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Abstract: Evaporation is one of the main components of the hydrological cycle, and its estimation is 

crucial and important for water resources management issues. Access to a reliable estimator tool for 

evaporation simulation is important in arid and semi-arid areas such as Iran, which lose more than 

70% of their received precipitation by evaporation. Current research employs the Bayesian Regular-

ization (BR) and Scaled Conjugate Gradient (SCG) algorithms for training the Multilayer Perceptron 

(MLP) model (as MLP-BR and MLP-SCG) and comparing their performance with the Levenberg–

Marquardt (LM) algorithm (as MLP-LM). For this purpose, 16 meteorological variables were used 

on a daily scale; including temperature (5 variables), air pressure (4 variables), and relative humid-

ity (6 variables) as input data sets, and pan evaporation as the target variable of the MLP model. 

The surveys were conducted during the period of 2006–2021 in Fars Province in Iran, which is a 

semi-arid region and has many natural lakes. Various combinations of input-target pairs were 

tested by several learning algorithms, resulting in seven input scenarios: (1) temperature-based (T), 

(2) pressure-based (F), (3) humidity-based (RH), (4) temperature–pressure-based (T-F), (5) temper-

ature–humidity-based (T-RH), (6) pressure–humidity-based (F-RH) and (7) temperature–pressure–

humidity-based (T-F-RH). The results indicated the relative superiority of the three-component sce-

nario of T-F-RH, and a considerable weakness in the single-component scenario of RH compared 

with others. The best performance with a root mean square error (RMSE) equal to 1.629 and 1.742 

mm per day and a Wilmott Index (WI) equal to 0.957 and 0.949 (respectively for validation and test 

periods) belonged to the MLP-BR model. Additionally, the amount of R2 (greater than 84%), Nash-

Sutcliff efficiency (greater than 0.8) and normalized RMSE (less than 0.1) all indicate the reliability 

of the estimates provided for the daily pan evaporation. In the comparison between the studied 

training algorithms, two algorithms, BR and SCG, in most cases, showed better performance than 

the powerful and common LM algorithm. The obtained results suggest that future researchers in 

this field consider BR and SCG training algorithms for the supervised training of MLP for the nu-

merical estimation of pan evaporation by the MLP model. 

Keywords: hydrological modeling; machine learning; supervised learning; pan evaporation;  

hydroinformatics 

 

1. Introduction 

Evaporation is one of the most important components of the hydrological cycle, in 

which the liquid phase from the earth’s surface turns into atmospheric water vapor [1]. 

Determining the value of this variable in arid and semi-arid regions like Iran is very 
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important because the average rainfall received in Iran is about one-third of the rainfall 

received in dry areas of the planet, and more than seventy percent of this amount is 

wasted by the process of evaporation. The evaporation rate is a non-linear hydrological 

process affected by several meteorological variables such as relative humidity, tempera-

ture, wind speed, and sunshine hours [2]. Evaporation is the main cause of water loss in 

reservoirs and soil moisture loss in agricultural fields. In Iran, the long-term average evap-

oration from the evaporation pan is 2250 mm per year, which means that a significant 

volume of the total freshwater stored in the dams, as well as soil water (soil moisture), can 

be lost due to evaporation [3]. As a result, in regions where water resources are limited, 

evaporation estimation is very important in irrigation planning and management prac-

tices using available meteorological parameters [1, 4, 5].  

In general, direct and indirect methods are used to estimate evaporation. Direct 

methods include the use of class A pan, class U, and lysimeter [6]. In Iran, a class A evap-

oration pan uses in meteorological stations for direct measurement of evaporation. The 

evaporation rate measured from the pan indicates the evaporation potential, especially in 

dry and semi-arid areas. Researchers utilize evaporation pan coefficients to measure evap-

oration losses from dam reservoirs [7]. Direct methods of measuring evaporation are 

costly and have limitations in terms of space and time [5], hence conceptual models [8-10], 

experimental [11-17], and artificial intelligence methods [3, 4, 6, 18] were developed for 

indirect estimation of evaporation. Among the conceptual models for simulating pan 

evaporation the PenPan model [10], the developed multilayer model [9], and PenPan-V2C 

and PenPan-V2S [8] have been employed by researchers. In the absence of required vari-

ables, these methods can add complexity to the simulation’s systematic and predictable 

errors. As a result, it is difficult to use many of these methods due to the lack of access to 

data and the lack of clear initial and boundary conditions [19].  

In experimental models, pan evaporation is estimated by linear regression methods, 

while the evaporation process has a non-linear nature behavior in the nature [4]. There-

fore, powerful and consistent estimation methods should be able to analyze nonlinear 

patterns of evaporation processes. Recently, many artificial intelligence models have been 

proposed to estimate evaporation, including the multilayer perceptron (MLP) model [3, 

6, 18, 20-25], support vector machine (SVM) model [26], M5tree model [27], adaptive 

neuro-fuzzy inference system (ANFIS) model [28], random forests (RF) model [6], rele-

vance vector machine (RVM) model [29]. Additionally, various hybrid artificial intelli-

gence-based models have been employed in evaporation simulation [30, 31]. These cases 

are among artificial intelligence models that have a numerical nature and are not depend-

ent on physical processes. As a result, they require less information (for example, initial 

or boundary conditions) and are also superior for decision-making in areas with sparse 

data compared with other types of parametric methods [30, 32]. Table A1 in Appendix A 

presents some studies related to the application of artificial intelligence methods in pan 

evaporation estimation. 

