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Abstract: Species conservation often faces many challenges, such as addressing threats from multiple
stressor sources, representing under-studied taxa, and understanding implications of spatial extent.
To overcome these challenges, we assessed contemporary anthropogenic threats from stream frag-
mentation and landscape disturbance as well as future habitat suitability under climate change for
traditionally well-studied (fishes) and under-studied (mussels) imperiled fluvial taxa in Michigan,
USA. To understand how threats to species vary spatially, predicted habitat suitability was analyzed
for three hierarchically nested spatial extents: statewide, within species’ biogeographic ranges, and
within river patches fragmented by barriers. Comparison of current and future habitat suitability
for 27 fish and 23 mussel species indicates large potential statewide gains for many warmwater
and/or large river fishes and several mussel species, however these gains are greatly diminished by
biogeographic range limitations and habitat fragmentation among current and future habitats. One
mussel species and several cold- and coolwater fishes are projected to have significant habitat losses
under climate change irrespective of spatial extent. On average, 79% of habitats for mussels and 58%
for fishes were considered moderately to severely disturbed from current human landscape activities.
Habitat fragmentation was greater for fishes than mussels, with large dams playing a primary role in
fragmenting habitats relative to small dams and waterfalls. Results indicate that threat assessments
can vary substantially according to spatial extent and taxa, and consideration of both contemporary
and future threats to habitats is needed to inform conservation of imperiled fluvial organisms.

Keywords: streams; rivers; biogeography; species distributions; anthropogenic stressors; climate
change; habitat fragmentation

1. Introduction

Freshwater biodiversity loss is occurring at alarming rates, with species extinctions
and population declines being triggered by an increasing scope and severity of contempo-
rary anthropogenic stressors to aquatic environments and their surrounding landscapes.
Habitat degradation resulting from anthropogenic stressors has been identified as a major
source of global freshwater biodiversity loss [1], greatly affecting both fishes [2,3] and
mussels [4–6]. In North America, habitat degradation and range restrictions were identified
as primary causes of imperiled fish declines [7] with freshwater mussels being considered
the most highly imperiled freshwater taxa [8–10]. Similar human stressor-induced declines
in fishes and mussels have been observed in many other parts of the globe, such as Eu-
rope [11], Latin America [12], and Asia [13]. Beyond the contemporary habitat degradation
resulting in these declines, freshwater environments are particularly susceptible to future
climate change due to the influence of climatic drivers on both the hydrologic and thermal
characteristics of water within these systems [14,15]. Climate change is expected to alter
the quality, quantity, and distribution of suitable habitats for many freshwater organisms
and further exacerbate the effects of anthropogenic stressors [14–16]. These factors put
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imperiled freshwater species at enormous risk, necessitating conservation assessments that
account for both contemporary and future stressor sources.

Freshwater conservation assessments for imperiled species are frequently confronted
by a number of common challenges. First, many studies have frequently focused on single
stressor sources (e.g., human land uses), while numerous other threats to aquatic biodi-
versity tend to co-occur (e.g., barriers, water withdrawals, etc.). Omitting other major
stressors to aquatic habitats can underrepresent threats for species that are susceptible
to influences from multiple anthropogenic stressors [17]. Recent studies suggest that
conservation assessments must go beyond focusing on single stressor sources to account
for both the independent and synergistic effects of multiple stressors [18]. For instance,
studies that focus solely on climate change could ignore contemporary drivers of aquatic
habitat degradation (e.g., land use, habitat fragmentation) that are important sources of
biodiversity loss [18]. Studies combining contemporary and future stressors demonstrate
the importance of distinguishing among drivers of habitat change, allowing for the iden-
tification of specific mitigation strategies to counteract the combined effects of multiple
stressors [19–21]. Consequently, assessing threats from multiple stressors is an essential
part of conservation planning, leading to conservation priorities that can differ substantially
from those generated when only a single stressor is considered [22,23].

