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Abstract: After years of treatment, the water pollution situation in the Huaihe River Basin (HRB) is
still grim, and agricultural nonpoint source pollution has become the leading cause of the problem.
However, agricultural nonpoint source pollution in the HRB is complicated due to the compounding
effects of multiple factors. In this study, we first applied the export coefficient model to estimate the
total nitrogen (TN) and total phosphorus (TP) loads used as two pollution source indicators in HRB.
Then we constructed an index evaluation system of nonpoint source pollution risk by coupling the
two source indicators with five additional indicators: rainfall erosion, river network distribution, soil
erodibility, slope length, and land use. The primary source of TN and TP loads is fertilizer application
(81.96%), followed by livestock and poultry breeding (16.3%) and rural domestic wastes (1.74%). The
risk assessment results indicate that 66.43% of the HRB is at medium to high risk of nonpoint source
pollution, 12.37% is at high risk, and 11.20% is at low risk. Moreover, the medium-to-high-risk areas
are mainly concentrated in the Henan and Anhui provinces. In contrast, the medium-risk regions are
mainly distributed along the mainstream of the Huaihe River. Finally, the observed water quality
categories were used to verify our findings. The controlling areas of nonpoint source pollution in
HRB are identified. This study could provide a scientific basis for effectively preventing and treating
water pollution in the HRB.

Keywords: nonpoint source pollution; risk assessment; Huaihe River Basin

1. Introduction

Water is an important strategic resource essential for humans and the ecosystem.
It provides drinking, sanitation, and hygiene services for human beings and is an in-
dispensable input in the agriculture, energy, and industry sectors. Also, water has an
important ecological role, such as maintaining base flow to ensure biodiversity. However,
global water demand has been increasing, and water scarcity has become a severe problem
worldwide [1,2]. Apart from climate change [3,4] and population growth, water quality
deterioration is an important cause of water scarcity [5,6]. Water quality is affected by
multiple factors (e.g., land use and vegetation) and shows spatial-temporal variation [7].
Usually, the water quality of wet regions has higher seasonal variation than that of dry re-
gions [8], and the water quality of cold climatic regions has a smaller longitudinal variation
than that of other regions [9]. Therefore, water pollution not only causes water resource
crises but also causes damage to the aquatic ecosystem.

Depending on the sources, water pollution is often classified into two main categories:
point source and nonpoint source pollution. The point source pollutants [10], released from a
fixed location, can be controlled relatively well by compulsory measures such as improving
the wastewater discharge standards or shutting down factories. On the contrary, nonpoint
source pollution is difficult to monitor and control because of its widespread in space, the
wide variety of pollutants, no fixed or concentrated discharge points, and the randomness
and intermittency due to rainfall-runoff, the carrier of migration and transformation [11].
Moreover, in recent years, due to rapid urbanization, the expansion of livestock and poultry
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breeding, and the application of pesticides and chemical fertilizers [12,13] in the planting
industry, the total nitrogen and phosphorus loads have increased significantly [14–17]. As a
result, nonpoint source pollution is becoming an important cause of surface water pollution
in China [18].

Currently, the methods for nonpoint source pollution estimation mainly include (a) the
use of physical-based models to simulate the migration and transformation of pollutants
to analyze the water quality quantitatively [19], (b) the use of the export coefficient model
(ECM) to estimate the pollutants loads and analyze the contributions of different pollution
sources, and (c) the establishment of index evaluation system by comprehensively con-
sidering multiple factors (e.g., climate, hydrology, and geology) to identify the potential
risk controlling area of nonpoint source pollution. Physical-based models such as the Soil
and Water Assessment Tool (SWAT) [20,21], the Annualized Agricultural Non-Point Source
Pollution Model (AnnAGNPS) [22,23], and the Hydrologic Simulation Program-Fortran
model (HSPF) [24,25], require a large amount of input data (e.g., atmospheric forcing, soil,
land use and land cover, and fertilizer applications), which is usually difficult to obtain [26].
Furthermore, these models usually consist of hydrological processes, soil erosion, and
nutrient transportation modules. Therefore, numerous parameters need to be determined
by model calibration [27]. Moreover, the application of a model developed for a location to
a new location needs to be adjusted based on the topographic and geological differences,
which is relatively complex. Due to limited data and complex mechanisms, it is challenging
to use physical-based models.