According to previous studies, the most effective meteorological variables for esti-

mating evaporation include temperature, relative humidity, and air pressure. Addition-

ally, the review of studies shows that a variety of artificial neural network models have 

been used to estimate evaporation from pans in different parts of the world. These meth-

ods have produced better results compared with experimental methods using available 

climate parameters [7, 33, 34]. Among the vast majority of studies conducted, MLP is one 

of the efficient artificial intelligence tools in pan evaporation simulation, and in recent 

years, the performance of this model in estimating evaporation has been improved by 

combining it with different algorithms [3, 21, 35, 36]. In an MLP model, the design of the 

network architecture, including the number of neurons in each layer, the number of lay-

ers, driving functions, etc., is very important in the simulation process. This design can 

directly affect the ability of the neural network to solve the problem. One of the important 

steps in using MLP models is the training step, and during the neural network training 

process, the applied training function leads to solving a mathematical optimization 
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problem. Additionally, the optimal weights of the network are calculated based on adjust-

able parameters [37].  

Levenberg–Marquardt (LM) algorithm has been used in most evaporation estimation 

studies to train the MLP model [23, 30, 36, 38]. It is claimed that this algorithm is stronger 

than many learning algorithms because of its ability to find the solution [39]. While there 

are two algorithms—Bayesian regularization (BR) and scaled conjugate gradient (SCG)—

which have been very little discussed in evaporation estimation studies. In the current 

research, for the first time, the effectiveness of BR and SCG algorithms in MLP model 

training is investigated and their performance is compared with the ordinary LM algo-

rithm. Additionally, in this research, a supervised training method is used for numerical 

modeling. In the current study, the evaporation modeling process was performed only 

based on temperature, air pressure, and relative humidity components, which have ac-

ceptable quality in their time series data. Another point is that previous studies [21, 30, 

40] have performed pan evaporation modeling for the northern regions of Iran (the south-

ern part of the Caspian Sea). The reason for this choice is the presence of significant surface 

water resources in that area, which makes the pan evaporation data closer to the actual 

evaporation rate. While in arid and semi-arid areas of Iran that have natural lakes and 

reservoir dams, the evaporation rate of the pan is very close to the actual evaporation rate 

from the surface of the lakes and reservoirs of the dams, but less has been conducted to 

model the evaporation in these areas of Iran. Therefore, the current research has investi-

gated one of these areas in the south of Iran, which has very important natural lakes (from 

the hydrological, environmental, and ecological points of view). 

2. Materials and Methods 

2.1. Study Region and the Data  

Fars province was selected as the case study of the current study. This reign area is 

more than 122,608 square kilometers and is located in the south part of Iran. Fars Province 

is affected by mild winters and hot and dry summers. The studied region is located be-

tween latitudes of 27 degrees and 2 min and 31 degrees and 42 min north latitude and 50 

degrees and 42 min and 55 degrees (Figure 1). The studied area has a wide variety of 

climatic zones, including cold and dry in the north, hot and dry in the south, temperate 

and humid areas in the central area, and hot and semi-humid in the west. Despite the 

diverse climatic regions of the province, its predominant climate is hyper-arid/temperate 

[41]. The plains of Fars Province are sedimentary basins located in the middle of the moun-

tains, which are suitable for growing all kinds of agricultural products. On the other hand, 

the climate of this region (mild winters and hot and dry summers) has made it suitable 

for horticultural, agricultural, and livestock products. The important role of the studied 

area in the production of many agricultural products, including wheat, corn, cereals, 

oilseeds, dates, citrus fruits, figs, and sugar beet, has always brought unique capabilities 

that can bring many potential risks of water. Seasonal snow-covered heights in this region 

are the source of many rivers and springs that play a strengthening role in the irrigation 

of fields and water supply in urban areas. Moving from the south to the north of Fars 

Province, the plains decrease and the mountainous areas expand. In the southern and 

southwestern regions of the region, among the mountains, there are fertile plains of Shi-

raz, Kazeroon, Niriz, Marvdasht, etc., which are irrigated by rivers. These rivers eventu-

ally flow into Bakhtegan, Parishan, Maharlu, and Kaftar lakes. Due to the hot dry climate 

in Fars Province, evaporation from the free water surface is considered an important com-

ponent in the water balance of these lakes, and its estimation can provide important in-

formation.  
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Figure 1. The study area and location of Shiraz synoptic stations. 

In this research, the Shiraz synoptic station is selected for evaporation modeling, 

which has a moderate semi-arid climate based on the Extended De-Martonne classifica-

tion. The statistical characteristics of the data used are listed in Table 1 which covers daily 

data from 2006 to 2021. These data include 16 variables; maximum air temperature 

(Tmax), minimum air temperature (Tmin), mean air temperature (T), dew point tempera-

ture (Tdew), wet-bulb temperature (Twet), the maximum air pressure (Fmax), minimum 

air pressure (Fmin), mean air pressure (F), maximum relative humidity (RHmax), mini-

mum relative humidity (RHmin), mean relative humidity (RH), relative humidity at 03:00 

(RH03), relative humidity at 09:00 (RH09), relative humidity at 15:00:00 (RH15) and pan 

evaporation (Epan). Since the recorded data of solar radiation in most stations of Iran have 

low quality and a large number of outliers, the present research intends to present a model 

far from solar radiation. 

