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Abstract: Eutrophication and algal blooms have sparked worldwide concern because of their
widespread effects on water-dependent species. Harmful algal blooms can cause fatal effects to
lesser flamingos (Phoeniconaias minor), obligatory filter feeders and vital bio-indicators in soda lakes.
Thus, early detection of algal blooms and potential indicators in water quality is critical, but general
tools are lacking in eastern African soda lakes. We monitored algal biomass changes and related
water physico–chemical variables for 12 consecutive months in the lakes Big Momella and Rishateni
in northern Tanzania. We used chlorophyll-a to measure algal biomass and quantified water physico–
chemical variables that might influence algae growth. We also monitored lesser flamingo numbers
to understand trends across the year and according to algal bloom occurrence. Algal biomass was
strongly related to water nitrogen (r = 0.867; p < 0.001) and phosphorus (r = 0.832; p < 0.001). Monthly
patterns showed significant differences in water quality and algal biomass (F = 277, p < 0.001) but not
across sampling sites (F = 0.029, p = 0.971). Lesser flamingo numbers seemed to be related to algal
biomass at Lake Big Momella (r = 0.828; p < 0.001) and shortly after algal biomass peaked high (i.e.,
March and April 2021), flamingo numbers declined. Lake Rishateni showed similar patterns. Our
findings can provide a basis towards understanding the factors contributing to temporal changes in
lesser flamingo abundance due to spatio–temporal water quality variations, which is important for
optimising conservation efforts for the species in these unique Momella lakes.

Keywords: eutrophication; algal biomass; nutrients; soda lakes; bio-indicators

1. Introduction

Eutrophication and algae blooms are widespread issues that have sparked worldwide
concern because of their effects on water-dependent species, particularly specialists [1–3].
As applied in this study, an algal bloom refers to the rapid increase or accumulation of the
algae population in lake systems [4,5]. Findings indicate that algal blooms can occur at any
time in nutrient-enriched water bodies with calm surface waters if they have temperatures
exceeding 20 ◦C, and can last for some days or weeks, depending on the prevalence of
the influencing environmental factors [4,6]. Although both beneficial and harmful algae
species exist [7,8], most algal blooms are harmful not only because they produce toxins
but also because they create anoxic conditions, emit unpleasant scents, block light from
reaching other organisms lower in the water column [4,9] and clog the filtration systems of
filter feeders [10,11].
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However, monitoring, controlling and managing algal blooms and understanding
their related effects on water-dependent species has been a challenge because algal blooms
affect these species in various ways [12–14]. Little is known about how spatial or temporal
rapid increase in algal biomass might induce algal bloom occurrence and influence the
presence of lesser flamingos. In eastern African soda lakes, research has focused on algal
blooms, after they have caused devastating effects [15–17]. Still, little is known about the
relationships between water nutrients, rapid increases in algal biomass and the possibility
of algal bloom occurrence. Furthermore, little attention has been paid to quantifying how
these blooms might relate to the presence of lesser flamingos.

The lesser flamingo (Phoeniconaias minor) is a water-dependent bird, itinerant and
obligate algae filter feeder [10,11]. It feeds on Arthrospira fusiformis, a blue-green algae
species abundant in shallow soda lakes and wetlands [10,11,18]. Otherwise, the birds will
resort to diatoms when their preferred food falls below a certain threshold [18,19]. The
birds forage in either a standing or swimming position or wading in shallow water or
muddy areas [20]. In addition, the lesser flamingo predominates in eastern, southern and
western Africa [21,22]. East Africa holds the largest lesser flamingo population, amounting
to 1.5 to 2.5 million individuals, contributing to 75% of the global population [23–25].

The lesser flamingo is treasured because it is an important bio-indicator of ecosystem
health and function [11,26]. However, due to rapid population decline and significant
habitat loss caused by human-induced activities in recent years, the IUCN (2018) classed
this species as near threatened [23,27,28]. The breeding season for the east African lesser
flamingo local population is during the short rainy season, especially in October, with
Lake Natron in Tanzania serving as the primary breeding area [20,22,29]. Furthermore,
several collective behavioural displays help the species synchronise and reproduce once cli-
mate conditions, such as temperature, rainfall, and food availability, are favourable [30,31].
However, understanding factors influencing the lesser flamingos’ presence and tempo-
ral changes in the soda lakes outside the breeding season remain a major conservation
challenge for the species.