The ECM, proposed by Omernik [28], was first used to predict nutrient load. The
ECM predicted the nitrogen and phosphorus loss from individual sources within the
catchment, applying different export coefficients for different sources [28,29]. The original
ECM did not consider the influence of meteorological factors and underlying variation
on the transportation of nutrients. The ECM has been improved by coupling the nutrient
transportation process and considering meteorological factors. For example, precipitation
and terrain factors were introduced to characterize spatial heterogeneity [30,31]. Compared
with physical-based models, the data required by ECM is readily available. Many studies
have applied this method to estimate nitrogen and phosphorus loads [32,33]. The index
system method selects the factors that potentially impact NPS and assigns each factor
weight to rank NPS risk areas. Frequently used index system methods include Agricultural
Non-point Pollution Potential Index (APPI) and the Phosphorus Index (PI). The APPI
system was constructed by H.Y. Guo [34,35] to identify the critical areas of NPS in the
Taihu Lake region. The PI method was developed by J.L. Lemunyon [36] to assess the
vulnerability of phosphorus movement. The index system method is technically simple
and has a low requirement in computational cost. Therefore, it can quickly identify the
hotspots of nonpoint source pollution.

The Huaihe River is one of the seven major rivers in China, and its water pollution
began in the 1970s. After years of treatment, the water quality of the Huaihe River has been
significantly improved. Still, there is a certain gap with other major rivers, such as the Pearl
River and the Yangtze River [37]. The field report by Li [38] on the Huaihe River Basin (HRB)
shows that the failure to eradicate agricultural nonpoint source pollution is still one of the
most important factors in the unsatisfactory water quality of the Huaihe River. Existing risk
assessment systems of nonpoint source pollution in the HRB either only predict pollutant
loads (e.g., nitrogen and phosphorus) from the perspective of pollution sources or only
consider the promotion/inhibition factors (e.g., hydrological, climate, topographic, and
geological factors) on pollutants entering the water bodies from the migration process. For
example, Song [39] used the ECM to calculate the total nitrogen load and emission intensity
in different cities; Zhang and Huang [40] considered the hydrogeological indexes, such as
rainfall and soil, to determine the regions with the highest potential nitrogen loss.

In this study, we first applied the ECM to estimate the TN and TP loads used as two
pollution source indicators in HRB. Then we constructed an index evaluation system of
nonpoint source pollution risk by coupling the two source indicators with hydrological
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and climate indicators and topographic and geological indicators. It is expected to quickly
identify the high-risk areas of nonpoint source pollution and provide a basis for targeted
and efficient prevention and control of nonpoint source pollution.

2. Materials and Methods
2.1. Study Area

The Huaihe River, with a total length of about 1000 km, originates from the northern
of Tongbai Mountain, passing east through Henan and Anhui and flowing into the Yellow
Sea in Jiangsu Province. The HRB (111◦55′–121◦45′ E, 30◦55′–36◦36′ N) is between the
Yangtze River and the Yellow River. The basin area is up to 269,600 km2, and the annual
average water resource is about 79.4 billion m3. Located in the semi-humid monsoon
climate zone, the mean annual precipitation of the HRB is about 875 mm, and the mean
annual temperature is about 11~16 ◦C. With rain and heat over the same period, it is dry in
winter and spring, while hot and rainy in summer.

With a dense population, fertile land, rich resources, and convenient transportation,
HRB has become China’s important grain production base [41]. It spans over 40 cities and
240 counties in Hubei, Henan, Anhui, and Shandong provinces, with a total population of
191 million. The total area of cultivated land in the basin is about 133,000 km2, accounting
for about 12% of the cultivated land area in China. However, because of the uneven
distribution of precipitation temporally and spatially, flat slope, poor self-purification
ability of the water body, and the population pressure, the nonpoint source pollution in the
HRB is serious [37]. Meanwhile, the vast cultivated land area and developed aquaculture
in the basin have become an important source of agricultural nonpoint source pollution.

In this study, to facilitate the statistics of pollution source factors, following Song,
Zuo [39], the counties with less than half the area in the HRB were not included (Figure 1).

Water 2022, 14, x FOR PEER REVIEW 3 of 17 
 

 

In this study, we first applied the ECM to estimate the TN and TP loads used as two 
pollution source indicators in HRB. Then we constructed an index evaluation system of 
nonpoint source pollution risk by coupling the two source indicators with hydrological 
and climate indicators and topographic and geological indicators. It is expected to quickly 
identify the high-risk areas of nonpoint source pollution and provide a basis for targeted 
and efficient prevention and control of nonpoint source pollution. 

2. Materials and Methods 
2.1. Study Area 

The Huaihe River, with a total length of about 1000 km, originates from the northern 
of Tongbai Mountain, passing east through Henan and Anhui and flowing into the Yellow 
Sea in Jiangsu Province. The HRB (111°55′–121°45′ E, 30°55′–36°36′ N) is between the 
Yangtze River and the Yellow River. The basin area is up to 269,600 km2, and the annual 
average water resource is about 79.4 billion m3. Located in the semi-humid monsoon cli-
mate zone, the mean annual precipitation of the HRB is about 875 mm, and the mean 
annual temperature is about 11~16 °C. With rain and heat over the same period, it is dry 
in winter and spring, while hot and rainy in summer. 