Table 1. Details of the daily datasets of the Shiraz site are obtained from the Iranian Meteorological 

Organization. 

Variable 
Training Period (2006–2017) * Validation Period (2018–2019) Validation Period (2020–2021) 

Min. Max. Average STD. Min. Max. Average STD. Min. Max. Average STD. 

Tmax (°C) 2.0 42.6 26.7 9.4 9.0 42.4 27.1 9.5 5.2 42.4 27.6 9.2 

Tmin (°C) −8.1 26.6 10.2 7.9 −6.0 27.8 10.5 7.9 −5.8 25.0 10.2 7.8 

T (°C) −1.1 34.7 19.0 9.0 0.9 35.5 19.3 9.2 1.5 34.0 19.4 9.0 

Tdew (°C) −16.7 16.7 0.8 4.9 −16.4 12.6 −0.1 5.0 −18.8 15.1 −1.1 5.4 

Twet (°C) −4.1 21.4 10.1 5.0 −1.5 18.4 10.0 4.7 −1.8 20.0 9.8 4.7 

Fmax (mbar) 840.9 865.6 852.7 4.1 841.6 862.7 852.9 4.2 842.0 864.3 853.1 4.1 

Fmin (mbar) 837.7 861.1 849.5 3.9 838.8 859.2 849.5 4.1 838.8 860.4 849.7 4.0 

F (mbar) 839.9 862.8 851.0 3.9 840.5 860.6 851.2 4.1 840.7 861.7 851.3 3.9 
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VP (mbar) 5.7 56.9 26.2 13.5 7.8 58.9 26.7 14.4 7.0 55.5 26.8 13.9 

RHmax (%) 14.0 100.0 60.1 20.6 11.0 100.0 59.1 24.2 14.0 100.0 56.5 24.8 

RHmin (%) 2.0 93.0 19.4 14.6 2.0 97.0 18.5 16.3 1.0 98.0 16.1 14.9 

RH (%) 7.3 98.3 36.8 18.2 6.6 98.9 36.4 20.6 7.3 99.3 33.8 20.0 

RH03 (%) 12.0 100.0 58.0 19.9 11.0 100.0 56.3 23.5 13.0 100.0 53.8 23.7 

RH09 (%) 2.0 100.0 23.9 17.4 2.0 100.0 23.3 19.0 2.0 100.0 20.5 18.3 

RH15 (%) 2.0 100.0 28.9 19.7 2.0 100.0 28.3 21.6 1.0 100.0 26.1 21.2 

Epan (mm) 0.0 18.8 7.0 3.9 0.1 17.8 6.7 4.2 0.1 18.2 6.8 4.2 

Notes: * Min.: Minimum; Max.: Maximum; STD.: Standard deviation. 

2.2. Multilayer Perceptron (MLP) Neural Network 

The Multilayer Perceptron (MLP) model is one of the most common and practical 

models of connection between neurons in ANN [42]. This model consists of units, includ-

ing an input layer, one or more hidden layers, an output layer, and a set of neurons or 

nodes for transferring information between layers. The number of neurons in the input 

and output layers is determined according to the number of input and output variables of 

the investigated system. Each neuron is connected to several nearby neurons with differ-

ent weights that indicate the relative influence of the inputs. The weighted sum of inputs 

is transferred to hidden neurons using transfer functions. Additionally, the outputs of the 

hidden neurons also serve as inputs to the output neuron, where they undergo further 

transformation. The output of the MLP neural network can be expressed as Equation (1) 

[43]. 

𝛾𝑗𝑘 = 𝐹𝑘 ( ∑ 𝑤𝑖𝑗𝑘𝛾𝑖(𝑘−1) + 𝛽𝑗𝑘

𝑁𝑘−1

𝑖=1

) (1) 

where 𝛾𝑗𝑘 is the output of neuron j from layer k, 𝛽𝑗𝑘 is the bias weight for neuron j in 

layer k, 𝑤𝑖𝑗𝑘  are model fitting parameters and 𝐹𝑘 are nonlinear activation transfer func-

tions that may take different forms such as hyperbolic tangent sigmoid (tansig), Consider 

logarithmic sigmoid (logsig), saturated linear (satlin), and linear (purelin) [44]. Model fit-

ting parameters (𝑤𝑖𝑗𝑘) are link weights that were randomly selected at the beginning of 

the network training process. The MLP learning algorithm is in the form of backpropaga-

tion, and there are other types of backpropagation such as scaled conjugate gradient 

(SCG), Levenberg–Marquardt (LM), Bayesian regularization backpropagation (BR), gra-

dient descent with variable learning rate backpropagation (GDX) and resilient backprop-

agation (RP) [45-48] which are usually used to find a set of optimal parameters for MLP 

models. Figure 2 shows the general structure of an MLP network with two hidden layers. 

In this study, in order to improve the estimation performance of MLP neural network for 

pan evaporation modeling by changing the number of hidden layers and the number of 

neurons in each hidden layer, different training algorithms such as LM, BR, and SCG were 

compared in evaporation estimation. 
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Figure 2. The structure of an MLP network with 2 hidden layers. 

