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Abstract: This study focuses on the nitrogen removal capability of the mangrove wetland system
towards resolving the excessive inorganic nitrogen content in the marine water of Shenzhen’s Deep
Bay. The nitrogen distribution characteristics, biological nitrogen removal processes, nitrogen removal
functional genes, and bacterial community characteristics were investigated in five wetland sites in
the intertidal zone of the Deep Bay, viz. the Kandelia candel, Bruguiera gymnorrhiza, Sonneratia apetala,
Aegiceras corniculatum, and mud flat sites. The results showed that ammonia and nitrate in the marine
water were significantly removed in the five wetlands sites, with respective removal efficiencies
of 70.9–75.5% and 89.5–94.0%. The concentration of ammonia and nitrate in pore water remained
significantly unchanged with depth. Denitrification and anammox were each system’s main biological
nitrogen removal processes, and their rates were 1.70–3.22 and 0.07–0.36 µmol/(kg·h), respectively.
The denitrification rates in the mangroves were higher than in the mud flat site, unlike the anammox
rates. The denitrifying functional genes (nirS, nosZ) and anammox functional gene (hzsB) showed an
excellent linear relationship with the relevant process rates. Bacillus and Pseudomonas were the main
heterotrophic denitrifying bacteria genera identified. The autotrophic denitrifying bacteria genus
Sulfurovum was also identified in the systems, while Candidatus Scalindua was the only anammox
genus identified in this study. The results of this study improve our understanding of the nitrogen
removal characteristics of coastal wetlands and the role of mangrove plants in the biological nitrogen
removal processes.

Keywords: Deep Bay; mangrove wetland; denitrification; anammox

1. Introduction

The Deep Bay, the inner bay of Shenzhen Bay, is adjacent to the Futian and Mai Po
Mangrove Reserves in the east and connected to the central mountain through the Dasha
River City Green Corridor in the north. It is an essential ecological source and ecological
corridor in the region and a vital link between the land and marine environment. Therefore,
the aquatic ecology and environment in the Deep Bay significantly impact the sustain-
able development of Shenzhen city. However, while the ocean provides opportunities
for Shenzhen’s rapid development, the city’s expansion has also impaired the aquatic
ecology and environment of the bay. According to the “2021 Bulletin of Shenzhen’s Ecology
and Environment Status”, the water quality of Deep Bay remained poor. It was consis-
tently classified as grade four, with its inorganic nitrogen far exceeding the grade-four
standard while deteriorating yearly. High nitrogen concentrations in seawater directly
lead to frequent eutrophication in the bay’s water body, threatening the ecosystem and the
surrounding environment.
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Mangrove wetlands are coastal habitats with critical ecological functions. They can
exert ecological functions, maintain biodiversity, provide animal habitats (for fishes, crus-
taceans, etc.), and have significant water purification effects. As modern sediments are
formed from the interactions of rivers and oceans, mangrove wetlands act as sinks, sources,
or converters for biogenic elements, such as nitrogen, significantly improving the water
quality in bays [1–5]. Leung et al. [6] found that the removal of organic matter and ammonia
nitrogen concentrations in mangrove wetland systems was as high as 70.8%–84.9% and
84.8%–99.6%, respectively, while that of total phosphorus could reach 100%. Therefore,
the restoration or reconstruction of mangroves in coastal areas is highly significant for
improving the bay’s water quality.

Research on nitrogen removal characteristics in mangrove wetlands significantly
guides mangrove wetland restoration. Some studies on the distribution of nitrogen in
mangrove wetlands are documented. In the research of Nie et al. [7], shotgun metagenomic
sequencing and quantitative polymerase chain reactions were used to understand the
nitrogen cycle in the subtropical mangrove ecosystem in the Beibu Gulf of China. The
study clearly illustrates how the mangrove ecosystem mitigates nitrogen pollution through
Desulfobacterales. Elsewhere, Xiao et al. [8] quantified nitrogen loss in mangrove soils and
found that the average nitrogen removal rate was about 2.07 g/(m3·d).