With a dense population, fertile land, rich resources, and convenient transportation, 
HRB has become China’s important grain production base [41]. It spans over 40 cities and 
240 counties in Hubei, Henan, Anhui, and Shandong provinces, with a total population of 
191 million. The total area of cultivated land in the basin is about 133,000 km2, accounting 
for about 12% of the cultivated land area in China. However, because of the uneven dis-
tribution of precipitation temporally and spatially, flat slope, poor self-purification ability 
of the water body, and the population pressure, the nonpoint source pollution in the HRB 
is serious [37]. Meanwhile, the vast cultivated land area and developed aquaculture in the 
basin have become an important source of agricultural nonpoint source pollution. 

In this study, to facilitate the statistics of pollution source factors, following Song, 
Zuo [39], the counties with less than half the area in the HRB were not included (Figure 1). 

 
Figure 1. The Huaihe River Basin. 

2.2. Calculation Methods for Each Risk Factor 
2.2.1. Total Nitrogen and Total Phosphorus 

In this study, the total nitrogen and total phosphorus factors were obtained by calcu-
lating the nitrogen and phosphorus loads per unit area of cultivated land in 35 cities in 
the HRB in 2018. In addition, we considered three major nonpoint pollution sources: rural 
domestic wastes, chemical fertilizer application, and livestock breeding. 

(a) Rural domestic wastes were estimated by the ECM, and the export coefficient of 
various pollutants is multiplied by the number of people in the region to produce nitrogen 
and phosphorus. The export coefficient of 35 cities in the region was acquired by querying 
the second national pollution source census manual. 

Figure 1. The Huaihe River Basin.

2.2. Calculation Methods for Each Risk Factor
2.2.1. Total Nitrogen and Total Phosphorus

In this study, the total nitrogen and total phosphorus factors were obtained by calcu-
lating the nitrogen and phosphorus loads per unit area of cultivated land in 35 cities in
the HRB in 2018. In addition, we considered three major nonpoint pollution sources: rural
domestic wastes, chemical fertilizer application, and livestock breeding.

(a) Rural domestic wastes were estimated by the ECM, and the export coefficient of
various pollutants is multiplied by the number of people in the region to produce nitrogen
and phosphorus. The export coefficient of 35 cities in the region was acquired by querying
the second national pollution source census manual.

(b) The amount of fertilizer application is calculated as follows [42]:

TN = (Nfert + CF × 0.3 + Pfert × 0.185) (1)

TP = (Pfert + CF × 0.3) × 0.436 (2)
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where TN is the amount of nitrogen generated by fertilizer application; TP is the amount of
phosphorus generated by fertilizer application; Nfert is the amount of nitrogen fertilizer
application; Pfert is the amount of phosphorus fertilizer application; CF is the amount of
compound fertilizer application.

(c) The amount of pollutants generated in livestock and poultry breeding is calculated
as follows:

W =
m

∑
i=1

PiRi (3)

where W is the emission of pollutants produced by livestock and poultry breeding (kg); Pi
is the number of raised livestock and poultry; Ri is the excretion coefficient of the livestock
and poultry. The excretion coefficients of total nitrogen and total phosphorus of cattle, pigs,
sheep, and poultry were recommended by the National Environmental Protection Bureau.

By adding the results of rural domestic wastes, chemical fertilizer application, and
livestock breeding together, we gained the total nitrogen and total phosphorus emissions.
Then, the total nitrogen and total phosphorus emissions were divided by the cultivated
area of each city to obtain corresponding factors.

2.2.2. Rainfall Erosion

Rainfall is one of the dynamic factors causing soil erosion [43], and it is also the direct
driving force for agricultural nonpoint source pollution. Therefore, the rainfall erosion
factor [44] is commonly used to measure agricultural nonpoint source pollution caused
by rainfall. This study used the soil loss measurement guidelines for production and
construction projects as follows:

R = 0.067P1.627 (4)

where R is the multi-year average rainfall erosion (MJ·mm/(hm2·h)); P is the average
annual rainfall (mm).

2.2.3. River Network Distribution

A river network [45] is a complex network of rivers from the source to the estuary,
which gathers many tributaries along the way. The river network distribution determines
the regional agricultural nonpoint source pollution risk differences. To characterize the
relationship between agricultural nonpoint source pollution risk and river network distance,
Sivertun and Prange [46] established the weight function of pollution source to river
network by calculating the distance from a single grid to the river network as follows:

W =
0.6

e0.002x − 0.4
(5)

where W is the river network distribution; x is the Euclidean distance (m) from each grid to
the nearest river network.