The principal foraging requirement for this species is the blue-green algae A. fusiformis
that grow in soda lakes under appropriate water chemistry [18,25]. However, harmful
algal blooms negatively impact A. fusiformis’ performance, quantity, and the flamingo’s
filter-feeding style and often can lead to the death of this species [15,17,32]. In addition,
recent large-scale mortality incidences and temporal shifts in lesser flamingos in the east
African soda lakes, particularly in Kenya and Tanzania, have raised concerns [15–17,32].
As a result, several studies addressed factors behind mortality and temporal population
shifts, which found that phytoplankton abundance [22,25], cyanobacteria toxins [15–17]
and food quality/supply [18,25,27] were all linked to the mortality and temporal shifts
of occurrence.

However, the studies pinpointed to the lack of reliable data in monitoring temporal
and spatial dynamics of algal biomass. Furthermore, there is still little understanding of
how these blooms relate to water physico–chemical properties and whether algal biomass
fluctuations are reflected in associated local lesser flamingo population sizes of east African
soda lakes. Because algal blooms have been linked to excessive nitrogen and phosphorus
inputs in lake systems [4,33,34], water quality assessments and monitoring algal biomass
over time could be a useful technique for understanding whether spatio–temporal water
quality monitoring can predict algal bloom occurrence [2,6,35].
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Our objectives were (i) to quantify algal biomass across different locations and over a
year in relation to water physico–chemical variables in the Momella lakes, Arusha National
Park, Tanzania. Furthermore, we wanted (ii) to understand the temporal fluctuation of
lesser flamingo numbers in the Momella lakes and whether these are associated with algal
biomass. We used chlorophyll-a as a measure of algal biomass [36,37] and quantified water
physico–chemical variables (nitrogen, phosphorus, temperature, pH, dissolved oxygen,
and water transparency) that might influence algae growth in soda lakes [22,25,26]. We
conducted monthly water measurements, tracked the amount of rainfall and collected
monthly flamingo monitoring data for one year across different locations of the Momella
lakes in northern Tanzania. We anticipated that physico–chemical factors play a direct role
in changes in algal biomass. We also expected the number of lesser flamingos to increase
as algal biomass increased but that there might be a tipping point, above which the algal
blooms might deter foraging lesser flamingos.

Our findings provide a basis for understanding the factors contributing to temporal
changes in lesser flamingo abundance in their habitats. Furthermore, assessing how water
quality is related to algal biomass will help detect eutrophication and predict harmful algal
bloom occurrence risk periods, which is important for long-term water quality monitoring
programs and improving efforts to reduce eutrophication in the Momella lakes.

2. Materials and Methods
2.1. Study Site

The Momella lakes form an attractive tourist site in the north-eastern region of Tanza-
nia’s Arusha National Park (ANAPA). Rishateni, Tulusia, Lekandiro, Kusare, El Kokhotoito,
the Small Momella, and the Big Momella are among the seven soda lakes that make up the
ecosystem [38,39]. A hydrogeological survey by Post and Stumpf [40] in the park revealed
that the lakes Big Momella, Tulusia and Rishateni have higher salinity concentrations
than the rest of the lakes in ANAPA, which favours the growth of blue-green algae, A.
fusiformis, which represents the main food source for the lesser flamingos [18]. We focused
on two lakes, i.e., Big Momella and Rishateni, covering an area of 1.14 km2 and 0.27 km2,
respectively. These two lakes are the principal foraging grounds, attracting thousands
of lesser flamingos during favourable conditions around the year [15,38,39]. The lakes
are <1 km apart and are located on the outskirts of ANAPA, which might be affected
by human-induced pollutants and leaching micro-and macronutrients from unprotected
land. Thus, as the lakes are adjacent to each other and vulnerable to human pressure, it
was important to monitor both independently to understand the general patterns in algal
biomass changes and the lesser flamingo presence over time (Figure 1).

The average annual air temperatures In the study site range from 12 to 28 ºC and
annual average rainfall varies between 500 mm and 1200 mm, exhibiting a bimodal pattern
with long rains from February to May and short rains from November to January [38,41].
The lakes are fed by precipitation and non-permanent run-offs from valleys that drain water
into the lakes from the surrounding area, and they are recharged mainly by underground
water [38,42]. The local human population of Meru district is roughly 268,000 people, with
an annual growth rate of 2.7%, and about 18,000 people live near the lakes in the Leguruki
Ward, Miririny village [41]. In view of the above, the lakes are at risk from pollution due
to farming and human settlements in the near proximity [41], which is likely to impact
soil physico–chemical characteristics and water quality due to agrochemical runoff from
neighbouring farms [38,43].



Water 2022, 14, 3532 4 of 19
Water 2022, 14, x FOR PEER REVIEW 4 of 20 
 

 

 

Figure 1. Locations of the lakes Big Momella and Rishateni, at the boundary of Arusha National 

Park, in northern Tanzania with the water sampling points, where we measured water physico–

chemical properties and algal biomass monthly from May 2020 to April 2021. 

