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Abstract: Temperature is one of the most influential weather variables necessary for numerous
studies, such as climate change, integrated water resources management, and water scarcity, among
others. The temperature and precipitation are relevant in river basins because they may be particularly
affected by modifications in the variability, for example, due to climate change. We developed a
stochastic model for daily precipitation occurrences and their influence on maximum and minimum
temperatures with a straightforward approach. The Markov model has been used to determine
everyday occurrences of rainfall. Moreover, we developed a multisite multivariate autoregressive
model to represent the short-term memory of daily temperature, called MASCV. The reduction of
parameters is an essential factor addressed in this approach. For this reason, the normalization of
the temperatures was performed through different nonparametric transformations. The case study
is the Jucar River Basin in Spain. The multisite multivariate stochastic model of two states and a
lag-one accurately represents both occurrences as well as maximum and minimum temperature. The
simulation and generation of occurrences and temperature is considered a continuous multivariate
stochastic process. Additionally, time series of multiple correlated climate variables are completed.
Therefore, we simplify the complexity and reduce the computational time for the simulation.

Keywords: multivariate stochastic model; autoregressive model; Markov model; daily temperature;
temperature generator

1. Introduction

The stochastic modeling approach has been widely used for hydrologic time series
analysis, including modeling weather variables [1,2] and flood prediction [3]. Therefore, it
is essential to build accurate forecast models in the hydrologic process [4]. The stochastic
modeling of temperature conditioned by precipitation is proposed when a day is wet or
dry. It is necessary to estimate the temperature for both dry and wet days.

The most common stochastic model is the first-order Markov model with two states.
It was introduced by Gabriel and Newman [5] and has since been used and modified by
many authors [3–19]. The rainfall occurrence process focuses on representing the dry and
wet days. Critical probability (pc) depends on transition probabilities of dry–wet (p01) and
wet–wet days (p11) [8]. Thus, the occurrence is a bivariate function (0,1) that relies on the
uniform random process (u) and critical probabilities [12].

The temperature displays a near-normal distribution. It is common to consider the
normal distribution to minimize the skewness coefficient of observed data. In other cases,
root transformation is used [20].

The statistical characteristics of the series change throughout the whole year. The
mean, variance, and standard deviation are periodic—these statistical changes are yearly,
monthly, daily, and even hourly. This periodicity is commonly modeled by the finite Fourier
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series [9,16,21,22]. The periodic component is necessary for standardization, which is a
process that converts into a series with a mean of zero and a standard deviation of one.
Standardization is usually applied to series with no follow-up normal distributions [7,23–25].
Moreover, standardization helps remove the seasonal effects [26]. Standardized series are
used to calculate the autoregressive parameters of the stochastic model [27].

It is desirable to generate synthetic temperature based on weather data [9]. The pro-
cess should be capable of representing different statistics from historical data [18]. The
basic statistics of the series are the sample mean, standard deviation, skewness coeffi-
cient, cross-correlation coefficients, and probability distribution. We must fit a proba-
bility distribution function (two or more parameters) or use a nonparametric transfor-
mation. Many authors have proposed stochastic weather generators (WG) for different
purposes, a few of which are downscaling, prediction, or simulation [28]. Some devel-
oped models are Weather GENerator (WGEN) [29], CLImate GENerator (CLIGEN) [30],
Agriculture and Agri-Food Canada Weather Generator (AAA-FC) [27], CLIMate GENera-
tor (CLIMGEN) [31], Long Ashton Research Station-Weather Generator (LARS-WG) [21],
the weather generator CLIMA [32], the closed skew-normal weather generator (WACS-
Gen) [26], École de technologie supérieure Weather Generator (WeaGETS) [22], and the
Multi-site Rainfall Simulator (MRS) [18]. We propose the multivariate autoregressive model
of climate variables (MASCV).

For precipitation, weather generators analyze the occurrence similarly. For exam-
ple, CLIMA [32], CLIGEN [30], and WGEN [9] model the occurrence process based on
transition probabilities of lag-one and two states for each month (two parameters). LARS-
WG [21] is based on an empirical function of wet and dry days for each month (21 pa-
rameters). CLIMGEN [31] models the occurrence process through transition probabilities
of a second-order Markov model at a monthly scale (four parameters). WeaGETS [22]
models the transition probabilities of a third-order Markov model with two states on a
biweekly scale (eight parameters). WASC-Gen uses a lag-one Markov model with different
states and parameters derived from the Bayesian information criterion [26]. AA-FC-WG
models the occurrence process with a second-order Markov model at a monthly scale
using two parameters [27]. Other stochastic models have proposed modifications or new
methods, such as the Markov renewal model [33], Copula-based models [34], the Hidden
Markov model [35,36], the Semi-Markov model [37], generalized chain-dependent process
models [38], the autoregressive model [39], and artificial intelligence [40].

