseudo first order) and Ho and
Mckay’s (pseudo second order) models according to the Equations (1) and (2) respectively,

log(Xe − Xt) = log(Xe)−
k1

2.303
t (1)

t
Xt

=
1

k2 X2
e
+

t
Xe

(2)

where Xt and Xe (mol g−1) in the above equations represent arsenic concentration adsorbed
at time ‘t’ and at equilibrium, respectively, whereas k1 and k2 are pseudo-first-order and
pseudo-second-order rate constants. Straight lines in both cases were obtained when
graphs were plotted between time t and ln (Xe − Xt) (pseudo-first-order plot) and t/Xe vs.
t (pseudo-second-order plot) as shown in Figure S1 and Figure 9 respectively. However,
higher R2 values are obtained with a pseudo-second-order plot which confirms a pseudo-
second-order plot to be the model applicable to the kinetic data. The applicability of the
pseudo-second-order model and an increase in the values of pseudo-second-order rate
constants and Xe with the increase in the temperature of the system (Table 1) indicate the
process of adsorption to be endothermic and chemisorptive in nature [37].

Table 1. Pseudo second order model parameters and activation energy for arsenate adsorption on
MgO-IBC composite.

Temperature (K) k2 (g m−1 mol−1) Xe × 107 (mol g−1) Ea (kJ mol−1)

303 1.41 29.010 20.61
313 1.49 32.562
323 1.57 37.707
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Figure 9. Correlation of pseudo-second-order kinetic model and experimental adsorption of arsenate
on MgO-IBC composite.

3.10. Langmuir Model

The Langmuir model assumes adsorption to be monolayer in nature. The Langmuir
model in its linearized form (Equation (3)) was used for arsenate adsorption on the surface
of MgO-IBC composite.

Ce

X
=

1
Xmax × Kb

+
Ce

Xmax
(3)

where Ce (mol L−1) is the concentration of arsenate at equilibrium and X (mol g−1) rep-
resents adsorption of arsenate ions (mol g−1). A plot between Ce/X vs. Ce, as shown
in Figure 10, indicates a well-fitted linear plot with a correlation coefficient greater than
0.99, which shows the applicability of the Langmuir model confirming adsorption to be
monolayer in nature. Furthermore, an increase in temperature resulted in the increase in
the adsorption capacities (Xm) confirming the adsorption process to be endothermic in
nature [13]. The increase in the values of Kb with temperature indicates that strong binding
forces are involved in the adsorption process (Table 2). The comparison of the calculated
values of Xm in the present investigation with the literature (Table 3) shows the adsorption
capacity of MgO-IBC for arsenic to be greater than various adsorbents reported in the
literature indicating it to be a very effective adsorbent for arsenic removal.

Table 2. Parameters of the Langmuir model for arsenate adsorption on MgO-IBC composite.

Temperature (K) Xmax × 102 (mg g−1) Kb × 10−4 (L mol−1)

303 19.7 2.018
313 23.1 9.103
323 24.3 15.43
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Table 3. Comparison of the adsorption capacities of different adsorbents for arsenic.

Adsorbent Xm (mg g−1) References

Zn-loaded biochar 0.28 [41]
Ferromanganese oxide–biochar 0.712 [42]
Lignocelluloic 0.94 [43]
Nano-zerovalent iron biochar 1.40 [44]
Integrated active biochar filter 2.12 [45]
Animal-derived biochar 2.76 [46]
Fe-Mn-La-impregnated biochar 3.18 [47]
Japanese-oak-wood biochar 3.89 [48]
Metal-modified biochar 4.12 [49]
FeCl3-activated biochar 4.4 [50]
MgO-IBC composite 4.86 Current study

3.11. Estimation of Activation Energy

For the activation energy (Ea) calculation, the Arrhenius Equation (4) was applied to
the data in the linearized form as follows:

lnk2 = lnA − Ea

RT
(4)

where k2 is the pseudo-second-order rate constant, T is temperature in Kelvin (K), A is
the pre-exponential factor and R represents the general gas constant. Activation energy
was determined from the intercept and slope of the plot between lnk2 vs. T−1 (Figure S2).
The Ea value calculated from the plot has been shown in Table 1 which is in the range of
8.4–83.7 kJ mol−1, confirming the adsorption process to be chemisorptive in nature [51].
However, the adsorption is diffusion controlled in this case as the activation energy is less
than 42 kJ mol−1, in contrast to a chemically controlled process having Ea > 42 kJ mol−1 [52].
Chemical adsorption occurs at the adsorption sites, but before that arsenate ions need to be
transported by diffusion to the adsorption sites for the occurrence of the chemical reaction
between arsenate ions and the adsorption site. Diffusion, being the slowest step, controls
the overall rate in the series of steps leading to chemical adsorption [53].
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3.12. Thermodynamic Parameters