2.2. Data Collection 

2.2.1. Water Quality 

We conducted surface water quality sampling every month over one year, between 

May 2020 and April 2021, from three established sampling points in each lake (Figure 1). 

These sites included two sites close to the shore and one in the middle of each lake. We 

used 1-litre polyethene plastic bottles, washed with detergents, acidified with 5% HNO3, 

then rinsed with distilled water, and finally rinsed three times with sample water before 
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Figure 1. Locations of the lakes Big Momella and Rishateni, at the boundary of Arusha National Park,
in northern Tanzania with the water sampling points, where we measured water physico–chemical
properties and algal biomass monthly from May 2020 to April 2021.

2.2. Data Collection
2.2.1. Water Quality

We conducted surface water quality sampling every month over one year, between
May 2020 and April 2021, from three established sampling points in each lake (Figure 1).
These sites included two sites close to the shore and one in the middle of each lake. We
used 1-litre polyethene plastic bottles, washed with detergents, acidified with 5% HNO3,
then rinsed with distilled water, and finally rinsed three times with sample water before
filling [25,44]. Water samples for algal biomass determination were taken at a distance of
about 10 m from the shoreline and immediately fixed with 1% formaldehyde [26]. The
chosen distance was important to avoid the dense cyanobacterial scums that occasionally
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developed at the shore due to wind [25,45]. The water sample bottles were then labelled,
preserved in an icebox and transported to the Nelson Mandela African Institution of Science
and Technology (NM-AIST) for immediate analyses within 48 h [25,46,47].

We also measured the main physical (pH, temperature, dissolved oxygen and water
transparency) and chemical (nitrogen and phosphorus) water variables that influence algal
growth in eutrophic lakes [25,48,49]. At each sampling occasion, we used a portable Hanna
9829 Multiparameter Meter [22,45] and a 20 cm diameter Secchi disk [22,45] for water
transparency. In addition, we quantified water total nitrogen content (N) by the Persulfate
Digestion Method 10071 and water total phosphorus content (P) by PhosVer 3 with the
Acid Digestion Method 8190 [50,51]. Finally, we recorded algal biomass using a DR 2800
spectrophotometer by quantifying chlorophyll-a [36,46]. In line with water quality assess-
ment, we also determined the average monthly rainfall for the Arusha National Park using
observational data consisting of rainfall records and rainfall datasets extracted from the
Center for Hydrometeorology and Remote Sensing [52] to understand the rainfall pattern.

2.2.2. Lesser Flamingo Abundance

We used the ground census method [22,25] for monthly estimation of the number of
lesser flamingo individuals in the two study lakes over one year, between May 2020 and
April 2021. We counted by stopping at specified vantage points (Figure 1) and, depending
on the abundance and distribution of lesser flamingos, we divided the lake’s shore into
recognized counting sections with flocks of lesser flamingos [22,25,53]. The vantage points
were purposively chosen to provide the optimum view for counting [22,53].

Because lesser flamingos occur in large flocks, we used recommended telescopes
“Orion Go Scope II 70 mm” and binoculars “Orion Delux 8 × 42”(both manufactured
by Synta company located in Suzhou, China) to scan, focus, and magnify individuals,
as well as cameras to take photographs of large flocks (Figure 2) for confirmation while
counting, which helped reduce biases due to interference or obscurity [22,25]. Moreover, we
conducted the census between the hours of 8 and 10 a.m. when the birds moved the least
to avoid double counting [45,54]. At each location, we stayed long enough to count each
flock, which helped us calculate realistic estimates [55,56]. After each monthly counting
session, we calculated the number of lesser flamingos by summing up the counts estimated
from all vantage points [22,25]. We did not encounter any lesser flamingo deaths during
the study period between May 2020 and April 2021.
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Figure 2. A flock of lesser flamingos captured wading and feeding along the shore area of Lake Big
Momella, northern Tanzania, during one of the counting sessions (April 2021).
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2.3. Data Analysis

We calculated the mean for algal biomass across the sampling points each month and
the monthly total number of lesser flamingos observed during the study period from May
2020 to April 2021. We also calculated the mean values of water physico–chemical variables
across all three sampling points per lake. We used a one-way analysis of variance (ANOVA)
to test spatial and temporal variations in algal biomass among the studied sites in each lake,
followed by a post hoc test (Tukey HSD test) at a 5% confidence level. We used Pearson’s
correlation to understand the strength of the relationship between algal biomass changes
and the physico–chemical variables in water. We also correlated lesser flamingo numbers
with algal biomass over the entire study period. We performed a Shapiro–Wilk test before
the analysis to ensure normal data distribution, and those not normally distributed were
transformed accordingly.