Freshwater conservation assessments are also frequently limited in that they are often
conducted for single, charismatic species [24] or alternatively are conducted using species
from a well-studied taxon (e.g., fishes). These well-studied taxa are frequently used as
surrogates for overall aquatic biodiversity conservation [25], while many other aquatic taxa
(mussels, insects, crayfish, etc.) are often understudied or overlooked [26,27]. However,
cross-taxon congruence in responses to both natural conditions and anthropogenic stres-
sors in freshwater environments is often weak [28–30] leading to diverging priorities in
establishing conservation strategies or freshwater protected areas [31]. Studies evaluating
multiple taxa have commonly distilled species-level data into species richness metrics
with a goal of characterizing broad-scale patterns in freshwater biodiversity or identifying
biodiversity hotspots among multiple taxa groups. However, these assessments often lack
the species-level specificity that would inform conservation decision-making for individual
imperiled species. Thus, taking a multi-taxa approach could further improve understand-
ing of how the conservation of species from one taxon might benefit or possibly neglect
conservation opportunities for species in another taxon.

A further challenge in aquatic biodiversity conservation is that research is often re-
moved from implementation, creating a mismatch between the products and knowledge
generated through research and the needs of conservation practitioners [16,32]. This
includes a mismatch in spatial extent between studies and conservation planning and
decision-making [33]. Studies have rarely considered multiple spatial extents [34], despite
advantages to conservation planning that incorporates a multi-extent approach [35]. Pro-
viding information for a variety of relevant spatial extents can allow for the evaluation
of differing context-dependent management options [32] and improve understanding of
how threats such as habitat connectivity loss [36] or climate change [37] vary according to
spatial extent. Further understanding the similarities and differences in species’ vulner-
abilities to specific threats at multiple spatial extents is highly valuable for conservation
efforts [38] as the multi-scale patterns at which stressors manifest can differentially affect
species conservation [38,39]. Quantifying multiple threats, and the spatial extents at which
they manifest, aids in the imperiled species conservation [40] by allowing conservation
strategies to be directed toward the appropriate threats and spatial extents [24].

With a goal of providing a more comprehensive threat assessment for imperiled fluvial
species that overcomes these common challenges, we conducted a multi-taxa assessment
of contemporary and future threats for imperiled fluvial fishes and mussels in Michigan,
USA across multiple spatial extents. Specifically, we assessed three major threat types:
(1) contemporary landscape-based anthropogenic stressors to habitats, (2) contemporary
stream fragmentation among habitats, and (3) future habitat suitability under climate
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change according to projected stream temperature and stream flow. To understand how
threats to species vary spatially, we evaluated these threats at three hierarchically nested
spatial extents: statewide, within biogeographic species ranges, and within river patches
fragmented by natural and anthropogenic barriers.

2. Materials and Methods
2.1. Study Area, Spatial Framework, and Climate Data

The study area encompassed the state of Michigan, USA (Figure 1), a region providing
a unique case study in assessing anthropogenic threats to aquatic taxa due to its glacial
history. In particular, glacial influences on the spatial configuration and composition of
surficial geology have resulted in diverse stream flow and temperature regimes within the
state, ranging from streams with very cold, stable flows to warm, runoff-driven steams
with highly variable flows. This glacial history has also greatly affected aquatic habitat
connectivity in streams, influencing post-glacial species colonization patterns. These
combined factors have contributed to a diverse fluvial fauna, generating conditions that
greatly affect species conservation within the state, as southern-distributed species are
biogeographically limited and spatially co-vary with anthropogenic landscape disturbance
intensity whereas northern-distributed species are often less biogeographically restricted
with habitats that often have lower levels of human stressors.
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Figure 1. Map of the study region.

The 1:24,000 National Hydrography Dataset (NHD; U.S. Geological Survey and U.S.
Environmental Protection Agency), consisting of ~68,000 inter-confluence stream reaches
for Michigan, was the underlying spatial framework in this study. Local catchments, the
land area draining directly to a stream reach, and network catchments representing en-
tire upstream drainage areas were attributed with a suite of landscape-based predictors
characterizing geology, soils, groundwater discharge, elevation, and climate (Table S1). To
understand how climate change might affect fluvial habitats in the future, we incorpo-
rated future air temperature and precipitation projections into existing stream flow and
temperature models. Three model estimates of stream flow and one model estimate of
stream temperature were included to characterize current and future flow and tempera-
ture conditions, as both factors have strong influences on fish and mussel distributions
within the state [41–43]. Stream flow models estimating median annual discharge, April
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10% exceedance yield (spring high flow), and August 90% exceedance yield (summer low
flow) were utilized in this study to capture overall flow patterns as well as seasonal flow
influences [44]. Stream temperature predictions were derived from a July mean stream
temperature model [45] using six landscape-based predictor variables including July mean
air temperature. The month of July corresponds with the warmest instream temperatures
for this region, representing a limiting factor in the distribution of cool- and coldwater
fishes [45].