Artificial intelligence (AI) has been used to predict hydrological data, including rain-
fall, rainfall runoff, and temperature [4]. Various machine learning methods have been
applied for rainfall and temperature prediction, such as the support vector machine (SVM)
classifier [41], ANN [42], long short-term memory (LSTM), statistical and multiple linear
regression (MLR) [43,44], and classification and regression trees [45].

Stochastic weather generators are used to represent different variables such as precipi-
tation and temperature. Long temperature series are commonly required, but historical data
are sometimes short in length. Therefore, it is necessary to apply stochastic weather gener-
ators for hydrological design [12]. The integrated water resources management (IWRM)
depends on water availability [46]. For the hydric balance and various decisions at a river
basin scale, the rainfall is fundamental [10], primarily to generate long synthetic series.

The issue with synthetic series is preserving the low-frequency variability in tempera-
ture and rainfall [47]. Daily temperature series have a strong correlation [48]. To preserve
low-frequency variability, different authors have proposed the fast Fourier transform (FFT)
algorithm [49], using crop variables [50], annual and monthly autoregressive models [51],
k-nearest neighbor bootstrap [52], and the copulas approach [53].

The objective of this paper was to develop an adequate stochastic model for daily
maximum and minimum temperature with a straightforward approach. We propose a
multisite multivariate stochastic model for precipitation occurrences and temperature ca-
pable of reproducing spatial and temporal dependence. We corrected the daily stochastic
model using an annual multisite multivariate autoregressive model. For precipitation, we
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applied a multivariate multisite lag-one Markov model with two states (wet and dry) and
few parameters. A normal distribution was used to define the precipitation occurrence
process. For the maximum and minimum temperature, we implemented the first-order mul-
tisite multivariate autoregressive model (MAR(p)) for daily and annual temperature. Our
approach simplifies the temperature simulation (continuous and nonparametric), which
implies a considerable advantage and versatility concerning other stochastic generators
(parametric distribution function for each month or biweekly).

The normalized mean and variance periodicity was modeled as a continuous daily
scale through the Fourier series. The model validation was performed by synthetic series of
precipitation, which accurately represent the main statistics of observed data for different
climates. MASCV was programmed in MATLAB and is capable of simulating with various
parameters for both occurrences and temperature. Moreover, we proposed a multisite
multivariate stochastic model in which different wet thresholds and nonparametric trans-
formations can be applied. A relevant advantage is that we modeled continuously for the
whole series. The method developed in this paper generates constant day-to-day rainfall
occurrences and temperature.

2. Materials and Methods

The purpose of generating long series of temperatures is to evaluate the effects of
hydrologic changes [4,9] and analyze different scenarios, such as environmental, agricul-
tural [28], or climate change. We focused on developing long multivariate synthetic series
of maximum and minimum temperature. The lag-one Markov model has been applied
for plenty of weather modelers due to its accurate representation of dependence [12]. Said
model is based on terms of occurrence given the previous day. We modeled the rainfall
occurrence and the temperature separately (Figure 1), so we defined the model according
to Equation (1):

Yt = TtXt (1)

where Tt is the temperature model, Xt is the precipitation occurrence model, and Yt is the
whole stochastic process.

2.1. Multivariate Precipitation Occurrence (Dry–Wet)

First, we must determine whether a day is wet or dry according to the day prior. We
used a bivariate function (Xt), and if the precipitation is greater than a given threshold,
the t day is wet (Xt = 1); otherwise, the t day is dry (Xt = 0). The first-order Markovian
approach only depends on the previous day, whether it was wet or dry. The high-order
Markov model has been notably studied [54,55] and is recommended for vast persis-
tence [10]. The two- and three-order Markov models significantly improve the fit [22,56,57].
In other cases, the results are nearly equivalent to the first-order Markov model [54]. One
disadvantage of the high-order Markov model is the increase in the number of parame-
ters [28]. The threshold for precipitation occurrence could change according to different
data. This depends on the minimum value of precipitation amount that the station in the
study can report. Common threshold values are 0 [9,21,29,30], 0. [22,26,58], 0.2 [25], 0.254,
and 0.3 mm [18]. We used the wet thresholds (0.001, 0.01, 0.1, and 0.25) and identified the
ones that provided the best results. A disadvantage in the case of stochastic modeling is
the limited data from the historical period.