To measure the effect of each water physico–chemical factor on algal biomass, we
used a multiple linear regression analysis [25,57] after having checked for multicollinearity
using the variance inflation factor (VIF). We also performed the same for physico–chemical
factors and lesser flamingo numbers. All predictor variables were only slightly correlated
(VIF < 5 unit). R-square and adjusted R-square were used to test the model’s goodness
of fit [57]. We used the non-linear curve fitting technique to test whether the response
variables changed rapidly after a slight change in the predictor variable to identify potential
threshold values [58,59]. We used R—Software version 4.1.1 for all statistical analyses, with
significance levels set at p < 0.05.

3. Results
3.1. Physico–Chemical Variables and Algal Biomass Variations

The area exhibits a bimodal pattern with long rains from February to May and short
rains from November to January (Figure 3). One-way ANOVA test for Lake Big Momella
showed that monthly variations in water N (F = 25.0, p < 0.001; Figure 4a) and P (F = 29.8,
p < 0.001; Figure 4b) differed significantly. In April 2021, water N was twice as high (11.5
mg/L) as in September 2020 (6.5 mg/L), similar to P, which was almost twice as high in
April 2021 than in July and September 2020. Since rainfall and levels of N and P positively
correlated (r = 0.654, p < 0.001; and r = 0.684, p < 0.001, respectively), it is possible that the
region’s considerable rainfall received in March and April 2021, washed nutrients into the
lakes, contributing the high levels of nutrients in April 2021.
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Figure 4. The temporal trends of average (±SE) physico–chemical water quality parameters and
algal biomass as monitored from May 2020 to April 2021 at Lake Big Momella, northern Tanzania;
(a) Nitrogen, (b) Phosphorus, (c) Temperature, (d) Oxygen = dissolved oxygen (e) Transp = water
transparency and (f) pH. Please note that the left y-axis denotes algal biomass (mg/L), indicated by
gray bars, for all panels.

Over the year, the water temperature varied significantly (F = 193.2, p < 0.001; Figure 4c),
with the lowest (19 ◦C) and highest (24 ◦C) temperature recorded in July 2020 and January
2021, respectively. Furthermore, between June 2020 and April 2021, dissolved oxygen
statistically significantly declined to one third of its original value (F = 29.0, p < 0.001;
Figure 4d). Water transparency dropped significantly by one quarter between June 2020
and February 2021 (F = 32.2, p < 0.001; Figure 4e). The pH differences were also statistically
significant (F = 11.0, p < 0.001) across the months (Figure 4f).

One-way ANOVA test for Lake Rishateni also revealed statistically significant monthly
variations for water N (F = 59.2, p < 0.001; Figure 5a) and P (F = 65.4, p < 0.001; Figure 5b).
Water N in April 2021 was approximately twice as high (11 mg/L) as August 2020, while P
was nearly three times higher (3.7 mg/L). The considerable amount of rainfall received in
the area (Figure 3) that positively correlated with N and P (r = 0.547, p < 0.001; r = 0.763,
p < 0.001, respectively), might have washed nutrients into the lake, contributing to the
lake’s high N and P levels in April 2021. The water temperature varied significantly (F = 8.8,
p < 0.001), with the lowest (22 ◦C) and highest (24 ◦C) recorded in July and November
2020, respectively (Figure 5c). In addition, dissolved oxygen decreased significantly by
almost five times between May 2020 and April 2021 (F = 42.3, p < 0.001; Figure 5d). Between
June 2020 and April 2021, Water transparency decreased by nearly one quarter (F = 50.3,
p < 0.001; Figure 5e). The pH differences were not statistically significant (F = 11.0, p = 0.141)
across the months (Figure 5f).
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Figure 5. The temporal trends of average (±SE) physico–chemical water quality parameters and algal
biomass as monitored from May 2020 to April 2021 at Lake Rishateni, northern Tanzania; (a) Nitrogen,
(b) Phosphorus, (c) Temperature, (d) Oxygen = dissolved oxygen (e) Transp = water transparency
and (f) pH. Please note that the left y-axis denotes algal biomass (mg/L), indicated by gray bars, for
all panels.

N and P were strongly positively correlated with algal biomass in Lake Big Momella
(r = 0.867, p < 0.001 and r = 0.832, p < 0.001, respectively). Water temperature also showed
a positive but not significant correlation with algal biomass (r = 0.325, p = 0.053). In
addition, dissolved oxygen and water transparency had a moderate negative but statis-
tically significant relationship with algal biomass (r = −0.663, p = 0.004 and r = −0.667,
p < 0.001, respectively) while pH did not differ with algal biomass (r = −0.190, p = 0.268;
see Appendix A: Table A1).