Climate change data were obtained from the Upper Midwest and Great Lakes Land-
scape Conservation Cooperative and consisted of predicted annual precipitation, mean
annual air temperature, and July mean air temperature for mid-century (2046–2065) and
late century (2081–2100) periods for 13 climate change models (Table S2). These models
were developed under the A1B climate change scenario, representing a balanced use of re-
newable and non-renewable energy sources moving into the future. As a result, 26 climate
change projections (13 models for two time periods) were incorporated into stream flow
and temperature models.

2.2. Habitat Suitability Models and Climate Change Projections

Habitat suitability models were developed and used as the basis for contemporary and
future threat analyses in this study (Figure 2). Habitat suitability modeling was done with
MaxEnt [46] for 27 fluvial fish species and 23 fluvial mussel species considered imperiled
in Michigan, USA based on the 2005 State Wildlife Action Plan ([47]; Table S3). A total of 10
fluvial predictor variables were used for habitat suitability modeling (Table S1) representing
a set of relatively uncorrelated predictors (Pearson correlation coefficient < 0.5). In addition
to three stream flow estimates and one stream temperature estimate (described above),
stream reach elevation and slope, local catchment groundwater discharge, and network
catchment slope, soil permeability, and percentage of fine-textured surficial geology were
used as predictors. We used a 50th percentile training occurrence logistic cutoff to identify
highly suitable habitats [43]. This approach was taken to identify core habitats that are
critical to long-term species persistence and are of high potential quality from a conservation
standpoint. To aid in the interpretation of contemporary and future threats among species,
we assigned fishes and mussels to thermal habitat preference guilds based on July mean
stream temperatures. Fishes were assigned to thermal guilds based on [48] when available.
For fishes lacking thermal guild designations in [48] and for all mussel species, we used
predicted July mean stream temperatures (described above) for species occurrences to
assign thermal guilds based on the coldwater, coolwater, and warmwater temperature
ranges described in [48] (Table S3).
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To compare the relative influences of climate change on future habitat suitability
predictions, habitat suitability models were projected to future conditions under climate
change using both stream flow and stream temperature estimates. These comparisons were
done to identify highly suitable habitat that was; (1) retained; predicted to be highly suitable
in both the present and future, (2) lost; habitat currently considered highly suitable, but not
highly suitable in the future, and (3) gained; habitat not currently considered highly suitable,
but highly suitable in the future. The amount of retained, gained, and lost habitat was used
to quantify overall (i.e., net) habitat gain or loss relative to current time period predictions.
We further compared habitat suitability under climate change at three spatial extents within
our spatial framework; (1) statewide; model results for the full statewide set of stream
reaches, (2) biogeographic; model results constrained to stream reaches within river basins
in that state that contain known species occurrences, and (3) patch; model results restricted
to stream reaches within river patches containing contiguous habitat (described below)
with known species occurrences that are nested within biogeographic river basins. These
three spatial extents provide differing sets of results with distinct relevance to species
conservation. Many species assessments are conducted within geopolitical boundaries (e.g.,
statewide, nationwide, etc.) with this extent being useful for species whose current status
(distribution and range) is not well understood. The biogeographic extent refers to river
basins where species were known to colonize with river basin boundaries acting as a natural
barrier to trans-basin movement. Finally, the patch extent incorporates known barriers
within fluvial systems to understand contemporary habitat connectivity in conjunction with
future habitat gain/loss under climate change. We present results for all spatial extents;
however, additional results focus on the biogeographic extent which is frequently utilized
for conservation planning.