2.2.4. Soil Erodibility

The soil erodibility factor is an essential indicator that represents the sensitivity of soil
to erosion [47]. It reflects the impact of hydraulic power on soil’s physical and chemical
properties [48]. Soil types in the HRB were categorized into 20 types based on soil composi-
tion. In the USLE model, K represents the soil erodibility factor, which is determined using
the following equations [49]:

KUSLE = fcand × fcl-si × forgc × fhisand (6)

fcand = 0.2 + 0.3 × e[−0.256 × sd × (1 − si
100 )] (7)

fcl-si = (
si

si + cl
)0.3 (8)
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forgc = 1 − 0.25 × c
c + e(3.72 − 2.95 × c)

(9)

fhisand = 1 −
0.7 × (1 − sd

100 )(
1 − sd

100

)
+ e[−5.51 + 22.9 × (1 − sd

100 )]
(10)

where the coarse gravel soil erosion factor (fcand) is the percentage of gravel, the clay
soil erosion factor (fcl-si) is the percentage of silt, the soil organic matter factor (forgc) is the
percentage of clay, and the high sandy soil erosion factor (fhisand) is the percentage of organic
carbon, all of which can be found in the Harmonized World Soil Database (HWSD) [50].

2.2.5. Slope Length

The slope length factor, related to slope and runoff catchment area, shows the impact
of diverse topographical conditions on agricultural nonpoint source pollution risk [51]. It
is calculated using the empirical formula of Wischmeier and Smith [52] as follows:

S =


21.91 sin θ − 0.96, θ ≥ 10◦

16.8 sin θ − 0.05, 5◦ ≤ θ < 10◦

10.8 sin θ + 0.03, θ < 10◦
(11)

L = (
λ

22.13
)

α

(12)

α =
β

β + 1
(13)

β = (
sin θ

0.0896
)/(3 × sin θ

0.8 + 0.56) (14)

LS = L × S (15)

where the slope length factor L is the quantity of soil erosion normalized to a slope length
of 22.13 m; θ is the angle of the slope; λ is the sum of slope length in the horizontal direction
(m); α is the slope length coefficient.

2.2.6. Land Use

Land use pattern determines surface landscape structure and the nature of the underly-
ing surface, which impacts the water cycle and material migration in the basin [53], making
it an essential element in the risk of nonpoint source pollution. To simplify the calculation
of risk assessment, the original land-use types were reclassified into six classes: unused
land, cultivated land, forest, water area, and artificial surface. Based on Cai, Ding [54]
about the relationship between land use patterns and soil erosion, the six land-use patterns
were assigned as 1, 0.245, 0.1, 0, and 0.2, respectively.

2.3. Construction of Risk Assessment Model

The index system method analyzes various factors affecting agricultural nonpoint
source pollution by determining the calculation method of each factor and assigning the
weight value, which forms the risk assessment model. Before calculating the weight of each
factor, they need to be normalized by Min-Max scaling as follows:

Y =
X − Xmin

Xmax − Xmin
(16)

where X and Y are the values before and after conversion; Xmax and Xmin are the maximum
and minimum values of the samples.

The weight of different factors was estimated using the Analytic Hierarchy Process
(AHP) method [55], which was proposed in the 1970s [56] as a decision-analytic method for
optimizing multiple schemes and determining varying weights of each index in the building of
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an assessment system. The steps are as follows: (1) determine the decision-making objectives
and criteria elements to establish the hierarchical structure model, (2) establish the judgment
matrix based on the relative weight relationship between each index, and (3) calculate the
maximum eigenvector of the judgment matrix to determine the weight of each index. In
this study, we regarded the risk of nonpoint source pollution as the decision-making goal,
the pollution source factors, hydrological and meteorological factors, and topographic and
geological factors as the first-level indexes, the rainfall erosion, soil erodibility, slope length,
river network distribution, land use, total nitrogen, and total phosphorus as the secondary
indexes (Figure 2). An important feature of AHP is to identify the relative importance level
of the two indexes in the form of the ratio of the importance degrees of the two indexes.
For the relative weight relationship of each two indexes, we referred to the existing articles
on nonpoint source pollution [14,57]. Determining the weight of each index based on AHP
usually involves complicated calculations. The yaahp (Yet Another AHP) software is an AHP
visual modeling and calculation platform [58,59], which provides convenient hierarchical
model establishment and judgment matrix construction, saving a lot of matrix calculation
steps and time. The weight of each index is then determined by using yaahp, and the weight
results are shown in Table 1.
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Table 1. The weight results of indexes.

First Index Weight Secondary Index Weight

Pollutants source 0.3333
total nitrogen 0.1667

total phosphorus 0.1667

Hydrology and meteorology 0.5000
rainfall erosion 0.3750
river network 0.1250

Topography and geology 0.1667
soil erodibility 0.0495

slope length 0.0272
land use 0.0899

Based on the weighted results, the risk assessment model is constructed as follows:

Risk = 0.1667TN + 0.1667TP + 0.375R + 0.125W + 0.0495K + 0.0272LS + 0.0899U (17)

where Risk is the total risk, TN is the total nitrogen (kg/hm2), TP is the total phosphorus
(kg/hm2), R is rainfall erosion (MJ mm km−2 h−1 a−1), W is river network distribution, K
is soil erodibility, LS is slope length, U is land use.