Zhang et al. [9] reported the occurrence of anaerobic ammonium oxidation (anammox)
in the mangrove wetland of the Zhangjiang Estuary, China. The study verified the co-
existence of different genera of anammox microorganisms in mangrove sediments, with
Candidatus Scalindua and Candidatus Kuenenia being the dominant genera. In another
study, Baskaran and Prabavathy [10] explored the diversity and distribution of nitrogen
fixers and denitrifiers associated with the rhizospheres in the mangroves. The authors
found that the mangrove ecosystems are potential sources for identifying unexplored
microbial communities contributing to nutrient cycling. Currently, there is insufficient
quantitative research on the mechanism of nitrogen removal in mangrove wetland systems,
especially under high temperatures in the coastal areas of Guangdong province. What is
the contribution of various processes in the system to the total amount of nitrogen removal?
What is the effect of mangrove plants on the various nitrogen removal processes and related
functional bacterial community structure? These questions require urgent research.

Therefore, selecting the Shenzhen Deep Bay intertidal mangrove wetlands as the
research object, we investigated the characteristics of nitrogen distribution, the main bi-
ological nitrogen removal processes, the numbers of nitrogen removal functional genes,
and the bacterial community structure in the system. The results can help improve our
understanding of the nitrogen removal characteristics in coastal wetlands and the effect of
mangrove plants on biological nitrogen removal processes.

2. Materials and Methods
2.1. Study Sites

Four mangrove sites on the west and north shores of Shenzhen’s Deep Bay (Figure 1)
were selected as the study sites: the Kandelia candel site (Site KC, 113◦57′36′′ E, 22◦30′27′′ N),
the Bruguiera gymnorrhiza site (Site BG, 113◦57′35′′ E, 22◦30′28′′ N), the Sonneratia apetala
site (Site SA, 113◦57′41′′ E, 22◦30′42′′ N), and the Aegiceras corniculatum site (Site AC,
113◦57′57′′ E, 22◦31′32′′ N). A mud flat site (Site MF, 113◦57′38′′ E, 22◦30′21′′ N) was
selected as the control group.



Water 2022, 14, 3507 3 of 14Water 2022, 14, x FOR PEER REVIEW 3 of 16 
 

 

 
Figure 1. Map showing the research location and sampling sites. KC, BG, SA, AC, and MF are site 
abbreviations for Kandelia candel, Bruguiear gymnorrhiza, Sonneratia apetala, Aegiceras corniculatum, 
and mud flats, respectively. 

2.2. Sampling and Analysis 
Liquid and solid samples were collected in August 2021. Three sampling points were 

selected in each of the five sites. The pore water samples were extracted using an AMP-
TH DGT device (EasySensor, Nanjing, Jiangsu, China) and HR-Peeper device (Dionex 
Corporation, Sunnyvale, CA, USA) at 0–150 mm depth. At the same depth, soil samples 
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Figure 1. Map showing the research location and sampling sites. KC, BG, SA, AC, and MF are site
abbreviations for Kandelia candel, Bruguiear gymnorrhiza, Sonneratia apetala, Aegiceras corniculatum, and
mud flats, respectively.

2.2. Sampling and Analysis

Liquid and solid samples were collected in August 2021. Three sampling points
were selected in each of the five sites. The pore water samples were extracted using an
AMP-TH DGT device (EasySensor, Nanjing, Jiangsu, China) and HR-Peeper device (Dionex
Corporation, Sunnyvale, CA, USA) at 0–150 mm depth. At the same depth, soil samples
were simultaneously collected using a columnar sampler.

Nitrate, nitrite, ammonia, and sulfate concentrations were determined using a DX
ICS-3000 ion chromatography unit (Dionex Corporation, Sunnyvale, CA, USA). Dissolved
oxygen (DO) and chemical oxygen demand (COD) were quantitated using standard meth-
ods [11]. The soil organic carbon content was determined via potassium permanganate
oxidation, while a total organic carbon analyzer (TOC-VCS/CP, Shimadzu, Japan) quan-
tified the organic carbon content in the liquid. The total sulfur content in sediments was
measured using an elemental analyzer (Vario EL III, Elementar, Hanau, Germany).