2.3. Contemporary Human Landscape Disturbance

To assess current landscape-based anthropogenic threats to fluvial habitats we utilized
a comprehensive human landscape disturbance index developed for Michigan streams [49].
This index integrates the influences of 27 anthropogenic stressor sources (e.g., urbaniza-
tion, agriculture, pollution outfall sites, nutrient inputs) attributed to two spatial zones,
catchments and riparian buffers, at both a local scale representing land areas contributing
directly to each reach and a network scale representing entire upstream contributing land
areas. This index was calibrated using biological responses to disturbances [49], with
values ranging from 0 to 100 with values of 100 representing most-disturbed conditions.
Breakpoints in fish abundance across a gradient of the landscape disturbance index were
developed using piecewise regression [50,51] to identify low, moderate, and severe land-
scape disturbance classes (Figure S1). For 404 statewide single-pass electrofishing samples
across the human landscape disturbance index gradient, we summed individual species
catch per unit effort (log (x + 1) where x corresponds to the number of individuals captured
per 100 m of stream length) to develop total imperiled stream fish catch per unit effort.
This analysis resulted in low (x < 4.08), moderate (4.08 ≤ x < 11.65), and high (x ≥ 11.65)
landscape disturbance classes (Figure S1). We were unable to identify landscape distur-
bance breakpoints for mussels because abundance data for mussels were not available.
Consequently, we characterized low, medium, and severe levels of landscape disturbance
using the breakpoints identified for stream fishes. Therefore, for this analysis, we assumed
that mussel and fish responses to disturbances were similar. However, this may not be an
unreasonable assumption because Unionid mussels are dependent on obligate fish host
species and fish host characteristics can influence mussel distributions [35].

2.4. Contemporary Stream Fragmentation

The amount of stream fragmentation for each species was quantified using a barrier
dataset containing large dams generally > 2 m in height from the National Anthropogenic
Barrier Dataset (NABD) [52], small dams from a state agency database (Michigan Depart-
ment of Environment, Great Lakes, and Energy; unpublished data), and waterfall locations
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representing naturally occurring barriers [53]. Barrier locations were used to delineate
patches which represent contiguous sections of stream network that are connected between
barrier locations [54]. These stream patches formed the spatial units in calculating the
Dendritic Connectivity Index (DCI) [55], which measures connectivity among patches
within river basins, incorporating the passability of barriers between patches and the total
amount of habitat available among patches within each river basin. Total length of highly
suitable habitat within patches for each species was used as the unit of length measurement
in calculating the DCI. This approach provided a measure of connectivity among highly
suitable locations tailored to each species as opposed to a generic measure of connectivity
where connectivity among all stream reaches is considered irrespective of species habitat
suitability. For this analysis, all barriers were considered impassable (i.e., passability set to
zero). DCI values range from 0 to 100, with 100 representing fully passable (completely
unfragmented) systems whereas low DCI values indicate a low degree of connectivity and a
high degree of habitat fragmentation [55,56]. To compare habitat fragmentation conditions
among barrier types, four DCI values were calculated for each species: large dams only,
small dams only, waterfalls only, and all barriers combined. DCI values for the ‘waterfalls
only’ results provided a natural connectivity baseline from which to assess anthropogenic
connectivity loss due to dam construction. We split the DCI value range into thirds to
create low (x ≥ 66.66), moderate (33.33 ≤ x < 66.66), and high (x < 33.33) fragmentation
classes. Calculations were implemented in R (R 3.0.3; R Core Team, Vienna, Austria) with
code from the Fish Passage Extension (FIPEX v2.2.1; Fisheries and Oceans Canada).

2.5. Combining Contemporary and Future Threats

To visualize and evaluate multiple dimensions of anthropogenic threat to species,
we graphed overall conditions among three threat axes: future habitat suitability under
climate change, current human landscape disturbance, and current habitat fragmentation.
Three-dimensional graphs were generated by scaling species’ threats from 0 (low relative
threat) to 1 (high relative threat) for each taxa group. For climate change, the total amount of
highly suitable habitat predicted for each species based on median mid-century projections
was rescaled into an index ranging from 0 to 1, with values of 1 indicating high potential
habitat loss potential within a taxa group. For human landscape disturbance conditions, we
used the proportion of highly suitable habitat predicted under current climate conditions
within the moderate and severe disturbance classes for each species. For fragmentation
conditions among habitats, we used stream length-weighted average DCI index values
(represented as a 0 to 1 scale) generated using all barriers for each species based on highly
suitable habitat predictions under current climate conditions. We plotted species scores
among the three indices in three-dimensional space according to the Red-Green-Blue (RGB)
color system, with Red color values representing current landscape disturbance, Blue color
values representing fragmentation, and Green color values representing future habitat
suitability. Graphing in this way allowed us to visualize the influence of multiple threats
simultaneously to identify individual species or groups of species with unique threat
combinations. These scores were further mapped using occurrence locations for each
species to identify spatial patterns of threats associated with the distributions of fish and
mussel species.