2.4. Data Sources

The data sources we used included: (a) statistics on the total population, livestock
husbandry, and fertilizer consumption from the multiple Provincial and Municipal Bureau
of Statistics; (b) precipitation data of 236 stations in the HRB from the CMADS data set,
which spans the period from 1 January 2014, to 31 December 2018; (c) elevation data of
RTMDEM 90M in Geospatial Data Cloud; (d) soil data deriving from the HWSD created by



Water 2022, 14, 3505 7 of 16

FAO and IIASA, with Chinese data provided at a 1:1,000,000 scale by the Institute of Soil
Science, Chinese Academy of Sciences; (e) land use data from GLOBE LAND30.

2.5. Data Analysis

ArcGIS 10.7 software (ESRI, Redlands, CA, USA) was applied for the spatial analysis
of each index, the construct of the risk assessment model, and the visualization. Yaahp 12.6
software (Shanxi Yuan Juece Software Technology Co., Ltd., Taiyuan, China) was used to
determine the weight of each index.

3. Results
3.1. Pollution Source Analysis of TN and TP

By comparing the discrepancy in the amount of nitrogen pollution produced by
different sources in the HRB, it was found that nitrogen pollution generated from fertilizer
application, livestock and poultry breeding, and rural domestic wastes were 6.0308 million
tons, 1.1165 million tons, and 0.1451 million tons (Table 2), accounting for 82.70%, 15.31%,
and 1.99% of the total nitrogen pollution, respectively. It indicated that fertilizer application
was the main source of nitrogen contamination in the HRB, followed by livestock and
poultry breeding, and pollution produced by rural domestic wastes was rare. Moreover,
the sources of total nitrogen emissions varied in cities (Figure 3a). It is worth noting that
in cities like Linyi, Nantong, and Rizhao, in addition to the fertilizer application, more
than 25% of the nitrogen emissions came from livestock and poultry breeding. On the
other hand, in Zhengzhou and Zibo, compared with other cities, the nitrogen emissions
generated by rural domestic wastes accounted for a larger proportion. It may be due to
different cities’ varied industrial layouts and governance schemes.

Table 2. Equal standard pollution load statistics (unit: 10,000 tons).

Pollution Source TN TP Sum Percentage (%)

Fertilizer pollution 603.08 136.25 739.33 81.96
Livestock and poultry

breeding 111.65 35.41 147.06 16.30

Rural domestic wastes 14.51 1.17 15.68 1.74
Sum 729.24 172.83 902.07 100.00
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3.2. Spatial Distribution Characteristics of Each Factor
3.2.1. Total Nitrogen

In 2018, nitrogen load in 35 cities in the HRB all surpassed 180 kg/hm2. However,
it showed a decreasing trend from east to west (Figure 4a). The statistical data indicated
that the average nitrogen load in the HRB was 355 kg/hm2 and was significantly higher in
Henan than in Shandong, Anhui, and Jiangsu provinces. Specifically, there was the largest
nitrogen load in Pingdingshan, reaching more than 560 kg/hm2, while most cities’ nitrogen
load fell to 200 to 400 kg/hm2. On the other hand, the least nitrogen load occurred in
Liu’an, with a value of 208 kg/hm2.
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3.2.2. Total Phosphorus

The phosphorus load gradually increased from east to west (Figure 4b). Statistics
showed that the average phosphorus load in the HRB was 85 kg/hm2. Though the amount
of nitrogen and phosphorus loads differed, their distributions were similar. There was the
largest phosphorus load in Pingdingshan, reaching more than 145 kg/hm2, while the least
in Tai’an, with a value of 35 kg/hm2. Comparing the discrepancy of the phosphorus load
in different cities, we found that the loading magnitude is usually higher in areas with
developed planting and animal husbandry.
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3.2.3. Rainfall Erosion

The regions with higher precipitation tend to have a higher risk of causing nonpoint
source pollution. The distribution of the rainfall erosion factor is closely related to precipi-
tation (Figure 4c). The near-surface of the basin is dominated by northeast wind, which is
beneficial for vapor to transport to the southeast, resulting in higher precipitation in the
southeast while less precipitation in the northwest. The spatial distribution of the rainfall
erosion factor was characterized by decreasing from southeast to northwest. The rainfall
erosion factor was higher in the south of Jiangsu and Anhui than in other regions. Liu’an
in Anhui Province and Nantong in Jiangsu Province had the highest.

3.2.4. River Network Distribution

The river network distribution factor characterizes the transport distance of pollutants
into the river (Figure 4d). The shorter the transport distance is, the easier the pollutants
migrate into the river. The river network in the HRB is dense, so the river network
distribution factor in most areas is large, indicating the high risk of pollutants entering
the river.