2.3. Measuring Denitrification, Anammox, and Dissimilatory Nitrate Reduction to Ammonium
(DNRA) Rates

Soil slurry incubation experiments measured the potential rates of denitrification and
anammox using the 15N isotope-pairing technique and the MIMS (Bay Instruments, Easton,
MD, USA) determination of 29N2 and 30N2 in the soil slurry [12,13]. Briefly, soil slurries
were prepared by mixing fresh soils and helium (He)-purged water (soil:water = 1:5) in
12 mL glass vials. The vials were then transferred to a vertical shaker and preincubated
for 5–8 days at near in situ temperature (32 ◦C) to eliminate residual nitrate and oxygen.
Subsequently, all the vials were divided into three groups, one spiked with a 100 µL He-
purged stock solution of 15NH4

+ (99.3% 15N), 15NH4
+ plus 14NO3

−, or 15NO3
− (99.2%

15N), resulting in a final concentration of 100 µM 15N in each vial. Soil slurry incubations
were performed at 32 ◦C and were stopped by adding 200 µL saturated HgCl2 solution [14]
at 0, 1, 3, 5, 7, and 9 h durations. After, the abundance of 29N2 and 30N2 in the vials was
directly determined by MIMS [15]. The potential rate of anammox and denitrification
was estimated according to the methods and equations provided in the Supplementary
Materials.
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Meanwhile, the vials spiked with 15NO3
− were purged with He for 30 min to eliminate

29N2 and 30N2 produced by denitrification and anammox during incubation. At the same
time, 200 µL hypobromite iodine solution was injected to oxidize the DNRA-produced
15NH4

+ into 15N gases (29N2 and 30N2). The concentration of the 15N gas generated in
the initial and final samples was measured by MIMS. The values were used to calculate
the potential rate of DNRA according to the methods and equations described in the
Supplementary Materials.

2.4. DNA Extraction and Quantitative PCR (q-PCR)

DNA was extracted from 0.5 g of fresh soil using an E.Z.N.A.® Soil DNA Kit (Omega,
Norcross, GA, USA). Real-time q-PCR analysis on the extracted DNA determined the abun-
dance of the functional genes of denitrification (nirS and nosZ), anammox (hzsB), and DNRA
(nrf A). The primers were nirSCd3aF/nirSR3cd, nosZ-F/nosZ-1622R, hzsB396F/hzsB742R,
and nrf AF2aw/nrf AR1, respectively (Table 1).

Table 1. Characteristics of primer and probe sets for real-time q-PCR.

Primers Specificity Sequence (5′ to 3′) Reference

nirSCd3aF nirS gene GTSAACGTSAAGGARACSGG
[2]nirSR3cd GASTTCGGRTGSGTCTTGA

nosZ-F nosZ gene CGYTGTTCMTCGACAGCCAG
[16]nosZ-1622R CGSACCTTSTTGCCSTYGCG

hzsB396F hzsB gene WTYGGKTATCARTATGTAG
[9]hzsB742R AAABGGYGAATCATARTGGC

nrfAF2aw nrf A gene CARTGYCAYGTBGARTA
[3]nrfAR1 TWNGGCATRTGRCARTC

2.5. High-Throughput 16S rRNA Gene Sequencing and Analysis

High-throughput 454 GS-FLX pyrosequencing of the 16S rRNA gene was conducted
according to standard protocols [11]. The detailed pyrosequencing and analysis methods
are described in the Supplementary Materials. BLAST of taxonomic classification down
to the phylum, class and genus levels was then achieved using MOTHUR via the SILVA
106 database, with a set confidence threshold of 80%. Abundance of a given phylogenetic
group was set as the number of sequences affiliated with that group divided by the total
number of sequences per sample.

3. Results and Discussion
3.1. Physical and Chemical Properties of Marine Water

Table 2 illustrates that the inorganic nitrogen concentrations in the five sites ranged
from 0.63 to 0.82 mg/L, notably higher than the permissible limit (0.50 mg/L) of the Grade
four seawater quality standard in China. Ammonia nitrogen (0.24–0.30 mg/L) and nitrate
nitrogen (0.26–0.37 mg/L) were the primary forms of inorganic nitrogen in the seawaters,
accounting for 80.0%–91.8% of the total inorganic nitrogen in seawater in each site. These
results suggested that the removal of ammonia and nitrate nitrogen should be prioritized.
Moreover, the pH, COD concentration, DO concentration, salinity, and sulfate concentration
ranges in the sites were 8.3–9.3, 1.8–4.4 mg/L, 2.45–4.20 mg/L, 29,445–37,505 mg/L, and
1215–1535 mg/L, respectively.
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Table 2. Physical and chemical parameters of the seawater samples.