3. Results
3.1. Contemporary Human Landscape Disturbance

The amount of landscape disturbance associated with highly suitable habitat for fish
and mussels varied by species and spatial extent (Figure S2). In particular, the percentage
of highly suitable habitat with low levels of landscape disturbance either increased (e.g.,
pugnose shiner (Notropis anogenus)) or decreased (e.g., eastern pondmussel (Ligumia nasuta))
for certain species across the statewide, biogeographic, and patch spatial extents (Figure S2).
A similar pattern was evident for habitat with severe landscape disturbance, with species
exhibiting increasing (e.g., pirate perch (Aphredoderus sayanus)) or decreasing (e.g., clubshell
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(Pleurobema clava)) levels across extents. In general, higher levels of human landscape
disturbance occurred in mussel habitats compared to fish habitats at the biogeographic
extent (Figure S2) with 79% and 58% of habitats moderately to severely disturbed on
average for mussels and fishes, respectively (Table S4). Two stream fishes, redside dace
(Clinostomus elongatus) and eastern sand darter (Ammocrypta pellucida), and seven mussel
species had > 90% of highly suitable habitats that are moderately to severely disturbed
at the biogeographic extent, indicating extreme threat from contemporary anthropogenic
landscape alteration for these species (Table S4). Conversely, two stream fishes, finescale
dace (Phoxinus neogaeus) and slimy sculpin (Cottus cognatus) had > 90% of highly suitable
habitat classified as low disturbance while ellipse (Venustaconcha ellipsiformis) and black
sandshell (Ligumia recta) had the highest levels of habitat in the low disturbance class
among mussels at 48% and 44%, respectively.

3.2. Contemporary Stream Habitat Fragmentation

Species-level habitat fragmentation levels and overall taxa-level fragmentation pat-
terns differed by spatial extent (Figure S3). For mussels, percentage of highly suitable
habitat with low to moderate fragmentation was typically greatest at the patch extent,
with levels of severe fragmentation increasing among the biogeographic and statewide
extents. Most fish species had the greatest percentage of low to moderately fragmented
habitat at either statewide or patch extent with the biogeographic extent generally having
the highest levels of severe fragmentation. Highly suitable habitats for mussels were gen-
erally less fragmented than fish habitats among spatial extents, with four mussel species,
deertoe (Truncilla truncata), fawnsfoot (Truncilla donaciformis), pink papershell (Potamilus
ohiensis), and threehorn wartyback (Obliquaria reflexa) having no connectivity loss due to
fragmentation by barriers regardless of spatial extent considered. Stream fishes had high
levels of fragmentation overall, including species that exhibit potamodromous migratory
patterns [57], such as black redhorse (Moxostoma duquesnei), river redhorse (Moxostoma
carinatum), and lake chubsucker (Erimyzon sucetta). At the biogeographic extent, Dendritic
Connectivity Index (DCI) values averaged 26.4 (range 8.1–61.8) for stream fishes and 56.6
for mussels (range 12.9–100.0) when all barriers were considered (Table S4). Analysis of
habitat connectivity by barrier type indicated that large dams were the primary source of
connectivity loss for the majority of fish and mussel species (41 of 46 species with DCI <
100; Figure 3). Small dams were a primary contributor to connectivity losses for the five
remaining species with DCI < 100, while waterfalls played either a minor or no role in
connectivity loss for most species (Table S5).

3.3. Future Habitat Suitability under Climate Change

Projected regional increases in future air temperature and precipitation resulted in
general statewide increases in estimates of stream flow and temperature under climate
change (Table 1). Climate change estimates indicate an overall rise in average July stream
temperatures of 1.6 degrees Celsius by mid-century and 2.1 degrees Celsius by late century,
representing increases of 9% and 12% from current predictions. Median annual discharge
is expected to increase by 36% on average by mid-century and 56% by late century. While
estimates indicate minimal increases in high flow yield with climate change, low flow yield
is expected to double by late century (Table 1).
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for fishes (n = 27) and mussels (n = 23) by barrier type using results from the biogeographic extent.
DCI values range from 0 (complete habitat connectivity loss) to 100 (full habitat connectivity).

Table 1. Mean, standard deviation, and range in statewide stream temperature and flow model
estimates (n = 68,123) for current, mid-century (2046–2065), and late century (2081–2100) time periods.