2.3. Learning Algorithms for MLP Neural Network 

2.3.1. Levenberg–Marquardt (LM) 

The Levenberg–Marquardt method was designed by Marquardt [49] and it can be 

used to increase the speed of second-order training without the need to calculate or ap-

proximate the Hessian matrix (such as Newton’s algorithm or Newton’s pseudo-algo-

rithm). It was designed by Marquardt [49]. According to the Levenberg–Marquardt algo-

rithm, the values of the weights are updated during an iterative process in the form of 

Equation (3). This algorithm is efficient for training smaller networks [50]. The LM learn-

ing algorithm has become increasingly popular because it can be easily implemented and 

changed to the GD or pseudo-Newton algorithm, and the learning can be adjusted auto-

matically. The weight update equation in the LM algorithm is shown in Equation (2). 

𝜃𝑘+1 = 𝜃𝑘 − [𝐽𝑘
𝑇𝐽𝑘 + 𝜇𝐼]−1𝐽𝑘

𝑇𝐸𝑘 (2) 

where J represents the Jacobian matrix of the error vector E(θ) with a dimension, 𝐽𝑇  is the 

Tranhade matrix J, and I is the same matrix as the approximate Hessian matrix 𝐽𝑇 . The 

gradient of the error function (namely E) increases or decreases according to the weight 

and bias parameters 𝜃 = {𝛽𝑗 , 𝑤𝑖𝑗} and the adjustment parameter μ (damping coefficient) 

during each learning iteration to guide the optimization process (µ = 0.001 as the initial 

learning parameter). When the value of μ is very large, the Levenberg–Marquardt method 

approximates the gradient descent method. However, when μ is small, it is the same as 

the Gauss-Newton method. The advantage of this LM method is that it converges faster 

around the minimum and gives more accurate results. 

2.3.2. Bayesian Regularization 

The Bayesian regularization method is a combination of the Levenberg–Marquardt 

method along with multiple minimizations of weights to prevent the arbitrary increase in 

their values during iterations. In fact, in addition to error minimization, this algorithm 

also seeks to minimize the square of weights [45, 51, 52]. The algorithm uses BR and 
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modifies all variables according to the LM function approximation method, as a result, 

the training objective function is defined as Equation (3) [43]. 

𝐹 = 𝛼𝐸𝜔 + 𝛽𝐸𝐷 (3) 

where 𝐸𝜔 is the squared weights of the network, 𝐸𝐷 is the sum of the squared error of 

the network, and the values of α and β are the parameters of the objective function. Each 

of these parameters depends on the training of the network in reducing the remaining 

outputs or the volume of the network. The basic point of the adjustment method is how 

to select and optimize the parameters of the objective function through Bayesian statistical 

data. During the process of this algorithm, network weights are considered as random 

variables, then the prior distribution of network weights and training is considered as 

Gaussian distribution [45]. Equation (4) shows the Bayesian rule for optimizing the pa-

rameters of the objective function (α, and β) [53]. 

𝑃(𝛼, 𝛽|𝐷,𝑀) =
𝑃(𝐷|𝛼, 𝛽,𝑀)𝑃(𝛼, 𝛽|𝑀)

𝑃(𝐷|𝑀)
 (4) 

D represents the training data, M is the network model, and ω is the network weight. 

2.3.3. Scaled Conjugate Gradient 

In the SGC algorithm, unlike the basic backpropagation algorithm that changes the 

weights in the opposite direction of the gradient, the search is performed in conjugate 

directions, which has a faster convergence speed than the traditional backpropagation al-

gorithm [54, 55]. In the SCG algorithm, the closest next weight update vector 𝑤𝑡+1 to the 

current weight vector 𝑤𝑡  is expressed as Equation (5). 

𝑤𝑡+1 = 𝑤𝑡 − 𝑔𝑡𝐻𝑡
−1 (5) 

where 𝑔𝑡 = 𝐸ˊ(𝑤𝑡) is the gradient vector, 𝐻𝑡 = 𝐸” (𝑤𝑡) is the Hessian matrix E(𝑤𝑡), the 

product of −gtHt
−1 is known as Newton’s step, and its direction is denoted by the nega-

tive value, which is known as Newton’s direction [56]. If the Hessian matrix is positive 

definite and E(𝑤𝑡+1) is quadratic, Newton’s method directly reaches a local minimum in 

one step [56]. Otherwise, reaching the local minimum requires more iterations. To elimi-

nate these drawbacks and speed up the learning rate, Møller [54] introduced time weight 

vector 𝑤𝑚,𝑡 which is located between 𝑤𝑡+1 and 𝑤𝑡  and is expressed as relation 6. 

𝑤𝑚,𝑡 = 𝑤𝑡 + 𝛾𝑡𝑑𝑡 (6) 

where 𝑑𝑡 = −𝑔𝑡  is the conjugate direction vector of the time weight vector in the t itera-

tion and 𝛾𝑡 is the size of the time weight update step, which is called the short step size, 

so that 0 < 𝛾𝑡 ≪ 1. The actual weight update is calculated as Equation (7). 

𝑤𝑡+1 = 𝑤𝑡 + 𝛼𝑡𝑑𝑡 (7) 

where 𝑤𝑡+1 is the next weight update vector; 𝑤𝑡  Current weight vector and αt is the ac-

tual weight update step size, which is called long step size and is determined as Equation 

(8). 