For the occurrence process, we used the Wilks approach [12]. The conditional prob-
abilities for a one-order Markov model are a dry day followed by a wet day, p01, a wet
day followed by a wet day, p11, a wet day followed by a dry day, p10, and a dry day fol-
lowed by a dry day, p00. The conditional probabilities have a complementary relationship
between them.
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Figure 1. Proposed methodology for multisite multivariate precipitation occurrence, daily and
annual temperatures.

The normal critical probability (pc) depends on the previous day (Xt−1); if it is dry,
pc = p01, otherwise pc = p11. The boundary for the precipitation occurrence process is
determined for a random spatially correlated normal matrix nt = ∅−1ut [0, 1]. Only one
day is computed if the random variable is equal to or less than a critical probability.

i f nt ≤ pc ∴ Xt = 1; nt > pc ∴ Xt = 0 (2)
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The transition probability vectors vary on a monthly and daily scale. Therefore, the
occurrence process was simulated through different parameters. The lag-one Markov
model with two states enables the interaction between wet and dry days. Moreover, it
allows the residence time and periodicity in both the first (dry) and second (wet) states.

For the daily occurrence process, one of the disadvantages is the limited number of data,
primarily for dry seasons and arid river basins. These data limit the quality of results, and it
is common to model the transition probabilities monthly or biweekly [9,22,26,27,30,31].

Our approach was to simulate the transition probabilities on a daily scale, similar to
Woolhiser and Pegram [59]. It is imperative to preserve most of the characteristics for days,
months, and years. The number of parameters increases from a monthly to a daily scale;
therefore, it is essential to determine the most efficient model. In this study, we focused on
the relevance of evaluating different analyses, which depend on the number of parameters,
p01τ = P01

∣∣
τ

and p01τ = P11
∣∣
τ

.
Due to the distinct temporal scales of analysis, the number of parameters will increase

according to the variability of the occurrence process. The transition probabilities follow
a uniform distribution applicable in the case of univariate modeling. However, in the
case of multivariate modeling, a transformation to the normal distribution is more effi-
cient [15]. A transformation was performed from uniform to normal, pn11τ = ∅−1(p11τ)
and pn01τ = ∅−1 (p01τ). The spatial correlation between probability vectors with lag-k is
shown in Equation (3):

rk
(i,j)(p) = (pn11

(i,j) − pn01
(i,j))

k
i 6= j (3)

where rk
(i,j) is the spatial correlation with lag-k, pn11

(i,j) is the normalized probability vector
of two consecutive days of rainfall occurrence, and pn01

(i,j) is the normalized probability
vector of a dry day followed by a wet day. Based on these vectors, a spatially correlated
matrix was proposed in Equation (4):

Mk =

rk
(1,1)(p) · · · rk

(1,n)(p)
...

. . .
...

rk
(n,1)(p) · · · rk

(n,n)(p)

 (4)

where Mk is the cross-correlation matrix. The Cholesky factorization was used to determine
the spatial dependence of the series [15,19,60]. For a positive definite matrix, the Cholesky
factorization is a lower triangular matrix, D = [M][M]′. Multiplying this lower triangular
matrix by a random normal matrix results in a random spatially correlated normal matrix,
n, in Equation (5):

n = [M]′[N] =


M′(1,1) · · · 0

...
. . .

...
M′(n,1) · · · M′(n,n)

x

N(1,1) · · · N(1,m)

...
. . .

...
N(n,1) · · · N(n,m)

 (5)

where n is the random spatially correlated normal matrix, M
′(n,n) is the lower triangular

matrix for n series, and N(n,m) is the random normal matrix for n series and m days. We
used this matrix to generate multivariate precipitation occurrences. In addition, they were
used to determine synthetic wet and dry days.

2.2. Multivariate Maximum and Minimum Temperature

The maximum and minimum temperatures were modeled using the original maxi-
mum temperature data and the difference between the maximum and minimum temper-
ature, Trange in Equation (6). The target of modeling the temperature range is to avoid
negative values of the synthetic series [61].

Trange = Tmax− Tmin (6)
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The temperature process is commonly modeled considering normal distribution. How-
ever, according to our experience, in some cases, the maximum temperature and tempera-
ture range follow a normal distribution. We focused on the nonparametric transformations.
These are practical solutions to model the temperature [25,56,62].