3.2.5. Soil Erodibility

The soil erodibility factor is determined by the soil types. As shown in Figure 4e,
most basin areas have high soil erodibility, and few areas have low soil erodibility, such as
Nanyang, Zhumadian, and Suqian. The main soil type in the northern Huaibei Plain is yel-
low fluvo-aquic soil, formed from river sediments and modern yellow pan sediments. With
loose soil texture and poor fertility, it is susceptible to erosion. Therefore, soil erodibility
in the northern Huaibei Plain is greater than that in the western Funiu mountain (mainly
cinnamon soil) and the southern Huainan mountain (mainly yellow-brown soil).

3.2.6. Slope Length

The northeast of the HRB is mountainous, and the western and southern parts are
mainly hilly regions. In contrast, the central part is mainly plain (Huang-Huai-Hai alluvial
plain, lacustrine plain, and marine plain). Therefore, the slope length factor in the northeast,
west, and south of the basin is greater than that in the central plain area (Figure 4f). As a
result, the regional pollutants with large slope length factors are easy to migrate, promoting
nonpoint source pollution.

3.2.7. Land Use

More than 90% of the area in the HRB is cultivated land. The fertilizers applied for
agricultural production are easily eroded by rainfall and runoff, causing severe nonpoint
source pollution. In addition, with the acceleration of the urbanization process, the hard-
ened pavement has been increasing. In contrast, forest and grassland areas have decreased,
which negatively reduces the interception and purification of pollutants. As shown in
Figure 4g, the land-use factor is relatively high in most areas of the HRB. Only the Tongbai
Mountain and Funiu Mountain in the west and the Dabie Mountains in the south are
assigned small land-use factors. The water bodies along the lower reaches of the Huaihe
River, such as Hongze Lake, Gaoyou Lake, and Weishan Lake, are assigned zero values.

3.3. Spatial Distribution Characteristics of the Risk of Nonpoint Source Pollution

The weighted superposition analysis of each factor was carried out to obtain a com-
prehensive evaluation of the nonpoint source pollution risk (Figure 5). For the calculation
results, the natural discontinuity method was used for classification and display, which
sets the discontinuous point at the position where the difference in the data value is the
largest. With this method, the similarity within a group can be maximized; meanwhile,
the difference between groups can be maximized; hence it is reasonable to classify the
risk levels. After classification, the HRB was divided into five categories, and the area
proportion of each risk level area is shown in Table 3.
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Table 3. Risk level statistics.

Risk Level I II III IV V

Area (km2) 30,760 61,446 91,995 56,494 33,962
Percentage (%) 11.20 22.37 33.49 20.57 12.37

The results showed that more than 60% of the areas in the HRB were at the median,
relatively high, or high risk of nonpoint source pollution, and the high-risk account for
12.37%, occupying an area of 33,962 km2. Regions with relatively high risk were mainly
concentrated in Henan and Anhui provinces, of which Shangqiu and Zhoukou cities were
entirely in the high-risk group. In addition to the concentrated distribution areas in Henan
and Anhui provinces, the areas with median risk were distributed along the mainstream of
the Huaihe River. While the proportion of low-risk regions was 11.20%, covering an area of
30,760 km2, mainly distributed in Shandong Province. Among the regions in Shandong
Province, cities like Zibo, Rizhao, and Linyi were all at low risk.

For high-risk areas, the emissions of nitrogen and phosphorus pollutants were large,
the rainfall and soil erodibility factors were high, and the terrain was steep. In contrast, the
interception and purification effect of land use patterns on pollutants was small, and the
distance from the emission point to the nearest water body was short. Therefore, under
the combined effects of source factors, hydrometeorological factors, and topographic and
geological factors, the flux of pollutants into rivers in high-risk areas was relatively high.
Therefore, the management and control of rural domestic wastes, livestock and poultry
excrement, and fertilizer application should be strengthened. Effective measures include
enhancing public awareness of environmental protection, advocating clean producing,
and improving farming methods. Furthermore, from the perspective of weakening the
migration process of pollutants, the pollutants in the runoff process could be intercepted
and purified by increasing vegetation coverage, establishing buffer zones, and reducing
hardened pavements, which reduce the discharge of pollutants into water bodies.

The amount of phosphorus pollution was not as much as nitrogen pollutants (Figure 3b).
By analyzing the discrepancy in the amount of phosphorus pollution produced by different
sources in the HRB, it was found that the phosphorus emissions generated from fertilizer
application, livestock and poultry breeding, and rural domestic wastes were 1.3625 million
tons, 0.3541 million tons and 0.0117 million tons, accounting for 78.83%, 20.49% and 0.68%
of total phosphorus respectively. The application of phosphate fertilizer and compound
fertilizer was the main source of phosphorus contamination in the HRB, while pollution from
rural domestic wastes was so little that it could be almost neglected. Besides, in some cities,
livestock and poultry breeding also led to the generation of a lot of phosphorus. For example,
more than 30% of phosphorus pollution was produced by livestock and poultry breeding in
Nantong, Linyi, Yancheng, and Rizhao.
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The analysis of the total emission sources of nitrogen and phosphorus (Table 2) showed:
fertilizer application (81.96%) > livestock and poultry breeding (16.3%) > rural domestic
wastes (1.74%). Therefore, the watershed environmental governance should focus on
farmland planting and livestock and poultry breeding. Especially in fertilizer applications
for farmland planting, it is easy to produce nitrogen and phosphorus contaminants because
the compounds put into farmland enter the water body through volatilization and loss.
In addition, each city’s pollution source difference has a certain relationship with its
population, crop planting area, and industrial structure. Therefore, by understanding the
composition of pollution sources in different cities, it is convenient to trace and remediate
different pollutants from the source to achieve efficient water environment management.

