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Abstract: In situ remediation is usually restricted by temperature, lack of substrate for reductive
dechlorination (anaerobic respiration), the presence of dehalogenating microorganisms, and specific
bedrock conditions. In this work, trichloroethene (TCE) degradation was studied by a number of
methods, from physical–chemical analyses to molecular biological tools. The abundance changes
in dechlorinating bacteria were monitored using real-time PCR. The functional genes vcrA and
bvcA as well as the 16S rRNA specific for representatives of genera Dehalococcoides, Dehalobacter,
and Desulfitobacterium were monitored. Furthermore, the sulfate-reducing bacteria and denitrifying
bacteria were observed by amplifying the functional genes apsA and nirK. The elevated temperature
and the substrate (whey) addition significantly affected TCE dechlorination. The chlorine index
decreased after nine weeks from 2.5 to 0.1 at 22 ◦C, to 1.1 at 17 ◦C and 1.7 at 12 ◦C and complete
dechlorination was achieved at 22 ◦C with whey addition. The achieved results of this work show the
feasibility and effectiveness of biological dechlorination of TCE enhanced with elevated temperature
and whey addition.

Keywords: dechlorination; thermal treatment; chlorinated ethenes; TCE; Dehalococcoides

1. Introduction

The ubiquitous industrial use of chlorinated solvents caused extensive groundwater
contamination. One of the most widespread contaminants is TCE, which is suspected of
being a human carcinogen [1]. The traditionally used remediation of contaminated areas
was the pump and treat method, but because of its low efficiency and high cost, it has been
replaced by in situ technologies based on chemical or biological dehalogenation. Reductive
dechlorination is a very effective and promising technology. Its principle is based on a
reaction where the chlorinated solvent serves as an electron acceptor and the chlorine atom
in its molecule is substituted by the hydrogen atom [2]. Among others, such a process can
be performed by various species of bacteria in biological reductive dichlorination, also
known as halorespiration [3]. The basic conditions of halorespiration are an anaerobic
environment and the presence of an electron donor, hydrogen, which comes from the
fermentation of many types of organic substances, natural or purposefully applied to the
rock environment [4–6]. The dechlorination rate is affected by geochemical and biological
processes and hydrogen availability [7,8]. Biological reductive dechlorination converts
stepwise tetrachloroethene to trichloroethene, cis-dichloroethene (cis-DCE), then to vinyl
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chloride (VC), and to ethene [9]. Dechlorination under inappropriate conditions or its low
rate can lead to the accumulation of toxic VC or cis-1,2-DCE [10]. Due to the much higher
toxicity of emerging intermediates, VC is classified as a proven human carcinogen [11],
completion of halorespiration up to the final ethene is a very important step.

The rate of biological reductive dechlorination depends on many factors that affect
each other such as availability and character of fermenting substrate, temperature, presence
of nutrients, the population density of dechlorinating microorganisms, redox potential,
or presence of substances used by microorganisms in catabolic processes (e.g., oxygen,
nitrates, iron, manganese) [12].

Whereas temperature increase has a positive effect on microbial growth, thermally
enhanced biodegradation may accelerate in situ remediation. The influence of temperature
on reductive dechlorination was studied under laboratory conditions. These tests showed
that the growth of dechlorinating bacteria and connecting dechlorination activity highly
depended on temperature [13–15]. Atlas and Bartha (1987) [16] stated that temperature is
an important parameter influencing biological reductive dechlorination.

Site remediation technology using reductive dechlorination is a commercially applied
technology solving groundwater contamination with chlorinated solvents. Compared to
physical–chemical methods, it is a relatively slow method, especially since its start-up often
requires a longer time period [15]. For this reason, current research focuses on increasing
the efficiency of in situ anaerobic bioremediation by optimizing the temperature conditions
with the intention to maximize the rate of biodegradation [13,14]. The higher efficiency of
the remediation method will be reflected in the shortening of the time required to reach the
target remediation limits and thus in lower remediation costs.