Seasonal variability is one of the most significant characteristics of the stochastic
temperature process. The daily temperature shows recurrent changes within the year.
Parameters such as the mean and standard deviation are periodic components [1]. The
periodicity was analyzed through the Fourier series [59]. The number of parameters is
reduced when these are periodic or seasonal. The Fourier series [23,59] is present in
Equation (7). Several harmonics were used to represent 90% of the explicative variance of
the observed data.

v = u +
h

∑
j=1

[
Aj cos

(
2πτ

w

)
+ Bj sin

(
2πτ

w

)]
(7)

where u is the normalized temperature mean for wet (µ1τ) and dry days (µ0τ) and standard
deviation for wet (s1τ) and dry days (s0τ). A and B are the Fourier coefficient vectors,
j is the harmonic, and h is the total number of harmonics, equal to (w − 1)/2 for even
numbers and equal to w/2 for uneven numbers. For example, in a daily simulation, we
have 365 days, and the maximum number of harmonics is 182. Important harmonics
were selected according to the accumulated period-gram, defined as the ratio of mean
standard deviation (MSD) of the harmonics to the observed series. We accepted 90% of
the original data representation to select the significant harmonics applied at the mean,
standard deviation, and transition probabilities (µ1τ , µ0τ , s1τ , s0τ , p01τ , p11τ).

Once the periodic component was modeled, we standardized both temperatures
(maximum and range), allowing the analysis of temporal dependence. In addition, a stan-
dardized series served to generate residual series. Standardization removes the periodicity
of the series based on the mean (µ1τ , µ0τ) and standard deviation (s1τ , s0τ). We determined
the standardized series (zτ) at a daily scale, canceling the mean and standard deviation of
the normalized series according to Equation (8):

zτ =
yτ − µ0τ

s0τ
; yτ = 0; zτ =

yτ − µ1τ

s1τ
yτ > 0; (8)

A multivariate autoregressive model, MAR(1), with constant parameters was applied,
in which the best fit needs to represent the conditions of temporal and spatial depen-
dence. The first order of the multivariate autoregressive model was determined based on
the Cholesky factorization. In the same way, temporal dependence was conditioned by
precipitation occurrence in Equation (9):

[φ]1 = M0M1; [φ]0[φ]0T = M0 − [φ]1M1
T ; [φ]0[φ]0T = D (9)

where [φ]1 is the lag 1 autoregressive coefficient matrix, [φ]0 is the lag 0 autoregressive
coefficient matrix, [φ]0T is the transposed matrix, M0 and M1 are the cross-correlation
matrices, and D is the positive definite matrix. Finally, we determined the white noise
based on the multivariate autoregressive coefficient matrix using Equation (10):

ετ = [φ]0
−1({z}τ − [φ]1{z}τ−1

)
(10)

2.3. Evidence for the Goodness of Fit

The residual series must satisfy the residual normality (ε ∼= 0, sε
∼= 1), which is

neither correlated (rk(ε) ∼= 0) nor has a biased judgment (gε
∼= 0). The probability of

the residual series is verified by the confidence interval limits as well as for the mean,
skewness coefficient, standard deviation, and correlations to corroborate the residual series
normality. It must satisfy the mean and correlation of the entire series within 95% of the
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confidence limits [63]. In the case of the standard deviation of the chi-squared test, it should
comply with a 95% confidence for a normal distribution [64]. The skewness coefficient of
the residual series must be within the confidence limits [63]. Another evaluated aspect in
the stochastic process is the Akaike information criterion (AIC) [65].

2.4. Generation of Multivariate Synthetic Series

For the generation of synthetic series, the stochastic model is divided into two states,
the precipitation occurrence (Xt) and the maximum temperature and temperature range
(Tt). The precipitation occurrence will appear if the transition vector (pc) is a random
normally distributed number greater than the random normal distribution (nt); in other
words, if nt ≤ pc, it reaches the wet state. The stochastic temperature process starts
by generating a random number with a normal distribution (ε) and then obtains the
coupled standardized series (zt) and corrected using the annual low-frequency multivariate
stochastic model. Finally, the inverse normalization (yτ

−1) was used.
The obtainment of synthetic series through the stochastic process allows for validating

the developed model. The multivariate series were generated with the same characteristics
as the observed data. The statistical parameters of both series were assessed and should not
be significantly different; consequently, the developed model can be validated. The main
metrics were determined. Mean absolute error (MAE), root mean square error (RMSE), and
percent error estimate (PE) were defined.