4. Discussion
4.1. Validation of the Risk Assessment Results

To verify the accuracy of the risk assessment results of nonpoint source pollution,
we obtained the observed water quality class data of 160 monitoring sections in the HRB
from the China National Environmental Monitoring Centre, with their spatial distribution
shown in Figure 6a. The observed water quality data showed that the water quality of
the main rivers in the HRB fell in the clean category. The monitoring sections of Class IV
and ClassV water quality are mainly distributed in Rizhao in Shandong and Shangqiu and
Zhoukou in Henan. The water quality in the northern cities of Shandong and the western
cities of Henan is relatively good, most of which are of type I and II. To compare differences
between the risk assessment results and the measured water quality more intuitively, we
extracted the risk class value at the location of the monitoring section (Figure 6b) and
subtracted the water quality from the risk class value for deviation analysis.

Water 2022, 14, x FOR PEER REVIEW 12 of 17 
 

 

4. Discussion 
4.1. Validation of the Risk Assessment Results 

To verify the accuracy of the risk assessment results of nonpoint source pollution, we 
obtained the observed water quality class data of 160 monitoring sections in the HRB from 
the China National Environmental Monitoring Centre, with their spatial distribution 
shown in Figure 6a. The observed water quality data showed that the water quality of the 
main rivers in the HRB fell in the clean category. The monitoring sections of Class IV and 
ClassⅤwater quality are mainly distributed in Rizhao in Shandong and Shangqiu and 
Zhoukou in Henan. The water quality in the northern cities of Shandong and the western 
cities of Henan is relatively good, most of which are of type I and II. To compare differ-
ences between the risk assessment results and the measured water quality more intui-
tively, we extracted the risk class value at the location of the monitoring section (Figure 6b) 
and subtracted the water quality from the risk class value for deviation analysis. 

 
Figure 6. The water quality (a), risk class (b), the deviation between water quality and risk class (c), 
and TN distribution (d) of monitoring sections. 

After deviation analysis and statistics (Figure 6c), among the 160 monitoring sections, 
there are 48 sections with a deviation value of 0, accounting for 30.0%, 51 sections with a 
deviation value less than 0, accounting for 31.9%, and 61 sections with a deviation value 
greater than 0, accounting for 38.1%. While 0 represents proper evaluation, the section 
with a deviation value greater than 0 is overestimated, or vice versa. The section with the 
maximum deviation is approximately located east of Shandong. Sections with a deviation 
value of 0 and ±1 are roughly distributed throughout the basin. 

Overall, most deviation values of the monitoring sections in Jiangsu and Shandong 
are 0. The deviation values in Anhui and Henan provinces are relatively evenly distrib-
uted from −1 to 3. The sections with a deviation value of 0 or ±1 accounted for 70.6%, 
indicating that the risk assessment results are accurate and the overall deviation is rela-
tively small. It should be noted that the risk assessment results are only for nonpoint 
source pollution, and only the typical nonpoint source pollutants (i.e., total nitrogen and 
total phosphorus) were considered. Therefore, while the water quality of the monitoring 
section is the result of point source and nonpoint source pollution, inevitably, there are 
some deviations between the evaluation results and the measured water quality data. 

Figure 6. The water quality (a), risk class (b), the deviation between water quality and risk class (c),
and TN distribution (d) of monitoring sections.

After deviation analysis and statistics (Figure 6c), among the 160 monitoring sections,
there are 48 sections with a deviation value of 0, accounting for 30.0%, 51 sections with a
deviation value less than 0, accounting for 31.9%, and 61 sections with a deviation value
greater than 0, accounting for 38.1%. While 0 represents proper evaluation, the section
with a deviation value greater than 0 is overestimated, or vice versa. The section with the
maximum deviation is approximately located east of Shandong. Sections with a deviation
value of 0 and ±1 are roughly distributed throughout the basin.
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Overall, most deviation values of the monitoring sections in Jiangsu and Shandong
are 0. The deviation values in Anhui and Henan provinces are relatively evenly distributed
from−1 to 3. The sections with a deviation value of 0 or±1 accounted for 70.6%, indicating
that the risk assessment results are accurate and the overall deviation is relatively small. It
should be noted that the risk assessment results are only for nonpoint source pollution, and
only the typical nonpoint source pollutants (i.e., total nitrogen and total phosphorus) were
considered. Therefore, while the water quality of the monitoring section is the result of
point source and nonpoint source pollution, inevitably, there are some deviations between
the evaluation results and the measured water quality data.