Preliminary screening tests with a wide temperature range of 10–40 ◦C with indi-
vidual temperatures tested in 10 ◦C increments showed temperatures of 20 and 30 ◦C as
most effective for TCE dichlorination [17]. Due to the economy of the process, a lower
temperature was finally chosen. Thus, in this study, we have focused on biological re-
mediation of groundwater contaminated with trichloroethene at temperatures 12 ◦C (as
the average temperature of groundwater), 17 ◦C and 22 ◦C (as effective and economically
feasible temperature for total dechlorination) using whey as a substrate—energy, carbon,
and H+ + e− sources—for naturally occurring microorganisms, their metabolism providing
reductive dechlorination. The dechlorination process was monitored from the chemical as
well as biological point of view. TCE content and related products of its degradation were
monitored for nine weeks period together with the relative abundance of total biomass
and genes specific for enzymes involved in dechlorination, namely vcrA, and bvcA. Fi-
nally, the changes in abundance of three microbial genera contributing to dechlorination
(Dehalococcoides, Dehalobacter, and Desulfitobacterium) were monitored using qPCR.

2. Materials and Methods
2.1. Material Characterization

Groundwater and soil samples were taken at a manufacturing site in Northern Bo-
hemia contaminated by chlorinated volatile organic compounds (cVOCs) originating from
historical degreasing activities. An amount of 20 L of groundwater was collected from
the injection well AP-2 and 10 kg of soil from the same well was taken during its drilling.
The natural groundwater temperature was 12 ◦C. Immediately after collection, soil and
groundwater samples were placed in a refrigerator and during transport, the temperature
was maintained between 2–8 ◦C. Due to the low concentration of cVOCs, it was spiked
with TCE (dissolved in methanol) to a TCE concentration of 19.5 mg/L and 145 mg/L TOC
(total organic carbon). The results of groundwater analyses after TCE addition used for the
laboratory test are in Table 1.
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Table 1. Concentrations of all parameters of groundwater used for lab tests.

Parameter Unit Concentration at Time 0

1,1-dichloroethene µg/L <20
cis-1,2-dichloroethene µg/L 7430

trans-1,2-dichloroethene µg/L <20
Trichloroethene µg/L 19,450

Tetrachloroethene µg/L <20
Vinyl chloride µg/L 1310

Σ cVOCs µg/L 28,190
Acetylene µg/L <1.0

Ethane µg/L 10.1
Ethene µg/L 119.6

Methane µg/L 234.5
TOC mg/L 145

Chlorides mg/L 98.6
pH - 6.48

ORP mV 75.0
Fe2+ mg/L 7.89
Fe3+ mg/L 0

Groundwater contained more than 28 mg/L cVOCs with the highest content of TCE
following cis-1,2-DCE (Table 1). Groundwater also contained small amounts of toxic vinyl
chloride. Furthermore, the water had a relatively high concentration of total organic
carbon which increased in the groundwater tested by the addition of methanol, added as
a TCE dissolver. The pH value was neutral. Ethene and methane were also detected in
groundwater in the lower hundreds of µg/L and about 10 µg/L of ethane.

2.2. Monitoring

Only groundwater samples were analyzed during the testing. Soil addition was added
due to rock environment simulation on site.

The groundwater samples were analyzed for the wide spectrum of parameters: chlo-
rinated ethenes (VC, 1,1-DCE, cis- a trans-1,2-DCE, TCE, PCE), ethene, ethane, methane,
TOC, pH, redox potential (ORP), temperature, iron, chloride, and relative abundance of
bacteria and functional genes using q PCR.

Chlorinated ethenes were evaluated using a gas chromatography–mass spectrome-
ter (GC-MS 6890/5975, Agilent Technologies, Santa Clara, CA, USA) according to ISO
10301:2013. TOC was analyzed according to ISO 1484:1997 using a Liqui TOC II analyzer
(Elementar, Langenselbold, Germany). Gases were determined using gas chromatography
according to EPA Method RSK-175. The ORP, pH, and temperature were measured with
Multi 350i Multimeter (WTW, Weilheim, Germany). The dissolved iron concentration was
analyzed using the Spectro Blue inductively coupled plasma atomic emission spectrome-
ter (ICP-AES; SPECTRO, Kleve, Germany) according to ISO 11885:2007. Before analysis
groundwater samples were filtered through a 0.45 µm membrane filter. Chlorides were
analyzed by titration according to ISO 9297:1989.