Sampling Site pH COD
(mg/L)

DO
(mg/L)

Salinity
(mg/L)

Ammonia
Nitrogen

(mg/L)

Nitrite
Nitrogen

(mg/L)

Nitrate
Nitrogen

(mg/L)

Total Inorganic
Nitrogen

(mg/L)

Sulfate
(mg/L)

Kandelia candel site 8.4 ± 0.4 4.4 ± 0.3 2.45 ± 0.26 31655 ± 819 0.277 ± 0.024 0.098 ± 0.007 0.256 ± 0.015 0.631 ± 0.041 1215 ± 77
Bruguiera gymnorrhiza site 9.0 ± 0.6 2.8 ± 0.1 4.20 ± 0.24 33735 ± 983 0.244 ± 0.012 0.149 ± 0.018 0.362 ± 0.020 0.755 ± 0.006 1425 ± 91

Sonneratia apetala site 8.5 ± 0.8 1.8 ± 0.1 2.84 ± 0.11 30160 ± 782 0.269 ± 0.009 0.142 ± 0.014 0.300 ± 0.011 0.711 ± 0.028 1510 ± 87
Aegiceras corniculatum site 8.3 ± 0.3 3.2 ± 0.2 4.22 ± 0.28 29445 ± 721 0.298 ± 0.012 0.149 ± 0.013 0.369 ± 0.014 0.816 ± 0.012 1335 ± 84

Mud flat site 9.3 ± 0.4 2.0 ± 0.2 3.35 ± 0.14 37505 ± 114 0.259 ± 0.010 0.052 ± 0.007 0.322 ± 0.013 0.633 ± 0.022 1535 ± 79
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3.2. Vertical Distribution of Soluble Nitrogen Species

As shown in Figure 2, the ammonia nitrogen concentrations in the pore water from
each site did not change significantly with the depth (p > 0.05). The average ammo-
nia nitrogen concentrations in the pore water from Kandelia candel, Bruguiera gymnor-
rhiza, Sonneratia apetala, Aegiceras corniculatum, and mud flat sites were 0.068 ± 0.026,
0.062 ± 0.014, 0.074 ± 0.025, 0.075± 0.024 and 0.076± 0.011 mg/L, respectively. Compared
with the ammonia nitrogen concentration in the seawater from each site, the reductions
were 0.209, 0.182, 0.195, 0.223, and 0.184 mg/L, indicating that each system underwent
significant ammonia nitrogen removal, with a respective removal efficiency of 75.5, 72.3,
74.6, 74.8, and 70.9%, respectively. Ammonia nitrogen removal in the mangrove plant sites
was higher than in the mud flat site, indicating that mangrove planting promoted removal
in the system. Notably, Kandelia candel had the most significant promotion effect.
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Figure 2. Vertical distribution of NH4
+−N and NO3

−−N in the interstitial water samples from the
five sites. KC, BG, SA, AC, and MF are site abbreviations for Kandelia candel, Bruguiear gymnorrhiza,
Sonneratia apetala, Aegiceras corniculatum, and mud flats, respectively. Dashed lines indicated the
nitrogen concentration in the seawater from each site.

The nitrate nitrogen concentration in the pore water from each site did not change
significantly with depth (p > 0.05). Its average concentrations in the pore water from Kandelia
candel, Bruguiera gymnorrhiza, Sonneratia apetala, Aegiceras corniculatum, and mud flat sites
were 0.024 ± 0.007, 0.027 ± 0.004, 0.027 ± 0.005, 0.022 ± 0.005, and 0.025 ± 0.001 mg/L,
respectively. Compared with its concentration in the seawater samples, a 0.338, 0.230,
0.273, 0.346, and 0.297 mg/L reductions were, respectively observed, indicating that each
system exhibited significant nitrate nitrogen removal. The respective removal efficiencies
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were 93.4%, 89.5%, 91.0%, 94.0%, and 92.2%. Among them, nitrate removal efficiencies
in Kandelia candel and Aegiceras corniculatum sites were higher than those in the mud flat
site. In comparison, nitrate removal efficiencies in the Bruguiera gymnorrhiza and Sonneratia
apetala sites were lower than that in the mud flat site, indicating that Kandelia candel and
Aegiceras corniculatum promoted nitrate removal, and the promotion effect of Aegiceras
corniculatum was more significant. However, Bruguiera gymnorrhiza and Sonneratia apetala
lowered the nitrate removal efficiency of the system notably.