Time Period
Model (Units) Statistic Current Mid-Century Late Century

July mean stream
temperature (Celsius)

Mean (SD) 17.61 (2.39) 19.16 (2.38) 19.70 (2.38)
Range 8.15–26.39 9.60–27.94 10.17–28.49

Median annual stream
discharge (cms)

Mean (SD) 1.41 (7.47) 1.92 (10.26) 2.20 (11.77)
Range 0–151.62 0–196.51 0–219.27

Stream high flow yield
(cms/km2)

Mean (SD) 0.0851 (0.2442) 0.0920 (0.2636) 0.095 (0.2735)
Range 0.0005–25.2262 0.0005–26.9667 0.0005–27.8942

Stream low flow yield
(cms/km2)

Mean (SD) 0.0015 (0.0021) 0.0024 (0.0034) 0.0030 (0.0043)
Range 0–0.0289 0–0.0447 0–0.0565

The amount of suitable habitat projected under climate change relative to current
predictions varied greatly among species and across statewide, biogeographic, and patch
spatial extents (Figure 4). In general, mussels were projected to experience greater habitat
gains and fishes were projected to experience greater habitat losses across all spatial extents
examined. Fishes with projected increases in suitable habitat by mid-century had an
average net gain of 194% when future habitat suitability model predictions were applied at
a statewide extent. Average habitat gains for fishes dropped to 126% when future habitat
suitability predictions were restricted to the biogeographic extent. When habitat suitability
predictions were further restricted to the patch extent, average net gains in habitat were
less than half the gains predicted for the statewide extent at 96%, but still represented, on
average, nearly a doubling of the amount of suitable habitat currently available. A similar
pattern was observed for mussel species projected to experience increases in suitable habitat
by mid-century. Average net gains were 296% when habitat suitability models were applied
to the statewide extent, dropped to 180% when model predictions were restricted to the
biogeographic extent, and were lowest at 126% when model predictions were restricted to
the patch extent. In contrast, results for species expected to experience habitat losses under
climate change did not differ greatly when habitat suitability predictions were applied
at different spatial extents. Average net habitat losses for fishes were 49%, 52%, and 52%
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and average net habitat losses for mussel species were 10%, 24%, and 23% for statewide,
biogeographic, and patch spatial extents.
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Figure 4. Percent gain/loss in highly suitable habitat relative to current predictions for 13 mid-century
(2046–2065) climate change projections. Results are shown for three geographic extents: statewide,
biogeographic (includes predictions only from basins with historic species occurrences), and patches
(includes predictions only for patches with historic species occurrences nested within a specie’s
biogeographic range), with percentages based on the amount of current suitable habitat for each
respective extent.

Individual species projections at the biogeographic extent indicated that 21 fish species
are projected to have net habitat gains while six species were expected to sustain net
losses based on climate change results for the 2046–2065 (mid-century) and 2081–2100 (late
century) time periods (Table S5). Nine stream fish species had at least one mid-century
climate model projecting a net loss of highly suitable habitat, including cold- and coolwater
species such as slimy sculpin, finescale dace, brassy minnow (Hybognathus hankinsoni), and
river chub (Nocomis micropogon). For mussels, deertoe is projected to have 47% and 14%
of current habitat by mid- and late century. Two additional species, black sandshell and
lilliput (Toxolasma parvum), are projected to retain < 30% of current habitat by late century.
However, projected habitat gains for both species result in comparable overall amounts of
highly suitable between current and future time periods. Most mussel species are projected
to retain a large majority of current habitat as well gain new habitats, resulting in large
potential future habitat increases. Overall, most of the habitat suitability gains and losses
for fish and mussel species occurred by mid-century with minor gains and losses occurring
between the mid- and late century periods (Table S5).
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3.4. Combining Contemporary and Future Threats

Graphing threats based on future climate change, current human landscape distur-
bance, and current stream fragmentation revealed distinct multi-dimensional threat pat-
terns both within and across taxa groups (Figures 5a and 6a). Fish species with similar
overall threats tended to have similar geographic distributions. For instance, stream fishes
with lower human landscape disturbance and fragmentation threats, but with high climate
change threat were distributed across the northern half of the state (Figure 5b). Conversely
stream fishes with high human landscape disturbance and fragmentation threats, but
with low climate change threat were primarily distributed in the extreme southern and
southeastern portions of the state. Mussels tended to have lower fragmentation threat than
fishes, yet higher threats from human landscape disturbance with most mussel species
having low to moderate threats from climate change. In contrast to stream fish occurrences,
mussel species with higher threat from climate change were distributed throughout the
state (Figure 6b).
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color system. Note, the study region is displayed in black in (b).
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4. Discussion