Due to the highly volatile chlorinated hydrocarbons, the concentrations of cVOCs
and gases were converted to the so-called chlorine number (sometimes referred to as the
chloride index; Equation (1)), used to describe the stage of degradation of parent (1) contam-
inants (TCE and PCE) to degradation products (VC and ethene) according to Bewley et al.
(2015) [18]:

chlorine number =
4[PCE] + 3[TCE] + 2[DCE] + 1[VC] + [ethene]

([PCE] + [TCE] + [cis−DCE] + [VC] + [ethene])

where [contaminant] represents the molar concentration (mmol/L) of the individual con-
taminants.
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The molecular methods were the same as described Němeček et al. (2020) [19], see
Table 2. qPCR and the detection of the following functional microbial groups were observed:
(i) sulfate-reducing bacteria—functional gene apsA; (ii) denitrifying bacteria—functional
gene nirK; dechlorinating bacteria—16S rRNA gene specific for Dehalococcoides spp., De-
halobacter spp., Desulfitobacterium spp.; (iii) functional genes responsible for vinyl chloride
reductive dehalogenation (genes bvcA and vcrA) and (iv) total bacterial biomass expressed
by 16S rRNA gene.

Table 2. Primers used for q-PCR.

Primer Primer Sequences 5′-3′ Gene References

Dre441F GTTAGGGAAGAACGGCATCTGT Dehalobacter spp.;
gene 16S rRNA [20]Dre645R CCTCTCCTGTCCTCAAGCCATA

DHC793f GGGAGTATCGACCCTCTCTG Dehalococcoides spp.;
gene 16S rRNA [21]DHC946r CGTTYCCCTTTCRGTTCACT

Dsb406F GTACGACGAAGGCCTTCGGGT Desulfitobacterium spp.;
gene 16S rRNA [20]Dsb619R CCCAGGGTTGAGCCCTAGGT

bvcA277F TGGGGACCTGTACCTGAAAA functional gene of VC reduction,
Dehalococcoides spp. strain BAV-1 [22]bvcA523R CAAGACGCATTGTGGACATC

vcrA880F CCCTCCAGATGCTCCCTTTA functional gene of VC reduction,
Dehalococcoides spp. strain VS [22]vcrA1018R ATCCCCTCTCCCGTGTAACC

RH1-aps-F CGCGAAGACCTKATCTTCGAC sulfate-reducing bacteria—functional
gene apsA [23]RH2-aps-R ATCATGATCTGCCAGCGGCCGGA

nirK876 ATYGGCGGVCAYGGCGA denitrifying bacteria—functional
gene nirK [24]nirK1040 GCCTCGATCAGRTTRTGGTT

16SqPCR-F TCCTACGGGAGGCAGCAGT gene for 16S rRNA [25]16SqPCR-R GGACTACCAGGGTATCTAATCCTGTT

Total DNA was extracted from groundwater samples. Reactions for qPCR were per-
formed using thermocycler LightCycler® 480 (Roche, Basel, Switzerland). The changes
in abundance of representatives of genera Dehalococcoides, Dehalobacter, and Desulfitobac-
terium were monitored by amplification of 16S rRNA. The genes responsible for reductive
dehalogenation (bvcA and vcrA) were monitored, and primers are given in Table 2.

The results were evaluated by the method of so-called relative quantification, which
expresses changes in the amount in relation to a certain starting point—in our case, the
input value of the experiment. Therefore, this method allows us to monitor quantitative
changes (increases and decreases) in the abundance of individual markers over time.

2.3. Lab Test Set-Up

The batch tests were performed under anaerobic conditions at three different tem-
peratures (12, 17, and 22 ◦C); see Table 3. The three different temperatures were chosen
with regard to the natural conditions and to the low cost of its heating on site. Temper-
ature 12 ◦C simulated the average in situ temperature of groundwater used for lab test.
Temperatures 17 ◦C and 22 ◦C represented groundwater heating by 5 ◦C, resp. 10 ◦C. The
dried whey used as an organic substrate was added at a concentration of 1 g/L (100 g of
the product containing: 76 g carbohydrates, 13 g proteins, 0.5 g lipids, and 2.8 g NaCl;
producer Mogador). The suspension of groundwater and soil in a ratio of 2:1 was tested in
two parallel treatments including a blank without substrate addition. All variants were
incubated in 250 mL reagent bottles with polypropylene caps in the darkness, unshaken, at
an appropriate temperature for nine weeks. All bottles were filled with 100 g of soil (related
to the dry matter) and 200 mL of groundwater. Once a week all bottles were hand mixed
by circular motion. All analyses were performed only in groundwater at 2, 4, and 9 weeks
of the test. The following table describes individual variants of the test.
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Table 3. Laboratory test set-up.