2.5. Study Area

The Jucar River Basin is part of the Jucar Basin Agency (JBA), located in the eastern por-
tion of the Iberian Peninsula, Spain. The basin covers an area of approximately 22,291 km2.
Information regarding the zone was obtained from the official website of the confederation
(www.chj.es). The most relevant surface runoff is the Jucar River, which captures the surface
runoff of all sub-basins [66]. The most significant reservoirs are Alarcon (1088 hm3) and
Contreras (852 hm3). The river rises from the Tragacete (1600 ms.n.m) and subsequently
arrives at reservoirs Toba, Alarcon, Molinar, and Tous. The study area’s limit ends where
the Mediterranean Sea is reached (Figure 2). Rainfall in the Jucar River Basin has decreased
since 1980 [67,68]. Temporal and spatial variation characteristics of meteorological elements
in the Jucar River Basin are presented in Appendix A (Figures A1–A4).
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The Jucar River Basin is divided into five sub-basins: Alarcon, Contreras, Molinar, Tous,
and Huerto Mulet. The precipitation data for the study area were obtained from the Spain
02 database [69], a regular grid (20 × 20 km). The historical data have information from
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1950 to 2015. The observed data were interpolated using the inverse distance weighting
(IDW) method to generate a rainfall and temperature series for each sub-basin. The IDW
method is one of the most common interpolation techniques [46,70–72].

3. Results

According to the information of the Jucar River Basin, the average annual temperature
was between 17.5 ◦C (Contreras) and 21 ◦C for the years 1950–2015. In the present study,
we defined four wet day thresholds (0.001, 0.01, 0.1, and 0.25 mm). The range of rainy
days from October to May was between 7.3 and 12.17, and for June to September, the
average precipitation occurrences were between 2.4 and 8.72 days. The months with few
precipitation occurrences were between June and September, an important factor because
there were little data for the stochastic modeling process. In the case of the months from
October to May, the information was essential for the stochastic modeling to perform with
better confidence.

3.1. Multivariate Occurrence Synthetic Series

The occurrence process was developed through a Markov model of two states. The
transition probability vectors were identified, and the daily noise level can be observed.
The transition probabilities for all sub-basins p01τ were in a range of 0.05 (minimum) to
0.45 (maximum). On the other hand, the transition probabilities p11τ were between 0.3 and
0.95 (according to Figure 3).
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The transition vectors were evaluated with four parameters for the Fourier series. The
objective of analyzing the transition probability vectors was to select the best representation
of the wet–dry event. Simulations were carried out from two harmonics in the Fourier
series to reach approximately 90% of the explicative variance. However, the process of
rainfall occurrence can be represented by only a few parameters [9,22,29,73]; therefore,
using few harmonics is acceptable. The frequency of the precipitation for four parameters
represents a smoothed probability of occurrences, and with these few parameters, a good
approximation of p11τ and p01τ can be obtained (Figure 3). On the other hand, the confi-
dence limits for the vectors p11τ and p01τ were determined from the approximation to the
t-distribution with 95% confidence. For the Fourier probability p01τ , four main patterns
were observed, predominantly the Fourier probability increase in March, April, and May,
after a decrease in June and July, an increase again in August and September, and finally,
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from October to February, the smoothed Fourier probabilities were nearly constant. A
similar pattern was present for the Fourier probability p11τ , which had no considerable
fluctuations between October and May, decreases in June and July, and increases once
more in August and September. These Fourier series are sufficient for proper stochastic
performance of rainfall occurrence.

3.2. Stochastic Multisite Multivariate Temperature Series

In the case of the maximum temperature and temperature range, the skewness co-
efficient of the historical series was near normal. For this reason, we did not consider
normalization. Normality was assessed based on the skewness coefficient test for the
95% confidence limit. The daily temperature skewness coefficient was near the normal
distribution, according to the confidence limits (Figure 4).
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Fourier series was applied to the mean and standard deviation (µτ , sτ), and the
objective was to reduce the number of parameters (Figure 5). The series were carried out
with four parameters, which provide a good fit for the model for the Jucar River Basin.
In Figure 5, we can observe the mean, standard deviation, and the Fourier series for the
stochastic models for wet and dry days with a 95% confidence interval. The results from
fitting Fourier series for the model in Figure 5a,b reflect the smoothed mean for wet and dry
days. In case of the standard deviation presented in Figure 6a,b, the fitted curve includes
the original data noise.