𝛼𝑡 =
−𝑑𝑡

𝑇𝐸𝑡(𝑤𝑡)

𝑑𝑡
𝑇𝑠𝑡

 (8) 

𝑠𝑡 = 𝐸”(𝑤𝑡)𝑑𝑡 ≈
𝐸′(𝑤𝑚,𝑡) − 𝐸′(𝑤𝑡)

𝛾𝑡

 (9) 

where 𝑠𝑡 is second-order information; and 𝛼𝑡 is the initial step size. To determine 𝛼𝑡, 𝑠𝑡, 

the second-order information must be obtained from the first-order gradients [54]. There-

fore, in an SCG algorithm, in each iteration, the time weights 𝑤𝑚,𝑡 are first calculated us-

ing the short step size 𝛾𝑡 (Equation (6)), and then the time weights are used to find the 
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long step size 𝛼𝑡  (Equations (8) and (9)). The final weight update is calculated using 

Equation (7). 

2.4. Evaluating the Estimations 

In this research, in order to evaluate the accuracy of evaporation simulation, the error 

criteria including Root Mean Square Error (𝑅𝑀𝑆𝐸), coefficient of determination (𝑅2), Nash 

Sutcliff (𝑁𝑆), and Willmott’s index of agreement (WI) were used, which are defined as 

follows. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑂𝑖 − 𝐸𝑖)

2

𝑛

𝑖=1

,     0 < 𝑅𝑀𝑆𝐸 < +∞ (10) 

𝑅2 =

[
 
 
 

∑ (𝑂𝑖 − 𝑂̅)𝑛
𝑖=1 (𝐸𝑖 − 𝐸̅)

√∑ (𝑂𝑖 − 𝑂̅)2𝑛
𝑖=1 ∗ √∑ (𝐸𝑖 − 𝐸̅)2𝑛

𝑖=1 ]
 
 
 
2

,     0 < 𝑅2 < +1 (11) 

𝑁𝑆 = 1 −
∑ (𝑂𝑖 − 𝐸𝑖)

2𝑛
𝑖=1

∑ (𝑂𝑖 − 𝑂̅)2𝑛
𝑖=1

,    − ∞ < 𝑁𝑆 < +1 (12) 

𝑊𝐼 = 1 −
∑ (𝑂𝑖 − 𝐸𝑖)

2𝑛
𝑖=1

∑ (|𝑂𝑖 − 𝑂̅| + |𝐸𝑖 − 𝑂̅|)2𝑛
𝑖=1

,    − ∞ < 𝑁𝑆 < +1 (13) 

In these equations, 𝑂𝑖  is the observed data value on day i, 𝐸𝑖 is the estimated data 

value on the day i, 𝑂̅ is the average of the observed values, 𝐸̅ is the average of the esti-

mated values, and n is the number of days under study. The closer the 𝑅𝑀𝑆𝐸 values are 

to zero and 𝑁𝑆, 𝑅2, and 𝑊𝐼 values are to one, the more accurate the estimation of the 

model is. The general stages of modeling in the present research can be seen in the form 

of a flowchart in Figure 3. 

 

Figure 3. The general flowchart of the current study’s modeling steps. 
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3. Results 

For any time series simulation, it is necessary to choose the input combinations for 

the modeling process. In this research, air temperature (5 variables), air pressure (4 varia-

bles), and air humidity (6 variables) were used as inputs of machine learning estimator 

tools for estimating pan evaporation. The dependence of these variables on pan evapora-

tion was evaluated separately by Pearson’s correlation test. The results are displayed in 

Figure 4. 

 

Figure 4. Results of Pearson correlation test between the meteorological variables and pan evapora-

tion (sorted due to the correlation intensity). 

In this diagram (Figure 4), the correlation coefficients are arranged according to in-

tensity. Among these, the highest correlation coefficient belongs to the VP variable and 

the lowest one belongs to the Tdew variable. All variables have a significant correlation 

with pan evaporation at the confidence level of 0.01. The temperature components have a 

direct correlation, and the humidity components have an inverse correlation with pan 

evaporation. In the components related to air pressure, the VP variable in the direct direc-

tion, and the F, Fmax, and Fmin variables in the reverse direction are related to pan evap-

oration. The input scenarios were arranged based on seven combinations of the aforemen-

tioned variables. Therefore, the scenarios are temperature-based (only temperature varia-

bles), pressure-based (only pressure variables), humidity-based (only relative humidity 

variables), temperature–pressure-based (temperature and pressure variables), tempera-

ture–humidity-based (temperature and humidity variables), pressure–humidity-based 

(variables of pressure and humidity) and temperature–pressure–humidity-based (varia-

bles of temperature, pressure, and humidity) are considered (according to Table 2). In each 

scenario, the compounds were sorted based on the intensity correlation, which finally in-

cluded 51 scenarios (S1–S51). Meanwhile, to reduce the workload, the multiple linear re-

gression method was used to select the best input combination of the MLP model in each 

component arrangement. The results of this evaluation are shown in Table 2. 

  



Water 2022, 14, 3435 10 of 24 
 

 

Table 2. Analyzing the input scenarios by multiple linear regression. 