3.3. Biological Nitrogen Removal

Studies have shown that denitrification, anammox, and DNRA are crucial biologi-
cal nitrogen removal processes in natural sediments [15,17]. This study determined the
potential activities of these three processes in wetland sediments based on soil slurry cul-
ture experiments and 15N isotope tracer technology. In incubations with 15NH4

+ only, no
significant accumulation of 29N2 and 30N2 was observed in the soil slurries, indicating
preincubation consumed soil background nitrate. For soil slurries amended with both
15NH4

+ and 14NO3
−, the accumulation of 29N2 was detected in all soil slurries. In contrast,

no accumulation of 30N2 was detected, indicating that anammox occurred in the soil sam-
ples (data not shown). In incubations with only 15NO3

−, significant accumulation of both
29N2 and 30N2 was observed (Figure S1). The data was used to estimate denitrification and
anammox potentials.

As shown in Figure 3, the denitrification rates in Kandelia candel, Bruguiera gymnorrhiza,
Sonneratia apetala, Aegiceras corniculatume, and mud flat sites were 2.19 ± 0.31, 1.87 ± 0.19,
2.57 ± 0.24, 3.22 ± 0.33, 1.70 ± 0.35 µmol/(kg·h), respectively, while the anammox rates
were 0.24 ± 0.10, 0.07 ± 0.03, 0.23 ± 0.09, 0.18 ± 0.11, 0.36 ± 0.15 µmol/(kg·h), respectively.
The DNRA rates were extremely low. Hence, they were ignored. The denitrification rates
of the systems were about 5–27 times that of anammox, indicating that denitrification
was the main biological nitrogen removal process in each system, whose contribution to
biological nitrogen removal was as high as 82.5–96.4%. This observation is consistent with
the conclusions drawn by Yin et al. [14] and Shan et al. [15] from their respective studies on
typical Chinese paddy soils and Chinese coastal sediments.
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Figure 3. Denitrification and anammox rates at the sampling sites. KC, BG, SA, AC, and MF are site
abbreviations for Kandelia candel, Bruguiear gymnorrhiza, Sonneratia apetala, Aegiceras corniculatum, and
mud flats, respectively.

Further analysis showed that the denitrification rates in the plant sites were 1.1–1.9 times
that in the mud flat site, indicating that mangrove plants significantly promoted deni-
trification in the system. Here, the promotion effect of Aegiceras corniculatum was the
most significant. Research has shown that electron donors affect denitrification in natural
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systems. Organic matter and sulfur are essential electron donors for denitrification in
natural systems; the former drives heterotrophic denitrification, while the latter drives
autotrophic denitrification [18]. As shown in Figure 4, the denitrification rate in each sys-
tem was significantly and positively correlated with the sediment organic carbon content
(R2 = 0.890). However, it was not significantly associated with the total sulfur content
(R2 = 0.047) in this study. These results indicate that organic carbon significantly influences
the denitrification rate, and heterotrophic denitrification was the predominant denitrifi-
cation mode in each system. Therefore, we opine that the higher level of organic carbon
contents (7.63–13.46 g·kg−1) in the sediments of the plant sites than that in the mud flat
site (5.99 g·kg−1) was an important reason for the higher denitrification rate in the former
sites. The higher organic carbon contents in the sediments of the plant sites were presumed
to derive from the secretion of plant roots and the degradation of plant residues.
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Figure 4. Fitting relationship between the denitrification rate and total organic carbon content (a) and
total sulfur content (b).

Furthermore, the anammox rate in the mud flat site was 1.5–2.0 times that in the plant
sites, indicating that the cultivation of mangrove plants restricts anammox. Nitrite nitrogen
and ammonia nitrogen are crucial substrates for the anammox reaction, and their amounts
significantly impact the anammox rate [19,20]. In anaerobic systems, nitrite is usually pro-
duced during denitrification and is an intermediate product of denitrification [21]. In the
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current study, a smaller number of denitrification electron donors and weaker denitrifica-
tion intensity in the mud flat site were more conducive to intermediate nitrite accumulation,
resulting in ~0.15 mg/L nitrite concentrations in the mud flat site (i.e., 2.2–10 times the val-
ues in the plant sites). In addition, the removal efficiency of ammonia nitrogen in the mud
flat site was lower than that in the plant sites (Section 3.2). It demonstrates the ammonia
nitrogen concentration in the mud flat site was also slightly higher than that in the plant
sites (Figure 2). Higher nitrite and ammonia nitrogen concentrations in the mud flat site
were crucial to the higher rate of anammox in the plant sites.