We calculated the standardization based on the normal series, mean, and standard
deviation of the fitted series. The objective of the standardization is to remove the series
periodicities and to obtain a mean of zero and variance of one. On the other hand, the
standardized series were determined by the multivariate autoregressive model. For the
Jucar River Basin, we defined the autoregressive parameters and residual series for different
wet thresholds.

We selected the wet threshold of 0.001 for determining the temperature multisite mul-
tivariate stochastic generator. First, we evaluated the normality of the residual series. Mean,
deviation, skewness coefficient, and lag-one autocorrelation were calculated (Table 1).
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Table 1. AIC for different wet thresholds and stochastic occurrence model.

Sub-Basin
Wet Day Threshold (mm)

0.001 * 0.01 0.10 0.25

Alarcon −590.2 −515.3 −362.2 −310.9
Contreras −681.5 −551.2 −459.5 −421.3
Molinar −562.3 −420.7 −261.2 −215.1

Tous −587.4 −463.6 −380.5 −340.0
Huerto Mulet −610.5 −554.7 −467.3 −427.3

* Best performance.

The autocorrelation for this series was also determined within the 95% confidence
limits for both models’ maximum temperature and temperature range. In addition, we
applied different tests to confirm that the residual series can be considered a normal
distribution with a mean of zero, variance of one, and skewness coefficient of zero (Figure 7).
The residual series of the two developed stochastic models were very similar.
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The residual series of the MAR(1) for the maximum temperature had a mean near
zero, the variance was around 0.85, the skewness coefficient was between −0.245 and
0.026, and the lag-one autocorrelation was around ±0.01. The skewness coefficient and
autocorrelation are within the confidence limits, the average is within 99% of the confidence
limits, and therefore we assumed the normality of the residual series (Table 2).

Table 2. Normality analysis for residual series for M1 and M2 (wet threshold 0.001).

Model Statistical/Sub-Basin Alarcon Contreras Molinar Tous Huerto Mulet

1 * Mean −6.7 × 10−5 −2.0 × 10−4 7.5 × 10−5 −2.6 × 10−4 5.6 × 10−5

Deviation 0.842 0.821 0.834 0.812 0.850
Skewness coefficient −0.185 −0.242 −0.245 −0.089 0.026

Lag-one autocorrelation 0.005 0.003 0.009 −0.041 −0.042
AIC −8369 −9508 −8814 −10,152 −7958

2 ** Mean −3.09 × 10−4 −5.98 × 10−4 −6.83 × 10−5 −2.70 × 10−4 −2.65 × 10−4

Deviation 0.937 0.920 0.942 0.900 0.942
Skewness coefficient −0.009 −0.038 −0.044 0.112 −0.028

Lag-one autocorrelation 0.036 0.043 −0.030 −0.082 −0.039
AIC −6471 −8233 −5957 −10,294 −5896

* Maximum temperature. ** Temperature range.

On the other hand, the series was also considered stationary since it complied with
∅1 < 1 for all sub-basins. The AIC value was −10,152 with the examined parameters.

Similar results were obtained for the stochastic model for temperature range: the
residual series had a mean of around −0.0005, variance of at least 0.92, skewness coefficient
between −0.044 and 0.112, and lag-one autocorrelation of about ±0.08 (Figure A5). For this
stochastic model, we assumed normality and stationarity of the residual series as well as for
stochastic Model 1 (Table 2). According to the AIC, the stochastic maximum temperature
model (M1) was similar to the stochastic temperature range (M2) for all sub-basins.

3.3. Generation of Multivariate Synthetic Temperature Series

For the process of generating synthetic series, 1000 series were created considering
the same length as the sample (66 years). The statistical sum, mean, standard deviation,
and skewness coefficient were determined for both the synthetic and historical series.
The occurrence depends on the correlated multivariate precipitation probabilities, critical
probability, and normal distribution. Multivariate synthetic series of rainfall occurrences
were generated for the five sub-basins using the stochastic process. The same occurrence
series was applied for both Model 1 (M1) and Model 2 (M2) to avoid the bias from the
MAR(1) model.

For the historical series, the sum of the number of rainy days in 66 years was calculated.
In the same way, the monthly occurrences of the synthetic and the historical series were
determined. Several statistical tests were performed to validate that the generated series are
not substantially different from the historical period. The tests applied to the precipitation
occurrence were the k-s test to verify that the results come from the same distribution,
the t-test for equality of means, and the Wilcoxon test for equality of medians. The tests
were applied considering a 95% reliability, and it was concluded that there is insufficient
evidence to refute that the generated precipitation occurrences and historical series, both
monthly and daily, are significant.