Lake Rishateni showed similar results, i.e., N and P had a statistically significant
positive correlation with algal biomass (r = 0.912, p < 0.001, r = 0.819, p < 0.001). Water tem-
perature also showed a positive but not significant correlation with algal biomass (r = 0.287,
p = 0.089). Dissolved oxygen, water transparency and pH showed negative correlation with
algal biomass; however, that of pH was not statistically significant (r = −0.536, p < 0.001,
r = −0.499, p = 0.002, r = −0.137, p = 0.425, respectively; see Appendix A: Table A1).

Our scatter diagrams helped to determine the tipping points (thresholds), where the
dependent variable (algal biomass) was most sensitive and signaled an abrupt change.
Thus, except for pH, which was statistically insignificant, it was found that the nitrogen,
temperature, dissolved oxygen, and water transparency tipping points in both lakes were
about 8 mg/L, 23 ◦C, 6 mg/L and 16 cm. The phosphorus tipping points for the two
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lakes differed, around 3.8 mg/L for Lake Big Momella and 2.8 mg/L for Lake Rishateni
(Figures 6 and 7).
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3.2. Contributions of Influencing Factors to Algal Biomass

The analyzed physico–chemical factors jointly accounted for 80.9% of the variance
in algal biomass for Big Momella lake, according to multiple linear regression analysis
(F = 20.5, p < 0.001). We found that N and P were the significant predictors of the algal
biomass changes, with increasing N and P enhancing algal biomass (B = 1.927, p < 0.001
and B = 0.526, p = 0.020; Table 1a). For Lake Rishateni, the investigated physico–chemical
factors accounted for 89.5% of the variance in algal biomass for Lake Rishateni (F = 41.2,
p < 0.001) and N and P positively significantly predicted the change in algal biomass
(B = 1.954, p < 0.001 and B = 0.587, p = 0.022, respectively; Table 1b). The results indicated
that algal biomass increased by 2.0 and 0.6 units for every one unit increase in nitrogen and
phosphorus, respectively.
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Table 1. The multiple linear regression results showing the influence of physico-chemicals variables
on algal biomass at lakes; (a) Big Momella and (b) Rishateni, Tanzania during the study period from
May 2020 to April 2021. Temp = water temperature, Oxygen = dissolved oxygen and Transp = water
transparency.

(a)

Predictor B SE β t p

Nitrogen (mg/L) 1.927 0.319 0.678 6.048 <0 .001 ***
Phosphorus (mg/L) 0.526 0.214 0.277 2.455 0.020 *
Temp (◦C) 0.809 1.070 0.110 0.756 0.456
Oxygen (mg/L) 0.055 0.290 0.026 0.190 0.850
Transp (cm) −1.045 1.382 −0.158 −0.756 0.456
pH 0.387 0.950 0.037 0.408 0.687

(b)

Predictor B SE β t p

Nitrogen (mg/L) 1.954 0.327 0.650 5.983 <0 .001 ***
Phosphorus (mg/L) 0.587 0.242 0.282 2.422 0.022 *
Temp (◦C) 1.603 0.886 0.245 1.809 0.081
Oxygen (mg/L) 0.064 0.174 0.046 0.370 0.714
Transp (cm) 0.222 1.051 0.037 0.211 0.835
pH −1.073 2.752 −0.029 −0.029 0.700

Note: Values with asterisk (*) are statistically significant different at * p < 0.05, *** p < 0.001.

3.3. Algal Biomass and Lesser Flamingo Abundance

Generally, algal biomass fluctuated considerably and showed clear monthly variations
in the study lakes across all sampling points, with low levels from May to December, 2020
and high levels between January, 2021 and April, 2021. We noticed the highest increase to
9.51 mg/L in March, 2021 at Lake Big Momella and 8.25 mg/L at Lake Rishateni in February
2021 (Figure 8a,b). Our one-way analysis of variance (ANOVA) revealed no statistically
significant difference between the three sampling sites within Lake Big Momella (F = 0.029,
p = 0.971) nor within Lake Rishateni (F = 0.017, p = 0.983). However, for both Lake Big
Momella and Lake Rishateni, temporal fluctuations in algal biomass were statistically
significant (F = 277, p < 0.001; F = 136, p < 0.001; Figure 8a,b, see Appendix B: Table A2).

In line with algal biomass, lesser flamingo numbers were relatively low between May
and December, 2021 and soured significantly in January and February, 2021 (Figure 8a,b).
After that, the numbers dropped in March and April 2021. Pearson correlation analysis
showed a statistically significant positive correlation between lesser flamingo abundance
and algal biomass in both lakes, Big Momella (r = 0.828, p < 0.001) and Rishateni (r = 0.780,
p < 0.001). These results indicated that the amount of algal biomass in both lakes strongly
influenced the number of lesser flamingos. However, monthly trends of the lesser flamingo
numbers showed that the numbers dropped after a peak in algal biomass in March and
April 2021 (Figure 8a,b).