Designation of
Test Variant Temperature Groundwater Soil

(Dry Matter) Whey Addition

12/W 12 ◦C 200 mL 100 g 1 g/L
17/W 17 ◦C 200 mL 100 g 1 g/L
22/W 22 ◦C 200 mL 100 g 1 g/L

12 12 ◦C 200 mL 100 g -
17 17 ◦C 200 mL 100 g -
22 22 ◦C 200 mL 100 g -

3. Results and Discussion
3.1. Chemical Analyses

Figure 1 describes the results of chemical analyses of all chlorinated hydrocarbons
(TCE-DCE-VC) and the end products of biological dechlorination (ethane and ethene) in
temperature variants with (Figure 1a) and without (Figure 1b) whey for nine weeks. Total
dechlorination was observed only in the variant with whey addition at 22 ◦C after nine
weeks. The temperature had a positive effect on dechlorination in this case. On the other
hand, tests without whey addition showed the opposite effect of temperature, and the
fastest and most effective dechlorination occurred at 12 ◦C. The explanation may be the
stability and survival of the natural microbiome (as shown in Figures 6 and 7) in samples
without whey addition adapted at an average of 12 ◦C detected in the contaminated
underground.
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Figure 1. The concentration of chlorinated ethenes (cVOCs) in the groundwater at different tempera-
tures of 12 ◦C, 17 ◦C, and 22 ◦C during the lab-scale test with (a,b) without whey addition.

Previously reported screening tests with the same culture concluded that temperatures
of 20 and 30 ◦C were the most effective for TCE dechlorination [17]. Further reported
studies have shown the effect of temperature of partial dechlorination in mixed microbial
communities and complete in pure cultures. In these studies, the optimal temperature
varies from 22 ◦C to 65 ◦C. The highest temperature of 65 ◦C was reported for thermophilic
anaerobic enrichment culture [26]. Reductive dechlorination start-up often requires a longer
time period [15]. For this reason, current research focuses on increasing the efficiency of in
situ anaerobic bioremediation by optimizing the temperature conditions with the intention
of maximizing the rate of biodegradation [13,14]. The specific response of the microbiome
on location to temperature must be investigated; however, most commonly reported
temperatures are 20–30 ◦C with deterioration of the process above 35–40 ◦C [27–32]; thus,
thermally enhanced anaerobic dechlorination could be costly, but effective [30]. The highest
efficiency of the remediation method will be reflected in the shortening of the time required
to reach the target remediation limits through improved biological parameters, e.g., cell
growth and (bio)reaction rates [33–35] and physical–chemical, e.g., pollutant desorption,
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their volatilization and (bio)availability [36] and releasing of direct electron donors [35] and
thus in lower remediation costs. However, costs could be reduced by replacing conventional
heating with some modern and sustainable approach, e.g., geothermal heat pumps and
solar heating [37] or synergistic coupling dechlorination remediation with underground
thermal energy storage [36,38]. However, in this case, the clogging of the pores caused by
Fe3+ precipitation could also be accompanied by the clogging caused by biomass when
additives supporting the decontamination process are added [38].

Most of the partially dechlorinated products (VC and cis-1,2-DCE) were at 12 ◦C
(Figure 2). Although the difference from the temperature of 20 ◦C was not fundamental, the
highest temperature used was most suitable for both total dechlorination and prevention
of accumulation of partial dechlorinated metabolites. Nonoptimal temperature conditions
can lead not only to the deterioration of the dechlorination process and the accumulation of
partially dechlorinated products. At suboptimal temperatures (10 and 20 ◦C), dechlorina-
tion of trichloroethene led preferentially to a non-complete process and to the accumulation
of VC and cis-1,2-DCE [39]. Less effective dechlorination (releasing of less chlorinated
by-products) at this temperature was published by other authors [28–30]. Optimal tem-
perature maximizes the rate and shortens the lag phase of dechlorination [29]. Above
optimal temperatures finally quickly resulted in a complete loss of degradation activity,
but Friis et al. found that not such extreme temperature can also lead to accumulation of
cis-1,2-DCE from TCE with further partial VC and ethene production at a temperature of
40 ◦C [39]. Fletcher et al. (2011) stated a similar less effective dechlorination at temperatures
of 35 and 40 ◦C [27]. Thus, a wider spectrum of parameters, e.g., the rate and success of
dechlorination, should be monitored and considered to determine the optimal temperature.

Figure 2. Individual concentrations of VC, cis-1,2,-DCE, TCE, and dechlorinated products (ethane
and ethene) in the groundwater at different lab test temperatures of (a) 12 ◦C, (b) 17 ◦C, and (c) 22 ◦C
during the lab-scale test with whey addition.