The scatter plots of daily mean occurrences (66 years) of historical versus simulated
data can be seen in Figure 8 for the five sub-basins. The daily rainfall occurrences varied
±5 days from the 1:1 line (Figure 8a). The monthly rainfall occurrences varied by±0.2 days.
Monthly occurrences provide better results than daily occurrences due to the number of
parameters applied (four in total). We used the same simulated rainfall occurrence (four
parameters) to generate the maximum temperature and temperature range.
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The statistical mean, standard deviation, and skewness coefficient of daily data were
computed. The MAR(1) for mean daily temperatures had a deviation of ±1 ◦C, which
is more accurate than the stochastic Model 2 for the daily average temperature range
(±1.5 ◦C). Model 1 achieved better results on both a daily and a monthly scale (Figure 9).
The observed and generated series were not significantly different according to the k-s test,
which indicates that they originate from the same distribution, in addition to sharing the
same average according to the t-test and the same median according to the Wilcoxon test.
These tests were applied to the daily average temperatures and the monthly averages. The
best approximations were provided for the monthly data with higher reliability. Moreover,
the RMSE, MAE, and PE (Table 3) display the adequate performance of Model 1 (M1) and
Model 2 (M2).
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Table 3. Performance analysis for Model 1 and Model 2.

Parameter
Model 1 (M1) Model 2 (M2)

1 2 3 4 5 1 2 3 4 5

RMSE (◦C/day) 1.881 1.107 1.392 1.156 0.767 1.786 1.019 1.290 1.078 0.780
MAE (◦C/day) 1.503 0.820 1.092 0.896 0.572 1.455 0.773 1.021 0.852 0.582

PE (%) 0.043 0.027 0.017 0.031 0.021 0.035 0.049 0.040 0.025 0.012

The f-test was used for the standard deviation (Figure 10), which indicates the equality
of deviations for both models and showed minor differences. Both the maximum temper-
ature and temperature range performed well in the daily standard deviation. It is worth
mentioning that the deviations were overestimated concerning the observed data. For a
monthly scale, both models effectively reproduced the standard deviation.
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and (b) temperature range for each calendar day (red).

Regarding the skewness coefficient, MAR(1) was underestimated for the observed
data. The same dispersion was present for the two models (M1 and M2) and for the daily
and monthly averages (Figure 11).

Even though the normalization’s function can be adjusted on average for the confi-
dence limits, this offers a variation for the observed skewness. The skewness of observed
daily data was between −1.2 and 1.2, and the simulated was between −0.5 and 0.5. There-
fore, the multivariate stochastic model underestimated the skewness coefficient by less than
−0.5 and more than 0.5. On a monthly scale, the skewness of the simulated precipitation
distribution was underestimated similarly to the daily scale.

For monthly temperature, the multisite multivariate model preserved the main statis-
tics. Figure 12 presents all months for the 5 sub-basins and 66 years, in which the temporal
and spatial dependence was adequately performed. For maximum temperature, the values
were between 5.5 and 35 ◦C, with variability of ±2 ◦C (Figure 12a). In the case of tempera-
ture range, the values were between 5 and 25 ◦C with the same variability. For the monthly
mean of all sub-basins, the error was only ±0.1 ◦C.
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Figure 12. Monthly temperature for all sub-basins (mean 66 years observed and 1000 simulated series)
observed and simulated for (a) maximum temperature for each month (blue) and (b) temperature
range for each month (red), for 66 years, 5 sub-basins, and all months.

The multisite multivariate stochastic autoregressive Model 1 was selected to compare
temperature years with regard to the observed data. The stochastic model can represent
the temporal tendency of the results, providing an adequate indication of the yearly
temperatures (Figure 13). Due to the design of the multisite multivariate stochastic model
corrected by the annual model, we can simulate low frequency. The interannual variability
represents the autocorrelation and cross-correlations of observed data (Table 4). The results
indicate that variability was well-reproduced for the stochastic process. Moreover, the
maximum and minimum values were performed adequately. For annual temperature,
the stochastic model can produce the variability of both temperatures. The variability
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expressed for the model (sim) was greater than the observed data. Accordingly, the MAR(1)
can define the maximum and minimum temperature values.
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(5) Huerto Mulet. The outliers are plotted individually using the ‘+’ marker symbol.