The overestimated sections are mainly distributed in Henan and Anhui, where large
amounts of nitrogen (Figure 6d) and phosphorus loads are investigated. To quickly identify
the controlling areas of NPS pollution in HRB, some local policies that mitigate water
pollution were not considered. This simplification led to the overestimation of TP and TP,
especially for regions that face severe water environment issues and have plenty of room for
improvements, such as Henan and Anhui. In the past few years, Henan has strengthened
the supervision of the agricultural and rural environment and continued to promote the
rectification of domestic sewage, livestock and poultry breeding, and agricultural fertilizer
application. The river chief system [60] was established in HRB in 2017. Studies in Chaohu
lake [61] and Foshan [62] have proved that the river chief system is effective in managing
water pollution. Measures such as increasing sewage treatment plants, strengthening the
construction of cleaning infrastructure, and standardizing the application of fertilizers
can reduce the pollutants output by human activities. However, policy performance is
difficult to quantify in our risk assessment model, resulting in the overestimation of TN
and TP loads.

The underestimated sections are mainly distributed in estuaries. The estuaries not
only receive sewage from local and adjacent areas but are also affected by accidental spills
at sea. A study in Newark Bay, New Jersey [63] indicated that combined sewer overflows
in the urban system have been an important point source pollution and have a significant
impact on ecology [64]. Accidental spills of oils and chemicals at sea also damage the
aquatic environment [65,66]. The effects of combined sewer overflows and accidental spills
are not included in our model. The Bulletin of Marine Ecology and Environment Status
of China in 2021 [67] reported that the water quality of estuaries in Shandong Province is
mildly polluted. The main indicators exceeding the standard are the permanganate index,
chemical oxygen demand (COD), and five-day biochemical oxygen demand (BOD5). Our
risk assessment model of nonpoint source pollution only considers TN and TP loads, while
organic pollutants are excluded. Therefore, the risk class in estuaries is lower than the
measured water quality class.

4.2. Limitations
4.2.1. Limitations of Data and Methods

We acknowledge that there are some limitations to the data and methods. Due to
the data availability, the estimation of nitrogen and phosphorus loads was based on the
statistics from the Provincial and Municipal Bureau of Statistics in 2018 rather than the
long-term average value, which may make the data lack a strong representation. Besides,
in terms of the analytic hierarchy process method, we determined the relative weight
relationship between each indicator by referring to the previous studies. Further study
should be improved by seeking expert opinions and conducting a field investigation to
determine each factor’s weight. Despite these limitations, our results are accurate, and our
methods would be useful for similar applications.

4.2.2. Pollution Source Indicators

For the initial goal of constructing a risk assessment model to identify the hotspots of
nonpoint source pollution quickly, some simplifications were made. For example, although
we selected nitrogen and phosphorus emissions as pollution indicators, other sources, such
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as ammonia nitrogen and chemical oxygen demand, were not included. In addition, due
to limited statistics, we did not distinguish the discrepancy in sewage discharge mode
between rural and urban and used the same emission coefficient for calculation. In future
studies, these issues should be considered. However, the result of our study on pollution
sources was considerable and consistent with relevant studies on the HRB.

5. Conclusions

In this study, we applied the method of index system to build a risk assessment model
of nonpoint source pollution in the HRB. We studied the distribution characteristics of
seven risk factors that affected nonpoint source pollution and identified the potential risk
controlling area based on our model.

The primary source of total nitrogen and phosphorus loads is fertilizer application
(81.96%), followed by livestock and poultry breeding (16.3%) and rural domestic wastes
(1.74%). The distributions of TN and TP pollution are similar, and the amount of emission
reaches the largest in the central and eastern Henan Province. 66.43% of the HRB is at
medium, relatively high, and high risk of nonpoint source pollution. Specifically, 12.37%
of the basin is at high risk, covering an area of 33,962 km2, and 11.20% of the area is
at low risk, covering an area of 30,760 km2. The medium-to-high-risk areas are mainly
concentrated in the Henan and Anhui provinces. In contrast, the medium-risk regions are
mainly distributed along the mainstream of the Huaihe River. These areas are more likely
to lose nutrients such as nitrogen and phosphorus and should be considered critical for
preventing nonpoint source pollution.

To prevent and control the nonpoint source pollution in HRB, measures should be
taken to strengthen the management of fertilizer application, livestock and poultry, and
rural domestic wastes, as well as weaken the migration process of pollutants by measures
such as increasing vegetation coverage and establishing buffer zones, all of which are
expected to reduce the pollution loadings into water bodies.
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