Contemporary anthropogenic disturbances are a key driver of species imperilment
and loss for many freshwater organisms, and coupled with climate change, they create
an uncertain future for many species. This work provides a novel assessment addressing
the influences of spatial extent on assessment of contemporary and future threats for two
fluvial taxa with differing habitat and life history requirements. We identified three major
findings in this study. First, we found that the potential influence of an individual threat
varied between mussels and fishes and among species within taxa. Second, the dominant
threat type often varied by taxa and species such that unique threat patterns emerged
when multiple stressors were considered simultaneously. Finally, we found that our threat
assessment results were sensitive to the spatial extent across which they were applied.

4.1. Incorporating Multiple Taxa in Threat Assessments vs. Use of a Surrogate Taxon

This study illustrates the importance of considering multiple taxa and species in threat
assessments and is consistent with a growing number of observations that assessments
based on a focal or surrogate taxon may not be representative of threats faced by other
taxa [20,21,58–61]. For instance, predicted fish habitats were generally more fragmented by
barriers than predicted mussel habitats, however a greater percentage of mussel habitats
were categorized as moderately to highly disturbed from human landscape alteration
than fish habitats when accounting for spatial extent. Further, species within a taxon often
exhibited varying degrees of threat such that threat assessments based on one or a handful of
species would not likely be representative of a taxon as a whole. These results indicate that
multi-taxa assessments will be instrumental in developing holistic conservation strategies
for imperiled fluvial species. Evaluation of species-specific threats across taxa leads to more
accurate threat assessment and spatial identification of appropriate management actions
and species-level conservation targets. This includes identifying spatial overlap in habitats
where conservation efforts could benefit multiple imperiled species and taxa.
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4.2. Assessing Multiple Contemporary and Future Threats

Consideration of multiple threat types has been increasingly identified as an important
component in the conservation of fluvial organisms and their habitats [62–65]. In the current
study, evaluating one threat type in the absence of evaluating other threats would have
yielded an incomplete picture of the threats imperiled species are facing within the study
region. For instance, contemporary conditions including human landscape disturbance and
habitat fragmentation suggest that finescale dace, brassy minnow, and slimy sculpin have
least-disturbed and relatively unfragmented stream habitats compared to other imperiled
stream fishes, however climate change projections indicate that they are the most vulnerable
stream fishes to future habitat losses. Conversely, other species such as redside dace, silver
shiner (Notropis photogenis), and brindled madtom (Noturus miurus) are anticipated to have
large gains in habitats according to climate change projections, yet these species have
the highest levels of human landscape disturbance among habitats with projected future
habitats being similarly degraded. These examples show that by including multiple threats,
both dominant threats and unique combinations of threats, which often vary by taxa and
species, can be identified. By combining multiple threats in the current study, interpretation
of climate change projections could be achieved in the context of stream fragmentation and
landscape disturbance. This can lead to the prioritization of habitats with low to moderate
landscape disturbances that are retained in the future.

4.3. Influence of Spatial Extent on Threat Assessments for Imperiled Fluvial Species

We found a high degree of variability in threats to imperiled fluvial species with
results from this study indicating that levels of contemporary landscape disturbance and
fragmentation along with future climate change projections can vary drastically depending
upon the extent the results are analyzed. This resulted from applying habitat suitability
models to different spatial extents but can also result when grain size is varied [66,67]. Con-
servation area selection can be strongly influenced by the spatial extent of the analysis [67].
While this is unsurprising, it underscores that choice of analysis spatial extent requires
careful consideration. We stress that results from no single individual extent represented in
the current study (statewide, biogeographic, or patch) should be considered “correct,” but
instead the choice of appropriate extent(s) to assess threats to imperiled species must be
determined based on intended uses and perceived completeness of species occurrence and
range information [68]. For instance, the statewide model results may not accurately depict
the magnitude of threats a species faces within its current range, and this has the potential
to over predict habitat gains with climate change. However, statewide results would be
useful if the known range for a particular species is expected to be larger than what is
currently identified due to limited field survey data and can assist in targeted surveys or
assisted migration (i.e., translocation; [69,70]). Biogeographic results encompassing habitat
changes for river basins with known species occurrences could provide a realistic starting
point when evaluating threats among many individual species, however it assumes that a
species can disperse throughout its range and potentially gain access to new habitats under
climate change. This extent may be useful for identifying barrier mitigation opportunities
and quantifying the amount and condition of new habitat that may become available as
a result of barrier mitigation. Lastly, for species with well-documented distributions and
known sensitivities to habitat connectivity loss, the patch extent can provide information
for individual populations and can guide decisions regarding population-level habitat
restoration. Applying habitat suitability models at the patch extent may provide the most
accurate threat assessment where a species is likely to occur, but assumes that a species is
not able to move among patches.