3.4. Nitrogen Removal Functional Genes

Nitrite reductase encoded by nirS gene and nitrous oxide reductase encoded by nosZ
gene, respectively, catalyze the conversion of NO2 to NO and N2O to N2 in denitrifica-
tion [22]. As depicted in Figure 5a,b, the nirS gene copy numbers in the sediments of
Kandelia candel, Bruguiera gymnorrhiza, Sonneratia apetala, Aegiceras corniculatum, and mud
flat sites were 4.53 × 107, 4.21 × 107, 7.31 × 107, 10.06 × 107, and 3.51 × 107 copies/g, re-
spectively. By contrast, the nosZ gene copy numbers were 8.65× 107, 5.12× 107, 23.4 × 107,
25.1 × 107, and 4.93 × 107 copies/g, respectively. The copy numbers of nirS and nosZ genes
in the plant sites were 1.2–2.9 times and 1.1–5.1 times that in the mud flat site, respectively,
indicating that mangrove plants significantly promoted the growth of bacteria containing
the aforementioned functional genes in the system. Such an observation could be attributed
to organic matter excreted by plant roots and released from plant residues, which pro-
vides a sufficient carbon source for the metabolism of denitrifying bacteria (among which
Aegiceras corniculatum had the most substantial promoting effect on the numbers of nirS and
nosZ). Denitrifying bacteria can compete with anammox bacteria for substrate nitrite [23,24].
Therefore, by promoting the growth of denitrifying bacteria and increasing the number of
denitrifying functional genes, mangrove plants have an inhibiting effect on the anammox
bacteria growth. The copy numbers of the anammox functional gene hzsB in the sediments
of Kandelia candel, Bruguiera gymnorrhiza, Sonneratia apetala, and Aegiceras corniculatum were
2.50 × 103, 0.17 × 103, 1.92 × 103, and 1.03 × 103 copies/g, respectively (Figure 5c). These
values were only 2.6%–38.2% of the hzsB gene copy number (6.54 × 103 copies/g) in the
sediments of the mud flat site. Further analysis revealed that the denitrification rates of
the systems were significantly and positively correlated with the numbers of nirS and nosZ
(R2 = 0.959 and 0.814, respectively, Figure 6a). Additionally, the anammox rate was posi-
tively correlated with the number of hzsB (R2 = 0.806, Figure 6b), indicating that functional
genes are crucial to biological nitrogen removal. The numbers of the DNRA functional
gene nrf A in the sediments of each system were below the detection limit, confirming that
the DNRA rates were negligible. The above results revealed the micro-mechanism of the
effect of mangrove plants on the biological nitrogen removal processes at the gene level.
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Figure 5. Copy numbers of nirS (a), nosZ (b), hzsB (c) at five sites. KC, BG, SA, AC, and MF are site
abbreviations for Kandelia candel, Bruguiear gymnorrhiza, Sonneratia apetala, Aegiceras corniculatum, and
mud flats, respectively.
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3.5. Microbial Communities Related to Nitrogen Removal

The Chao index measures species richness, while the Shannon index assesses microbial
diversity in a system. As shown in Table 3, the values of these two indices follow the trend:
Kandelia candel site > Aegiceras corniculatum site > Bruguiera gymnorrhiza site > Sonneratia
apetala site > mud flat site. It indicates that the species richness and microbial diversity
follow the same trend. Overall, mangrove plants significantly improved the species richness
and microbial diversity of the system.

Table 3. Bacterial richness and diversity indices in the sediments.