If we compare different temperatures in the variants with the whey addition, it is
obvious that with higher temperatures the faster not only the decrease in TCE but also the
increase in intermediates (cis-1,2-DCE, VC) and end products was observed (Figure 2). The
concentration of end products ethane and ethene was stable in the variants without whey
addition and the concentrations of both slightly increased at temperatures of variants of
17 and 22 ◦C with whey addition (Figure 3a,b). Their concentrations, especially the lack
of larger accumulation, indicate that both were utilized by the present microbial culture
regardless of the addition of whey.
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in groundwater at different lab test temperatures of 12 ◦C, 17 ◦C, and 22 ◦C during the lab-scale test
with and without whey addition.

The production of methane was significant only in variants with the addition of
whey at temperatures of 17 ◦C and 22 ◦C (Figure 3c). Although some methanogenic
microorganisms can grow and digest at temperatures below 10 ◦C, the methanogens in
general are typical thermophilic or mesophilic [40]. Hence, the production of methane only
in the variants exposed to elevated temperatures well agrees with the reported optimum
temperatures for this group of microorganisms. Specifically, the strongest production of
methane was observed after four weeks (17,500 ± 3252 µg/L) at 22 ◦C while at 17 ◦C after
nine weeks (24,800 ± 10,465 µg/L). Furthermore, the same temporary increase in methane
concentration (by one order of magnitude; from 280 ± 260 to 1755 ± 2128 µg/L) induced
by temperatures of 22 ◦C was also observed without whey addition. This delay in methane
production (usually 2–3 weeks for this type of remediation [41]) is typical because methane
(and reductive dechlorination as well) must precede (syntrophic) fermentation of carbon
substrates to produce short fatty acids and H2 [42]. Friis et al. (2007) published that at
higher temperatures of 30–40 ◦C, methanogenesis became absolutely predominant above
reductive dechlorination when dechlorinating bacteria not very successfully competed
for limited sources, e.g., carbon substrates and/or reducing equivalents (no substrate
added) [39,43].

In this study, whey was applied as an accelerating carbon and energy source. In many
cases, pure chemicals are used. The most typical in research studies is lactate, which is a
by-product of the fermentation process and can also serve as an effective electron donor
and organic carbon source [7,14,44–46]. However, many other sources were successfully
tested, e.g., emulsified vegetable oils [47,48], glucose [47,49], acetate [50], formate, and fu-
marate [51]. Additionally improved, multi-purpose (containing also sources of surfactants
and vitamins and/or pH control agents) and slow-releasing sources were tested [52,53].
Whey [17,54] and molasses [55] as by-products of the food industry can be an effective way
to intensify by sources of electron donors and organic carbon. Because those substances are
by-products, the price of the product is limited to transport. The above-mentioned studies
demonstrate that those by-products can be effective bioremediation substrates at a cost that
is orders of magnitude lower than that of other frequently used alternatives.

Another argument for considering intensification of dechlorination via an electron
donor and organic carbon source is the long-term study of in situ bioremediation by
Schaefer et al. (2018) even matched a long-term impact of lactate addition when despite the
absence of lactate (after complete utilization), the biogeochemical conditions established by
lactate addition remained favorable for reductive dechlorination [56].

The pH value was in the neutral pH range of 6.5–7.1 throughout the test in all temper-
ature variants without whey. Regarding the variants with the addition of whey, after its
dissolution, it was acidified to values approaching 5.5 due to dissolved whey proteins [57],
the release of amino acids through enzymatic hydrolysis, and finally, their fermentation