Our regression analysis (Equations (1) and (2)) revealed that 87.2% and 64.7% of the
variations in lesser flamingo abundance at lakes Big Momella (F (7, 28) = 27.4, p < 0.001)
and Rishateni (F (7, 28) = 7.3, p < 0.001), respectively, could be explained by various
physico–chemical factors of the water quality.
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Figure 8. Lesser flamingo abundance (monthly number of individuals counted) and algal biomass
trends as monitored from May 2020 to April 2021 at lakes; (a) Big Momella and (b) Rishateni,
northern Tanzania.

AM = −4.58 + 3.15AB − 0.71N − 1.30P − 0.41DO + 0.81Temp + 2.46Transp + 0.28pH (1)

AR = 8.57 − 0.84AB + 0.76N − 0.28P + 0.16DO − 0.73Temp + 10.68Transp + 1.54pH (2)

AM = Abundance Big Momella, AR = Abundance Rishateni, AB = algal biomass
(mg/L), N = nitrogen (mg/L), P = phosphorus (mg/L), DO = dissolve oxygen, Temp =
temperature and Transp = water transparency.

In addition, we used the non-linear curves to determine tipping points or “thresholds”
in algal biomass, to which the number of lesser flamingos signaled an abrupt change during
the study period. As a result, we found the tipping point for the amount of algal biomass to
be around 8 mg/L for Lake Big Momella (Figure 9a) and nearly 7 mg/L for Lake Rishateni
(Figure 9b).
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4. Discussion
4.1. Physico–Chemical Variables and Algal Biomass Variations

Contrary to our expectation, there were no spatial changes in algal biomass and the
physico–chemical parameters. Findings indicate that spatial changes in physico–chemical
variables and hence biomass could be attributed to differences in nutrients of the water
that enters the lakes at some points through permanent streams from nutrient rich wa-
tersheds [60] or areas with spatial differences in geology [61]. However, given that the
Momella lakes lack permanent streams, this might not be the case. Surprisingly, temper-
ature and pH did not seem to impact algal biomass changes significantly as observed in
other studies [35,49]; although, significant temporal variations were evident. The relatively
high water temperatures [62,63] and the stable high-pH environments (pH > 9) which are
favourable for algal growth in the soda lakes [64] could possibly be the reasons behind the
insignificant impact of these parameters on algal biomass changes.

The rapid increase in algal biomass between January and April 2021 could be at-
tributable to the high levels of N and P enrichment from catchment areas as the lakes are
fed by rainfall and non-permanent run-offs from nearby agricultural fields [38,65]. Thus,
water N and P significantly influenced algal biomass changes, confirming that algal growth
requires a certain range of physico–chemical properties for optimal growth [22,65]. The N
and P enrichment may be the result of these nutrients being washed into the lakes through
runoff from the watershed areas.

Though few have investigated a possible time lag between nutrient enrichment and
responding algal biomass changes [66,67], we found that after 1 to 2 months of high P levels,
algal biomass peaked. Our findings suggest that establishing the thresholds, especially
for nitrogen and phosphorus concentrations, is essential for preventing eutrophication in
aquatic ecosystems caused by non-point source pollution and lowering the high risk of
algal blooms [68]. We also recommend a study on the farming practices in the lakeside
communities to determine whether they contribute to eutrophication.

Determining physico–chemical parameters’ threshold values for aquatic organisms has
been problematic as species respond differently based on the adaptive ability to which they
are exposed [69,70]. Furthermore, the observation that dissolved oxygen declined below
the recommended threshold in our study, i.e., 6 mg/L [69,70], following the increased algal
biomass in March and April, is of great concern. According to Shields and Weidman [71],
both 1 and 2 mg/L dissolved oxygen levels seemed to be critical hypoxic thresholds,
below which fatal conditions for most water-dependent species occur. Thus, the decreased
dissolved oxygen levels suggests that the lakes experienced stressful conditions, particularly
in March and April. However, we recommend long-term research on the soda lakes’ critical
dissolved oxygen and water transparency thresholds as our study only covered one year
of observations.
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4.2. Contributions of Influencing Factors to Algal Biomass

According to Chislock [72] and Hamilton [73], high N and P levels in water bodies can
promote algae’s rapid growth, resulting in large surface algal blooms and hostile conditions
for water-dependent species such as lesser flamingos. The high amounts of N we found
in the lakes, particularly between January and April, might be contributed by the lesser
flamingo droppings into the water [22,74]. Our finding on high P levels is consistent with
other studies conducted in lakes Nakuru and Bogoria in Kenya, which have had much
higher P levels in the years 2001–2009 (39.9 mg/L) and 33.4 mg/L), respectively, during
wet months [46,75] compared to our study. Since the Momella lakes are protected by
ANAPA, with the exception of the north-eastern part, which is vulnerable to human en-
croachment [38,76], we suspect that the comparatively low levels of N and P may reflect the
relatively small human influence, highlighting the importance of protecting these unique
soda lakes. We acknowledge that reducing nutrient inputs and controlling algal blooms
through mechanical, biological, chemical, genetic and environmental controls [12] involve
numerous stakeholders and are often not allowed in protected areas [12,77]. Preventative
steps may be more achievable in the Momella lakes ecosystem, to reduce nutrient imports
from watershed areas [12,77].