Climate change projections in this study suggest large shifts in habitat suitability
for many species by mid-century with most warmwater fishes gaining habitats while
cool- and coldwater species [48] are expected to suffer habitat losses. Similar trends have
been predicted in other climate change assessments [71] as well as studies documenting
historic range shifts due to changing climates in northern regions over recent millennia [29].
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Although climate change projections indicate habitat gains for many warmwater stream
fishes, these gains are subject to connectivity constraints imposed by biogeography (i.e.,
patterns of post-glacial species colonization) and/or anthropogenic and natural barriers to
fish movement. Many studies have examined the potential influence of climate on stream
fish assemblages; however, most have implicitly assumed that fish dispersal within river
networks will be unrestricted. By accounting for the effects of barriers on connectivity
between current and future habitats (i.e., patch spatial extent in the current study), a
more realistic outcome of the effects of climate change can be evaluated, particularly for
species expected to gain habitats in the future. This suggests the conservation of diverse
habitats [72] and promoting connectivity to increase patch sizes and habitat availability
will be crucial to enhancing ecological resilience [73] in order to offset habitat losses due to
climate change.

5. Conclusions

Freshwater taxa are facing a myriad of contemporary and future threats. Assessments
that include multiple species and taxa will provide the most robust picture of threats
imperiled fluvial species are facing. Further, assessment of multiple threats holistically as
opposed to independently can lead to threat evaluations that can differ substantially from
those generated when only one threat is considered. Spatial extent can greatly affect threat
assessment and thus necessitates careful determination of the spatial extent(s) at which
threats will be evaluated in conservation planning. Multiple threats, and the spatial extent
at which they are assessed, will need to be considered simultaneously when developing
conservation plans for imperiled fluvial aquatic species.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14213464/s1, Figure S1: Breakpoints along the human land-
scape disturbance index for imperiled stream fish catch per unit effort identified with piecewise
regression. Vertical dashed lines indicate cutoffs defined for low, moderate, and severe disturbance
classes. Horizontal solid lines represent the 95% confidence intervals for each breakpoint; Figure
S2: Percentage of predicted stream length within the low (blue), moderate (orange), and high (red)
human landscape disturbance classes for statewide, biogeographic, and patch spatial extents; Figure
S3: Percentage of predicted stream length within the low (black), moderate (dark gray), and high
(light gray) fragmentation classes for statewide, biogeographic, and patch spatial extents; Table
S1: Stream predictor variables used in development of habitat suitability models [44,74–78]; Table
S2: Climate change models under the A1B scenario incorporated into stream flow and stream tem-
perature models; Table S3: Fish and mussel common names, scientific names, thermal guild, and
number of fluvial occurrences used in habitat suitability models. *Thermal guilds derived from
predicted July mean stream temperatures. All other thermal guilds are based on Lyons et al. 2009
(see Methods).; Table S4: Predicted amount of highly suitable habitat within the biogeographic extent
under climate change using median MaxEnt model climate change projections for the mid-century
(2046–2065) and late century (2081–2100) time periods. See Methods for definitions of habitat held,
loss, and gain. All percentages are relative to the current amount of highly suitable habitat with
net results accounting for predicted habitat gains and losses; Table S5: Summary of contemporary
disturbances to highly suitable stream habitats within the biogeographic extent. Anthropogenic
landscape disturbance values represent the percentage of habitat length within the low, moderate,
high landscape disturbance categories. Dendritic Connectivity Index (DCI) values were calculated as
a stream reach length-weighted average. DCI values range from 0 to 100 with value of 100 indicating
full connectivity among habitats.
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