Sampling site Chao Shannon Coverage

Kandelia candel site 1230 5.98 0.95
Bruguiera gymnorrhiza site 1226 5.71 0.95

Sonneratia apetala site 1344 6.08 0.95
Aegiceras corniculatum site 1069 5.36 0.94

Mud flat site 880 4.91 0.94
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In addition, 47, 39, 40, 38, and 46 phyla were identified in Kandelia candel, Bruguiera
gymnorrhiza, Sonneratia apetala, Aegiceras corniculatum, and mud flat sites, respectively.
Proteobacteria, Firmicutes, Chloroflexi, and Actinobacteriota were the dominant bacterial
phyla identified in each system (Figure 7a), with relative abundances ranging from 18.1%
to 39.5%, 19.5% to 33.1%, 7.3% to 18.2%, and 2.6% to 12.0%, respectively. At the class
level (Figure 7b), Bacilli, Gammaproteobacteria, Alphaproteobacteria, and Anaerolineae
were the dominant bacterial classes identified in each system, with relative abundances of
18.6–31.4%, 9.0–23.7%, 8.3–17.0%, 3.2–16.5%, respectively.
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At the genus level (Figure 7c), Bacillus and Pseudomonas were identified as the main
heterotrophic denitrifying bacteria genera. The relative abundances of Bacillus in the
Kandelia candel, Bruguiera gymnorrhiza, Sonneratia apetala, Aegiceras corniculatum, and mud
flat sites were 19.3%, 24.8%, 2.4%, 16.8%, and 0.8%, respectively. Additionally, the respective
relative abundances of Pseudomonas were 0.03%, 0.07%, 1.8%, 2.1%, 0.004%, respectively.
The relative abundances of the two genera in the plant sites were significantly higher than
those in the mud flat site (p < 0.05), indicating that mangrove plants were beneficial to the
growth of heterotrophic denitrifying bacteria.

In addition to the heterotrophic denitrifying bacteria genera, an autotrophic deni-
trifying bacterium genus Sulfurovum was also identified in each system. The bacteria in
this genus can use reduced sulfur as an electron donor to reduce nitrate [18]. The relative
abundances of Sulfurovum in each site were 0.15%, 0.0004%, 0.41%, 0.04%, and 6.0%, respec-
tively. The abundances in the plant sites were significantly lower than in the mud flat site,
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indicating that mangrove plants were not conducive to their growth. Moreover, Candidatus
Scalindua, an anammox genus identified in this study (not shown), is frequently detected
in marine systems [25]. Here, the relative abundances of this genus in the Kandelia candel,
Bruguiera gymnorrhiza, Sonneratia apetala, Aegiceras corniculatum, and mud flat sites were
0.06%, 0.22%, 0.01%, 0.04%, and 0.54%, respectively. Their relative abundances in the plant
sites were significantly lower than in the mud flat site (p <0.05), indicating that mangrove
plants were not conducive for the growth of this genus.

4. Conclusions

In this study, in situ measurement, 15N isotope tracing technique, q-PCR, and 454 high-
throughput pyrosequencing were jointly applied to investigate the nitrogen distribution
characteristics, biological nitrogen removal processes, nitrogen removal functional genes,
and bacterial community characteristics in five coastal wetland sites. The results can im-
prove our understanding of the nitrogen removal characteristics of coastal wetlands and the
role of mangrove plants in the biological nitrogen removal processes. The conclusions were:

(1) The ammonia and nitrate in marine water in five wetland systems were significantly
removed, with the removal efficiencies ranging from 70.9% to 75.5% and 89.5% to
94.0%, respectively. Among them, Kandelia candel and Aegiceras corniculatum most
significantly promoted ammonia and nitrate removal, respectively.

(2) The denitrification and anammox rates of the five systems ranged from 1.70 to
3.22 µmol/(kg·h) and 0.07 to 0.36 µmol/(kg·h), respectively. The denitrification rates
in the plant sites were 1.1–1.9 times that in the mud flat site, while the anammox rate
in the mud flat site was 1.5–2.0 times those in the plant sites. These values indicate
that mangroves promote denitrification but inhibit anammox.

(3) The numbers of nirS, nosZ, and hzsB in the five systems ranged from 3.51 × 107 to
10.06 × 107, 4.93× 107 to 25.1× 107, and 0.17× 103 to 6.54× 103copies/g, respectively.
The numbers of each gene showed an excellent and positive correlation with the rate
of relevant processes.

(4) Bacillus and Pseudomonas were the predominant heterotrophic denitrifying bacteria
genera identified in the systems. The autotrophic denitrifying bacteria genus was
Sulfurovum, while the only identified anammox genus was Candidatus Scalindua.
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