4.3. Algal Biomass and Lesser Flamingo Abundance

Our finding that the number of lesser flamingos increased significantly as algal biomass
increased was consistent with our hypothesis. Moreover, based on our algal biomass tipping
points, we noted that the lesser flamingo numbers were sensitive to thresholds in algal
biomass. As expected, the pattern showed that the number of lesser flamingos declined
at a relatively high algal biomass, which might reflect the decrease in supply of their
preferred diet in the phytoplankton community, similar to studies conducted in Kenya [10],
Tanzania [22,25,26] and South Africa [24,46]. For instance, the number of flamingos at
Lake Manyara, Tanzania, increased to 515,777 individuals when A. fusiformis dominated
the water column [22], while Kamfers Dam, South Africa attracted large flocks of lesser
flamingos soaring to more than 80,000 individuals [24,46] during May 2008 and 2012.

When their preferred food falls below a certain threshold, the birds will resort to a
different food source, e.g., diatoms [18,19]. Alternatively, they shift to other lakes in search
of suitable and high quantity of food sources [11,22,26]. Thus, our observed unexpected
drop in lesser flamingo numbers in the lakes in March/April is likely not due to the birds’
seasonal migration patterns to Lake Natron for breeding, as the species begins nesting there
around October only [25,28]. We might have identified tipping point, above which algal
biomass becomes too high to support the lesser flamingos in the lakes. However, as our
study only covered one year of observations, we recommend long-term monitoring data to
understand whether lesser flamingo population drops are indeed related to algal bloom
occurrence. We also recommend studies on species identification and Arthrosporic density
determination during high algal biomass peaks when flamingo numbers are low as there
might be Arthrospira crashes caused by cyanophages [78].

Our findings suggest that monitoring water physico–chemical variables related to
algal biomass dynamics in soda lakes can help predict algal bloom risk periods that
might affect lesser flamingo presence. The rapid increase in algal biomass that resulted in
reduced dissolved oxygen and water transparency, particularly in March and April, could
be a sign of an algal bloom event that had an impact on the lesser flamingos’ food and,
consequently, their abundance in the lakes [26,75]. Previous findings indicate the risk of
food contamination by harmful algal species [79] and toxicity [15,16] during algal bloom
occurrence. Since the short duration of our study might have constrained our results, we
recommend long-term monitoring of dissolved oxygen and water transparency, followed by
algal species composition during high algal biomass peaks. This will add to our knowledge
of algal bloom events and toxic algal species that may affect lesser flamingo abundance in
the lakes.
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5. Conclusions

In this study, we found that algal blooms can be detected through algal biomass
changes related to physico–chemical water quality parameters. Tracing sources of water
nutrients, i.e., N and P that promote algal growth in the Momella lakes over time and
space was an important tool to understand thresholds and correlations of the different
factors. Our results indicated that algal biomass dynamics might be one of the main factors
influencing lesser flamingo presence in the Momella lakes. We also found algal biomass
thresholds, after which lesser flamingo numbers radically dropped. As our study only
covered one year, we recommend continuous assessments over several years. However, we
highlight that tracking algal biomass dynamics and water nutrient status over time will aid
in predicting algal bloom risk periods, which could alter flamingo presence and feeding
requirements in lakes.

6. Implication for Conservation

Our study monitored algal biomass changes related to physico–chemical factors in-
fluencing algal growth for one year in the Momella lakes. We also tracked lesser flamingo
numbers to see how they changed over time. Our findings show that monitoring algal
biomass dynamics and the physico–chemical water variables can help predict algal bloom
risk periods, adding to our understanding of the factors that might influence the presence
of lesser flamingos in their natural habitats. Furthermore, algal biomass peaks and algal
bloom risk periods can help researchers determine the optimal time to study dominant
or toxic algae species that may contaminate or disrupt the food supply of lesser flamin-
gos [15,16] and, thus, their presence in the lakes. Algal bloom detection through algal
biomass changes could be the best tool, rather than relying on water colour changes, deaths
of organisms and unpleasant odors [4,9], which are too late and only relative indicators. We
also expect our findings to be the basis for supporting efforts to investigating the sources of
nutrients leaching into the lakes during high algal biomass peaks. Although the Arusha
National Park protects the lakes, we stress long-term water quality monitoring programs
and collaborative efforts among stakeholders to protect the lakes from effects related to
human encroachment.
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Appendix A

Table A1. Correlation matrix for the studied variables at lakes (1) Big Momella and (2) Rishateni,
northern Tanzania. N = Nitrogen, P = Phosphorus, Temp. = water temperature, Oxygen = dissolved
Oxygen and Transp. = water transparency.