Components Scenario Inputs R2 

Temperature 

(T) 

S1 T 67.1% 

S2 T, Tmax 67.1% 

S3 T, Tmax, Tmin 67.4% 

S4 T, Tmax, Tmin, Twet 72.4% 

S5 * T, Tmax, Tmin, Twet, Tdew 74.4% 

Pressure 

(F) 

S6 VP 72.4% 

S7 VP, F 73.4% 

S8 VP, F, Fmax 73.5% 

S9 VP, F, Fmax, Fmin 73.5% 

Relative 

humidity 

(RH) 

S10 RHmax 57.7% 

S11 RHmax, RH03 57.7% 

S12 RHmax, RH03, RH 57.8% 

S13 RHmax, RH03, RH, RH15 57.8% 

S14 RHmax, RH03, RH, RH15, RH09 58.9% 

S15 RHmax, RH03, RH, RH15, RH09, RHmin 59.1% 

Temperature 

and pressure 

(T–F) 

S16 VP, T 73.2% 

S17 VP, T, Tmax 73.2% 

S18 VP, T, Tmax, Tmin 73.4% 

S19 VP, T, Tmax, Tmin, Twet 75.4% 

S20 VP, T, Tmax, Tmin, Twet, F 76.1% 

S21 VP, T, Tmax, Tmin, Twet, F, Fmax 76.3% 

S22 VP, T, Tmax, Tmin, Twet, F, Fmax, Fmin 76.3% 

S23 VP, T, Tmax, Tmin, Twet, F, Fmax, Fmin, Tdew 76.5% 

Temperature 

and relative 

humidity 

(T–RH) 

S24 T, Tmax, Tmin, RHmax 70.4% 

S25 T, Tmax, Tmin, RHmax, RH03 70.4% 

S26 T, Tmax, Tmin, RHmax, RH03, RH 70.5% 

S27 T, Tmax, Tmin, RHmax, RH03, RH, Twet 73.6% 

S28 T, Tmax, Tmin, RHmax, RH03, RH, Twet, RH15 73.6% 

S29 T, Tmax, Tmin, RHmax, RH03, RH, Twet, RH15, RH09 73.6% 

S30 T, Tmax, Tmin, RHmax, RH03, RH, Twet, RH15, RH09, RHmin 73.7% 

S31 T, Tmax, Tmin, RHmax, RH03, RH, Twet, RH15, RH09, RHmin, Tdew 75.1% 

Pressure and 

relative 

humidity 

(F–RH) 

S32 VP, RHmax 74.3% 

S33 VP, RHmax, RH03 74.4% 

S34 VP, RHmax, RH03, RH 74.4% 

S35 VP, RHmax, RH03, RH, F 75.6% 

S36 VP, RHmax, RH03, RH, F, Fmax 75.7% 

S37 VP, RHmax, RH03, RH, F, Fmax, Fmin 75.7% 

S38 VP, RHmax, RH03, RH, F, Fmax, Fmin, RH15 75.8% 

S39 VP, RHmax, RH03, RH, F, Fmax, Fmin, RH15, RH09 75.8% 

S40 VP, RHmax, RH03, RH, F, Fmax, Fmin, RH15, RH09, RHmin 75.8% 

Temperature, 

pressure and 

relative 

humidity 

(T–F–RH) 

S41 VP, T, Tmax, Tmin, RHmax 75.6% 

S42 VP, T, Tmax, Tmin, RHmax, RH03 75.7% 

S43 VP, T, Tmax, Tmin, RHmax, RH03, RH 75.8% 

S44 VP, T, Tmax, Tmin, RHmax, RH03, RH, Twet 75.9% 

S45 VP, T, Tmax, Tmin, RHmax, RH03, RH, Twet, F 76.7% 

S46 VP, T, Tmax, Tmin, RHmax, RH03, RH, Twet, F, Fmax 76.7% 

S47 VP, T, Tmax, Tmin, RHmax, RH03, RH, Twet, F, Fmax, Fmin 76.7% 
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S48 VP, T, Tmax, Tmin, RHmax, RH03, RH, Twet, F, Fmax, Fmin, RH15 76.8% 

S49 VP, T, Tmax, Tmin, RHmax, RH03, RH, Twet, F, Fmax, Fmin, RH15, RH09 76.8% 

S50 VP, T, Tmax, Tmin, RHmax, RH03, RH, Twet, F, Fmax, Fmin, RH15, RH09, RHmin 76.8% 

S51 
VP, T, Tmax, Tmin, RHmax, RH03, RH, Twet, F, Fmax, Fmin, RH15, RH09, RHmin, 

Tdew 
76.8% 

Notes: * The bold rows refer to the best input scenarios in each component 

In Table 2, the best input combination of each component arrangement was selected 

based on the R2 value, which can be seen in bold in the table. Therefore, on this basis, from 

now on, in the entire article, the scenarios related to each arrangement of components with 

the symbols T (temperature-based), F (pressure-based), RH (humidity-based), T-F (tem-

perature–pressure-based), T-RH (temperature–humidity-based), F-RH (pressure–humid-

ity-based) and T-F-RH (temperature–pressure–humidity-based) are shown (according to 

the components column in Table 2). It should be noted that according to the principle of 

parsimony, in cases where the R2 value obtained by the multiple linear regression method 

did not change significantly, the scenario with the least number of input variables was 

considered the selected scenario. For example, in base pressure scenarios (F), scenarios S7 

and S9 have R2 equal to 73.4% and 73.5%, respectively. In this case, the difference in R2 is 

very small and can be ignored, therefore, considering that S7 with 2 variables and S9 with 

4 variables achieved this amount of R2, the scenario with the least number of input varia-

bles (i.e., S7) was chosen as the best F scenario. Or in the T-F-RH scenarios, the S45 scenario 

with 9 variables achieved R2 equal to 76.7%. Meanwhile, the S51 scenario with 15 variables 

could only improve the performance by 0.1% (R2 = 76.8%); Therefore, it is obvious that 

based on parsimony, the S45 scenario is introduced as the best scenario of T-F-RH. 