Water 2022, 14, 3456 8 of 17

produces short fatty acids [42]. It rose again to the neutral range due to the depletion (uti-
lization) of the organic substrate at the end of the test at 17 and 22 ◦C, which corresponds
to TOC concentrations (see Figure 4a). The lowest cell activity (fermentation—Figure 5a
TOC, methanogenic—Figure 3c and dehalogenation—Figure 5a) at 12 ◦C led to final pH of
6.05 ± 0.30. However, the range for dechlorinating bacteria is between pH 5.5–8.0 [58–60]
and all variants were in this range throughout the test. Therefore, the process was not
affected by using whey, which can decrease pH in the above-mentioned ways, and it is not
necessary to use a pH control or some additive neutralizing agent [48,61].
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TOC increased from 220 to 450 mg/L due to the addition of whey. During the experi-
ment, TOC significantly dropped in the case of variants with whey addition, especially at
22 ◦C and 17 ◦C. Even in the case of variants without the whey addition, there was a slight
decrease in TOC at 22 and 17 ◦C (see Figure 4a). At both effective temperatures, 22 ◦C and
17 ◦C, the final TOC dropped after nine weeks below the initial natural value of 186 ± 49;
therefore, there is no risk of the same accumulation of whey components and contamina-
tion of groundwater. The last monitored parameter was the iron content, respectively, its
divalent and trivalent forms (Figure 4d). Due to the addition of whey, there was an increase
in the reduced form of iron (due to the action of the iron-respiring bacteria [62]) after
only two weeks, and its content increased until week four in the following temperature
range 17 > 22 > 12 ◦C. At week 9, the trivalent form rapidly decreased and increased at
two higher temperatures. At 12 ◦C a lower increase in Fe2+ was recorded. For variants
without the addition of whey, a slight increase in the reduced form was observed at the
ninth week. The fundamental increase in the reduced form of iron indicated high activity
of iron-respiring bacteria together with methane production (Figure 3c) indicating that the
high activity of methanogens can explain some deceleration of reductive dechlorination
(Figure 5a, chlorine number) at temperatures of 17 and 22 ◦C in whey added tests due to
competition. Furthermore, analyses of specific bacteria and functional genes also proved
the presence and high activity of nitrate- and sulfate-reducing bacteria at temperatures of
17 and 22 ◦C for whey addition tests. Dechlorinating bacteria are forced to compete in such
a complex environment with other microorganisms for energy and carbon sources and
especially for electron donors, e.g., H2 [62,63]. The mere availability of an additive carbon
source and the simple availability of appropriate final electron acceptors, e.g., sulfates,
nitrates, oxidized iron (Fe3+), and CO2, can lead to a fundamental suppression of reductive
dechlorination [62].

Furthermore, the concentration of chlorides, which are formed during biological reduc-
tive dechlorination, was monitored (Figure 5b). The difference between the variants of the
tests with and without whey of 6.1 mg/L was caused by the natural presence of chlorides
in whey. Chloride accumulation was associated with slow dechlorination kinetics for test
variants without whey (Figure 5a,b). For test variants with whey addition, the chloride ac-
cumulation in the first two weeks corresponded to the kinetics of dechlorination; the higher
temperature, the faster the dechlorination, and the less chloride accumulation. The lack of
accumulated chlorides at higher temperatures with whey addition tests can be linked to a
fundamental growth of microorganisms in the spectrum of species (Figures 6 and 7) that
utilized chlorides as a mineral nutrient.

According to chlorinated ethenes analyses, complete biological reductive dechlorina-
tion occurred in the variant with the addition of whey with incubation at 22 ◦C for nine
weeks, which corresponds to the results of Najmanová et al. (2016) [17], in which complete
dechlorination occurred in the whey variants at a temperature of 20, respectively, 30 ◦C.
Although the chlorine number was not zero, no chlorinated ethenes were detected in the
test variant mentioned above. The value 0.37 (Figure 5a) is based on a specific calculation of
the chlorine number, which may not completely coincide with the presence of chlorinated
ethenes. Previous studies have described that complete dechlorination usually occurred at
temperatures of 15–30 ◦C [14,30,43,54].
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Biological reductive dechlorination requires low ORP values. The largest decrease
occurred after two weeks in the 17 ◦C and 22 ◦C variants caused by hydrogen produc-
tion [64] and was associated with a rapid and significant increase in total bacterial biomass
(16S rRNA), genera Dehalobacter and Desulfitobacterium (Figure 6a,c,d) and nitrate- and
sulfate-reducing bacteria (Figure 7a,b). Whey-supported reduction of final electron ac-
ceptors either original, e.g., nitrates, sulfates, and Fe3+, or produced by fermentation (H2)
caused a decrease in ORP after two weeks on the order of 22 > 17 > 12 ◦C, in the case
of 22 ◦C the drop was permanent, while an increase was detected for temperatures of
17 and 12 ◦C at the end of the tests. Both the pH and ORP time profiles for tests with
and without additional substrate are in agreement with a pilot-scale study on chlorinated
ethene-polluted groundwater cleanup [52]. In addition, it indicates that the conclusions of
our study are applicable to the scale-up of bioremediation technology.