(1)

N (mg/L) P (mg/L) Temp. (◦C) Oxygen (mg/L) Transp. (cm) pH Alga biomass (mg/L)

N (mg/L) —
P (mg/L) 0.694 *** —
Temp. (◦C) 0.120 0.563 *** —
Oxygen (mg/L) −0.611 *** −0.769 *** −0.505 ** —
Transp. (mg/L) −0.557 *** −0.883 *** −0.696 ** 0.671 *** —
pH −0.083 0.013 −0.110 0.122 0.058 —
Algal biomass (mg/L) 0.867 *** 0.832 *** 0.325 −0.625 *** −0.667 *** −0.190 —

(2)

N (mg/L) P (mg/L) Temp. (◦C) Oxygen (mg/L) Transp. (cm) pH Alga biomass (mg/L)

N (mg/L) —
P (mg/L) 0.793 *** —
Temp. (◦C) 0.258 0.447 ** —
Oxygen (mg/L) −0.459 ** −0.577 *** −0.650 *** —
Transp. (mg/L) −0.350 * −0.453 ** −0.713 *** 0.802 *** —
pH −0.112 0.095 −0.050 −0.169 0.139 —
Algal biomass (mg/L) 0.912 *** 0.819 *** 0.287 −0.536 *** −0.499 ** −0.137 —

Note: Mean difference values with asterisk (*) are statistically significant different at * p < 0.05, ** p < 0.01, *** p < 0.001.

Appendix B

Table A2. The mean (mg/L) difference for algal biomass changes among months at; (1) Lake Big
Momella and (2) Lake Rishateni, northern Tanzania, between May 2020 and April 2021. Significant
differences are presented according to Tukey’s Post Hoc Test at 95 CL.

May June July August September October November December January February March April

May — 0.183 ** 0.18 ** 0.227 *** 0.157 * 0.177 ** 0.19 ** 0.173 ** −0.377 *** −0.487 *** −0.483 *** −0.473 ***
June — −0.003 0.043 −0.027 −0.007 0.007 −0.01 −0.56 *** −0.67 *** −0.667 *** −0.657 ***
July — 0.0467 −0.023 −0.003 0.01 −0.007 −0.557 *** −0.667 *** −0.663 *** −0.653 ***

August — −0.07 −0.05 0.037 −0.053 −0.603 *** −0.713 *** −0.71 *** −0.7 ***
September — 0.02 0.033 0.017 −0.533 *** −0.643 *** −0.64 *** −0.63 ***
October — 0.013 −0.003 −0.553 *** −0.663 *** −0.66 *** −0.65 ***
November — −0.017 −0.567 *** −0.677 *** −0.673 *** −0.663 ***
December — −0.55 *** −0.66 *** −0.657 *** −0.647 ***
January — −0.11 −0.107 −0.097

February — 0.003 0.013
March — 0.01
April —

May June July August September October November December January February March April

May — 0.25 *** 0.44 *** 0.457 *** 0.377 *** 0.397 *** 0.403 *** 0.257 *** −0.283 *** −0.297 *** −0.32 *** −0.27 ***
June — 0.19 *** 0.207 *** 0.127 ** 0.147 *** 0.153 *** 0.007 −0.533 *** −0.547 *** −0.57 *** −0.52 ***
July — 0.017 −0.063 −0.043 −0.037 −0.183 *** −0.723 *** −0.737 *** −0.76 *** −0.71 ***

August — −0.08 −0.06 −0.053 −0.2 *** −0.74 *** −0.753 *** −0.777 *** −0.727 ***
September — 0.02 0.027 −0.12 ** −0.66 *** −0.673 *** −0.697 *** −0.647 ***
October — 0.007 −0.14 ** −0.68 *** −0.693 *** −0.717 *** −0.667 ***
November — −0.147 *** −0.687 *** −0.7 *** −0.723 *** −0.673 ***
December — −0.54 *** −0.553 *** −0.577 *** −0.527 ***
January — −0.013 −0.037 *** 0.013

February — −0.023 0.027
March — 0.05
April —

Note: Mean difference values with asterisk (*) are statistically significant different at * p < 0.05, ** p < 0.01, *** p < 0.001.
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