Table 4. Annual cross-correlation matrix for all sub-basins.

Maximum Temperature Cross-Correlation

Sub-Basin Alarcon Contreras Molinar Tous Huerto M * Alarcon * Contreras * Molinar * Tous * Huerto M

Alarcon 1.000 1.000
Contreras 0.833 1.000 0.834 1.000
Molinar 0.760 0.797 1.000 0.765 0.819 1.000

Tous 0.239 0.492 0.598 1.000 0.243 0.489 0.610 1.000
Huerto M 0.223 0.371 0.390 0.802 1.000 0.230 0.377 0.398 0.800 1.000

Temperature Range Cross-Correlation

Sub-Basin Alarcon Contreras Molinar Tous Huerto M * Alarcon * Contreras * Molinar * Tous * Huerto M

Alarcon 1.000 1.000
Contreras 0.719 1.000 0.718 1.000
Molinar 0.891 0.592 1.000 0.895 0.590 1.000

Tous 0.563 0.494 0.754 1.000 0.565 0.499 0.759 1.000
Huerto M 0.504 0.331 0.710 0.918 1.000 0.502 0.333 0.708 0.917 1.000

* Simulated cross-correlation.

4. Discussion

The multisite multivariate autoregressive stochastic model (MASCV) was developed
using MATLAB and was verified for different stations within the same basin with similar
results. A Markov model of two states for the multivariate precipitation occurrence and
the conditioned multivariate stochastic model for temperature can represent spatial and
temporal parameters to study on-site conditions on daily, monthly, and annual scales. The
Markov model of two states with few parameters has been able to depict the precipitation
occurrence process. On the other hand, the temperature was accomplished considering
normal distribution. Therefore, a reduction of parameters was achieved in generating the
temperature. This represents a critical simplification in obtaining the daily temperature,
which according to the performed parameterization, provides acceptable results for the
Jucar River Basin. Moreover, it simplifies the complexity and reduces computational time.

The stochastic multivariate autoregressive model with few parameters adequately
reproduced the daily and monthly temperatures. The tests showed insignificant differences
between the observed and generated temperatures.
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The primary objective of this stochastic model is to determine the monthly runoff and
incorporate it into the integrated water resources management. It is noteworthy that this
validation is performed on a monthly scale. Therefore, MASCV must be able to represent
the statistics of the precipitation occurrence and temperatures in different timescales. The
developed stochastic MAR(1) adequately reproduced the main statistics.

5. Conclusions

The multivariate autoregressive model of climate variables (MASCV) is a daily stochas-
tic weather generator, programmed in MATLAB, with several user advantages, i.e., wet
day selection, number of harmonics for each case, normalization type, and synthetic series
to generate and automatize graphs. Moreover, MASCV can generate extreme temperatures
over extended periods of time. This is unique in stochastic weather generators because only
a few can reproduce extreme events. Furthermore, MASVC can be used for bias correction
for climate change studies, in this case, perturbing parameters according to climate models.
Finally, the results of MASCV can be incorporated for environment analysis.

MASCV presents the completion of a multivariate model for precipitation occurrences,
i.e., a Markov model of two states and the dependence of temperature with rainfall occur-
rence process. This multisite multivariate stochastic model is meant to become a beneficial
tool in a simplified manner, which may allow the incorporation of different climatic and
hydrological variables.

A Markov model of first order can reflect the time dependence of the precipitation
occurrence, preserving comparative statistical data with the historical series. Moreover, the
spatial and temporal structure using a stochastic multisite multivariate model and coupling
daily and annual temperature correction reproduced adequately in the different timescales.

Models M1 and M2 were suitably performed for different temperatures. For wet
and dry days, the multisite multivariate stochastic model can adjust to real dependence
with precipitation occurrence and spatial and temporal dependence of daily, monthly, and
annual temperatures.

This approach greatly simplifies the process of simulating precipitation, which implies
a considerable advantage and versatility over other stochastic generators. The reduction
of parameters is an important factor addressed in this approach for determining the
temperature and considering continuous modeling for days, months, and years.
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Appendix A

The spatial and temporal variation of the characteristics of meteorological elements in
the Jucar River Basin are presented in Figures A1–A4, showing the spatial distribution of
annual elements based on coordinates and 16 meteorological stations in Jucar River Basin.
The grid interpolation uses inverse distance weight interpolation (IDW). Figure A5 shows
the daily lag correlation for residual series.
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