Equations (5) and (6) were employed for the determination of the thermodynamic
behavior of arsenate adsorption on MgO-IBC.

lnkb =
∆S
R

− ∆H
RT

(5)

∆G = ∆H − T∆S (6)

where T, R, ∆H, ∆S, kb and ∆G are temperature in K, general gas constant, enthalpy, entropy,
binding energy constant and free energy, respectively. kb was calculated from the Langmuir
adsorption plot. The intercept and slope obtained from the plot between lnkb vs. T−1

(Figure S3) are used for the calculation of ∆S and ∆H. Adsorption of arsenate on the surface
of MgO-IBC nanocomposite is an endothermic process as indicated by the positive value
of enthalpy of activation (Table 4). This means that conversion of reactants into product
requires more energy as arsenate ions need to displace water molecules to be adsorbed
on the composite surface. Entropy in the present investigation is positive which shows
the high randomness at the interface of solid and liquid due to structural changes in the
solid–liquid system [20]. ∆G values in the current investigation are negative, indicating the
process of adsorption to be spontaneous and becoming more feasible with the increase in
temperature. Similar values of thermodynamic parameters are observed elsewhere [54,55].

Table 4. Thermodynamic parameters for arsenate adsorption on MgO-IBC composite.

∆H
(kJ mol−1)

∆S
(J mol−1)

∆G
(kJ mol−1)

303 K

∆G
(kJ mol−1)

313 K

∆G
(kJ mol−1)

318 K

83.28 0.3584 −24.97 −29.71 −32.08

3.13. Reusability and Stability Study of MgO-IBC

The reusability of the MgO-IBC composite was checked by adsorption/desorption
cycles and the data are shown in Figure 11. The removal percentage of MgO-IBC composite
decreases from cycle 1 to 4 as shown in Figure 11. In the first cycle, 95.85% of arsenic was
removed and arsenate removal (%) dropped to 86.18, 64.49 and 31.86% respectively in
second, third and fourth cycle. The arsenic-loaded adsorbent was washed with 6% HCl
solution and recycled. Maximum arsenate removal occurred in the first cycle due to the
presence of large active sites which reduced greatly in the next cycles [19]. In all four
cycles, the concentration of magnesium leaching back to the solution was well below the
standard permissible limit (50 mg L−1) showing the stability of the adsorbent as well as the
better impregnation of magnesium with the biochar. The result shows the valuable stability,
regeneration capacity and environmentally friendly nature of the MgO-IBC.
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4. Conclusions

The current investigation explores the removal of arsenate by MgO-IBC composite.
The FTIR spectrum of MgO-IBC shows extra peaks compared to raw biochar, confirming
the formation of MgO bonding with the biochar, whereas SEM confirmed the increased
roughness of the surface of the composite compared to raw biochar. The XRD analysis also
further confirms composite formation due to the appearance of peaks of MgO. The Scherrer
formula confirmed the crystallite size of the MgO-IBC composite as 14.7 nm. Lower pH and
higher temperature were found to favorably enhance the adsorption of arsenate onto MgO-
IBC. The kinetics study established 240 min as equilibrium time and the data were found to
obey a pseudo-second-order model. Activation energy confirmed the chemical nature of the
adsorption with a diffusion-controlled process. Monolayer coverage was confirmed by the
applicability of the Langmuir model to the adsorption data. Thermodynamic parameters
showed the process to be endothermic in nature. Higher adsorption capacity compared to
various other adsorbents reported in the literature confirms the suitability and efficiency of
MgO-IBC composite for the removal of arsenate by adsorption from water.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14213559/s1, Figure S1: Pseudo first order kinetics model
of arsenate adsorption on MgO-IBC composites; Figure S2: Arrhenius plot of arsenate adsorption
on MgO-IBC composites at pH 5; Figure S3: Vant Hoff’s plot for arsenate adsorption on MgO-
IBC composites.
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