3.2. Molecular Biological Analyses

The molecular analysis results are shown in Figures 6 and 7. The overall recovery
of bacterial biomass (16S rRNA) increased in all variants, with and without whey, but in
the variants with whey, a much greater increase two weeks after the addition of whey
was observed. In addition, an increased level of bacterial abundance lasted longer in the
whey variants. The greatest increase in bacterial biomass (compared to the initial point)
was observed at 12 and 17 ◦C. For genera Dehalobacter and Desulfitobacterium, optimal
temperatures of 17 and 22 ◦C have been proven to be optimal. At 12 ◦C and in the whey-
free variants 12 and 17 ◦C, the amount of the genus Dehalobacter increased only slightly in
the first half of the experiment and decreased in the later sampling points. In the case of
bacteria of the genus Desulfitobacterium, we observed that the bacteria belonging to this
genus disappeared in the variants without whey. The members of the genus Dehalococcoides
prospered best at 17 and 22 ◦C, again with the addition of whey and at 22 ◦C without whey
addition. However, in this case, the increase was observed only after nine weeks. The
growth of Dehalococcoides corresponded to levels of both functional genes, vcrA and bvcA,
which both followed an identical trend. This finding is consistent with previously published
data [28]. However, the abundance of bvcA and vcrA genes and Dehalococcoides must not
necessarily always correspond to the degradation efficiency. Marcet et al. (2018) published
that the increase in dechlorination efficiency was proportional to the occurrence of bvcA
and vcrA genes as well as representatives of genera Dehalococcoides during the temperature
shift from 15 to 25 ◦C, but the decrease in dechlorination efficiency was not directly linked
with the decrease in both bvcA a vcrA genes as well as of genus Dehalococcoides [28].

As expected, the relative quantity of Dehalococcoides and vcrA and bvcA genes followed
the same trend because the dechlorination ability of members of genus Dehalococcoides is
ensured by chloroethene reductive dehalogenase genes: tceA (transforming TCE to DCE),
vcrA and/or bvcA (transforming cis-1,2-DCE to VC and ethene) [47]. Our results confirmed,
despite competitive suppression of the abundance of Dehalococcoides in the first four weeks
(Figure 6b), its essential role in (late phase) dechlorination. Advanced statistics showed
that the bacterial dynamic was affected by TCE degradation steps [55].

Members of the genus Dehalococcoides are referred to as probably the most widely used
pure or predominant member mixture species for the dechlorination process [27,30,46,65] and
are found as an important part of natural microbiomes in contaminated sites [10,50,64,66,67].
However, in this study, the genera Dehalobacter and Desulfitobacterium were detected as
more abundant and stable microorganisms involved in reductive dechlorination. Both
genera Dehalobacter [31,46,65,68] and Desulfitobacterium [62,69,70] are referred to as common
dechlorinating bacteria in an environment polluted with chlorinated ethenes.

The number of sulfate-reducing bacteria increased after whey addition in all tested
temperature variants and only in the variants of 22 ◦C without whey (Figure 7). Without
whey, in contrast, their level decreased at 12 and 17 ◦C. The same trend was observed for
nitrate-reducing bacteria, with the difference that these bacteria grew relatively well even
in variants without whey.
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The results of molecular biological analyses showed that the largest increase in all
markers studied occurred in variants with whey addition incubated at 17 and 22 ◦C and
also in the variant at 22 ◦C without whey addition. The temperature of 12 ◦C (simulation
of natural site groundwater temperature) is too low for optimal growth of dechlorinating
bacteria, although the total bacterial biomass (expressed by 16S rRNA) is growing very well.
The addition of whey to support biological reductive dechlorination proved to be beneficial
and necessary; in variants without whey, there was no increase in microbial biomass except
at a temperature of 22 ◦C.

The results of the molecular biological analyses corresponded well with the findings
of the chemical analyses. A decline of cVOCs in different variants of the experiment,
as well as the amount of ethane and ethene produced correlated with the increase in
dechlorinating bacteria (see Figure 8). Especially in the fourth week when the chlorine
number dropped, Dehalobacter started to grow below 17 and 22 ◦C temperatures in variants
with whey addition. The same progress was observed for Dehalococcoides, although, in this
case, a weaker increase was reported.

1 

 

 

Figure 8. Correlation between (a) Dehalobacter sp. and (b) Dehalococcoides sp. and chlorine number at
17 and 22 ◦C with the addition of whey.