After selecting the input scenarios from each component (the bold rows of Table 2), 

the input combinations are applied to the MLP neural network. In this part, LM, BR, and 

SCG algorithms are considered for MLP model training, respectively. The arrangement of 

the MLP model, including the number of hidden layers, the number of neurons in each 

layer, and the type of transfer function inside the neurons were selected by trial and error. 

The results showed that the investigated data are most compatible with the arrangement 

of two hidden layers and the satlin (saturate linear transfer function) and tansig (tangent 

hyperbolic sigmoid transfer function) transfer functions. The modeling results of the men-

tioned three training algorithms are evaluated separately by RMSE and WI criteria (Tables 

3–5). 

Table 3. Evaluation metrics for the pan evaporation modeling of MLP, learned by Levenberg–Mar-

quardt algorithm (MLP-LM). 

Input Scenario Transfer Function Network Makeup * 
Train Validation Test 

RMSE WI RMSE WI RMSE WI 

T satlin 12-10-1 1.853 0.932 1.836 0.945 1.832 0.944 

F satlin 15-10-1 1.939 0.924 1.879 0.939 1.962 0.931 

RH satlin 12-12-1 2.395 0.871 2.295 0.907 2.733 0.866 

T-F satlin 15-10-1 1.773 0.939 1.739 0.951 1.779 0.947 

T-RH satlin 18-12-1 1.844 0.934 1.838 0.945 1.861 0.942 

F-RH tansig 18-18-1 1.799 0.935 1.686 0.953 1.791 0.945 

T-F-RH ** tansig 12-12-1 1.797 0.936 1.652 0.956 1.747 0.949 
Notes: * This column shows the number of hidden layers and the neurons. For example, 12-1 says 

that the network makeup includes a single hidden layer with neurons in it and an output layer with 

1 neuron. ** The bold row indicates the best estimation performance. 

Examining the evaluation table of the MLP model trained with the LM algorithm 

(Table 5), shows that according to the WI criterion, the estimates of this model have been 

acceptable in most cases (0.9 < WI < 1). The humidity-based single-component scenario 
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provided the weakest estimation of pan evaporation among the input scenarios with 

RMSE equal to 2.295 and 2.733 mm per day, and WI equal to 0.907 and 0.866 for the vali-

dation and test phases, respectively. Among the two-component scenarios, the best per-

formance belonged to the pressure–humidity-based scenario; with RMSE equal to 1.686 

and 1.791 mm per day, and WI equal to 0.953 and 0.945 for the validation and test phases, 

respectively. Among all seven examined scenarios, the temperature–pressure–humidity-

based three-component scenario presented the best performance, in which RMSE equals 

1.652 and 1.747 mm per day, and WI equals 0.956 and 0.949, respectively for validation 

and test periods are reported. The overlapping of the outputs of this scenario with the 

observed values of pan evaporation can be seen in the time series plot (Figure 5). 

 

Figure 5. Time series plots of the MLP outputs learned by Levenberg–Marquardt algorithm, and the 

observational pan evaporation. 

Table 4. Evaluation metrics for the pan evaporation modeling of MLP, learned by Bayesian regu-

larization algorithm (MLP-BR). 

Input Scenario Transfer Function Network Makeup * 
Train Validation Test 

RMSE WI RMSE WI RMSE WI 

T tansig 12-10-1 1.887 0.928 1.777 0.948 1.807 0.943 

F satlin 12-12-1 1.892 0.928 1.821 0.943 1.880 0.937 

RH satlin 10-10-1 2.410 0.872 2.199 0.916 2.646 0.874 

T-F satlin 15-10-1 1.815 0.934 1.697 0.953 1.765 0.946 

T-RH tansig 12-10-1 1.810 0.935 1.778 0.949 1.821 0.945 

F-RH tansig 18-15-1 1.832 0.934 1.660 0.956 1.790 0.947 

T-F-RH ** tansig 12-12-1 1.836 0.934 1.629 0.957 1.742 0.949 
Notes: * This column shows the number of hidden layers and the neurons. For example, 12-1 says 

that the network makeup includes a single hidden layer with neurons in it and an output layer with 

1 neuron. ** The bold row indicates the best estimation performance. 

Examining the evaluation table of the MLP model trained with the BR algorithm (Ta-

ble 4), shows that according to the WI criteria, the estimates of this model have been ac-

ceptable in most cases (0.9 < WI < 1). Among the input scenarios, the humidity-based 
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single-component scenario with RMSE equal to 2.199 and 2.646 mm per day, and WI equal 

to 0.916 and 0.874 for the validation and test phases, respectively, provided the weakest 

estimation of pan evaporation. Among the two-component scenarios, the best perfor-

mance belonged to the pressure–humidity-based scenario (with a slight advantage over 

the temperature–pressure-based scenario); with RMSE equal to 1.660 and 1.790 mm per 

day, and WI equal to 0.956 and 0.947 for the validation and test phases, respectively. 