Similar trends of microbial communities were found either natural [27,71] or modified
by the addition of carbon substrates [54,64]. In such complex microbial communities, many
competitions can be found that are partially discussed above. Reductive dechlorination
was found to be incomplete in sulfate-rich aquifers (sulfate concentrations greater than
400 mg/L) [72]. Mutual inhibition during concurrently reductive dechlorination of TCE
and denitrification competing for electron donors was also found. Specific dechlorinated
bacteria can be affected in different ways; thus, Dehalococcoides and Dehalogenimonas as
obligate chlorine-respiring bacteria were inhibited by sulfate but induced by nitrate and
facultative chlorine-respiring bacteria [73]. These competitions led to different consump-
tions of electron equivalents, typically to the detriment of chlorine-respiring bacteria. From
the balance of the electron equivalent, the following order of electrons transferred resulted:
reduction of Fe3+ (1.22–1.91 mmol), sulfate (0.24–2.84 mmol), nitrate (0.375–0.75 mmol),
and PCP reductive dechlorination (only 0.02 mmol) [62].

In general, symbiotic relationships in complex microbial communities appear to be
essential for rapid and total biological reductive dechlorination [74]. Therefore, bacteria
capable of fermentation, e.g., Desulfovibrio and Clostridium [22,75], play an important role
in a dechlorinating consortium as electron donors through hydrogen production from
introduced carbon sources [74]. Clostridium butyricum as a fermenting hydrogen-producing
bacterium induced PCE dechlorination by Dehalococcoides spp. [52]. Symbiotic relationships
can be found in all individual steps of gradual dechlorination. For example, during
PCE dechlorination, members of the genus Geobacter provided transformation of PCE to
dichloroethene and Dehalococcoides DCE to ethene [76]. Sulfurospirillum multivorans and
Dehalococcoides mccartyi fully degraded PCE to ethene three times faster in mixed culture.
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3.3. Principal Component Analysis

Principal component analyses (PCA) were completed for the main data on chlori-
nated ethenes, ethene, ethane concentrations, chlorine number, TOC, physical–chemical
parameters and results of qPCR in two variants of laboratory tests—with addition of whey
(Figure 9a) and without (Figure 9b). PCA captured 68.1 % of the total variance in the data
with whey addition and 57.0 % total variance without whey addition. In both variants with
and without addition of whey temperature, had a negative correlation with ORP and a
positive correlation with Fe2+ that indicated potential favorable reductive dechlorination
conditions, iron-reducing conditions. Temperature had a strong negative correlation in
both variants with cVOCs. TOC in the variant with whey had a negative correlation with
all dechlorinating biomarkers, e.g., the bacteria Dehalococcoides, Dehalobacter and the dehalo-
genase genes vcrA and bvcA except for Desulfitobacterium spp. It is in compliance with a
principle of biological reductive dechlorination, that substrate is degraded by bacteria that
are able to utilize it and produce H2 that is used by dechlorinating bacteria as an electron
donor (Vogel a McCarty, 1985). It confirmed our findings that Dehalococcoides spp. started to
grow in the ninth week of the test when TOC significantly decreased (see Figures 4 and 6).
The growth of Desulfitobacterium spp. was most likely limited by other processes than by the
degradation of TOC. Furthermore, PCA showed in both variants a positive correlation of
temperature with chlorides (product of reductive dechlorination) and a negative correlation
of temperature with chlorine number. In sum, the comprehensive statistical view of key
results confirmed the findings and conclusions described and discussed above.
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4. Conclusions

The laboratory experiments with contaminated groundwater and soil lasting nine
weeks revealed trichloroethene dechlorination dependence on temperature (in the range
of 12–22 ◦C) and on supply of substrate (whey) as energy, carbon, and sources of H+ and
e− sources. The qPCR results showed that the addition of whey caused a fundamental
increase in total bacteria abundance as well as methanogens, nitrate, iron- and sulfate-
reducing bacteria. Nevertheless, dechlorinating bacteria under study—Dehalococcoides spp.,
Dehalobacter spp., and Desulfitobacterium spp. can compete for energy and carbon sources
and reducing equivalents. As evidence, complete biological reductive dechlorination
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occurred in the variant with the addition of whey with incubation at 22 ◦C within nine
weeks. The results indicated the temperature-promoted bioremediation of trichloroethene
in combination with whey addition, as a cost-effective by-product, could be an effective
variant of chlorinated ethenes degradation.
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ensured all other analyses, J.N. and P.N. arranged resources and funding, P.N. and M.H. wrote the
first draft of this study and all authors participated in reviewing and editing. All authors have read
and agreed to the published version of the manuscript.
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