Among all the input scenarios, the three-component temperature–pressure–humidity-

based scenario provided the best estimation of pan evaporation, with RMSE equal to 1.629 

and 1.742 mm/day, and WI equal to 0.957 and 0.949, respectively for Validation and test 

courses. The overlapping of the outputs of this scenario with the observed values of pan 

evaporation can be seen in the time series plot (Figure 6). 

 

Figure 6. Time series plots of the MLP outputs learned by Bayesian regularization algorithm, and 

the observational pan evaporation. 

Table 5. Evaluation metrics for the pan evaporation modeling of MLP, learned by scaled conjugate 

gradient algorithm (MLP-SCG). 

Input Scenario Transfer Function Network Makeup * 
Train Validation Test 

RMSE WI RMSE WI RMSE WI 

T tansig 12-10-1 1.879 0.929 1.792 0.948 1.816 0.944 

F tansig 12-12-1 1.915 0.926 1.832 0.941 1.927 0.933 

RH tansig 10-10-1 2.394 0.867 2.245 0.909 2.648 0.869 

T-F satlin 12-10-1 1.823 0.934 1.738 0.951 1.796 0.945 

T-RH satlin 18-15-1 1.853 0.932 1.722 0.953 1.778 0.947 

F-RH satlin 10-10-1 1.874 0.930 1.747 0.950 1.865 0.941 

T-F-RH ** satlin 12-12-1 1.814 0.935 1.668 0.955 1.766 0.947 
Notes: * This column shows the number of hidden layers and the neurons. For example, 12-1 says 

that the network makeup includes a single hidden layer with neurons in it and an output layer with 

1 neuron. ** The bold row indicates the best estimation performance. 

The evaluation table of the MLP model trained with an SCG algorithm (Table 5) 

shows that according to WI, the evaporation estimated by this model is acceptable in most 
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cases (0.9 < WI < 1). Among the analyzed input scenarios, the weakest performance be-

longed to the humidity-based scenario, where RMSE is equal to 2.245 and 2.648 mm per 

day, and WI is equal to 0.909 and 0.869 for the validation and test phases, respectively. 

The temperature–humidity-based scenario provided the best estimation by RMSE equal 

to 1.722 and 1.778 mm per day, and WI was equal to 0.953 and 0.947 for the validation and 

test phases, respectively. Among all seven examined scenarios, the temperature–pressure-

humidity-based three-component scenario had the lowest error in pan evaporation esti-

mation, so that RMSE was equal to 1.668 and 1.766 mm per day, and WI was equal to 0.955 

and 0.947. The order for the validation and test courses was achieved. The overlapping of 

the outputs of this scenario with the observed values of pan evaporation can be seen in 

the time series plot (Figure 7). 

 

Figure 7. Time series plots of the MLP outputs learned by scaled conjugate gradient algorithm, and 

the observational pan evaporation. 

Scatter plots (Figure 8) have been used to check the correlation between the evapora-

tion estimates and the actual data measured from the evaporation pan, which will be dis-

cussed below. This diagram is drawn simultaneously for the two phases of validation and 

test (1 January 2018–31 December 2021). 
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Figure 8. Scatter plots between the estimated and observed pan evaporation. 
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By observing the scatter plots in Figure 8, it can be seen that the estimations and ob-

servations of evaporation have a direct correlation with each other. The distribution of the 

points is also such that they have a relatively high concentration around the regression 

lines and indicate a favorable correlation between the estimated-observed samples. Addi-

tionally, the slope difference between the regression lines and the 1:1 line is very small 

and acceptable. The comparison of R2 among the three models MLP-LM, MLP-BR, and 

MLP-SCG shows that the models have minor performance differences. However, in al-

most all 7 scenarios examined, this minor difference indicates the superiority of BR and 

SCG algorithms in MLP model training, compared with the common LM training algo-

rithm. According to these graphs, the weakest performance is observed in the humidity-

based single-component scenario (RH) where R2 is equal to 67.23%, and it is the result of 

MLP model training by the LM algorithm. The best estimates presented always belong to 

the temperature–pressure–humidity-based three-component scenario (T-F-RH), which 

has the highest R2 among all scenarios. In this scenario, the best training of the MLP model 

was provided by the SCG-supervised algorithm and the weakest was provided by the LM 

(R2 equal to 84.39% and 84.01%, respectively). Of course, in the meantime, the two-com-

ponent scenarios such as T-F and F-RH also had relatively good performances, in which 

the amount of R2 was very close to the three-component scenario of T-F-RH (T-F: 83.16% 

< R2 < 83.95%; F-RH: 82.19% < R2 < 83.82%). To check the performance among the scenarios, 

probability plots were drawn for the error of the models (Figure 9). This diagram is drawn 

simultaneously for the training and testing phases. 
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Figure 9. Probability plots for the normal distribution of the modeling errors. 
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In these graphs (Figure 9), the error rate of the model is displayed on the x-axis, and 

the percentage of frequency in that error rate is displayed on the y-axis. This operation 

was carried out for the outputs of all three educational algorithms under review, and their 

mean and standard deviation were also calculated. Additionally, Anderson Darling (AD) 

test was used to check the closeness of error probability distribution to normal distribu-

tion. The statistics of this test are shown with AD in the graphs (the smaller the AD is, the 

closer the error distribution is to the normal distribution). The AD statistic shows that the 

errors resulting from the LM training algorithm are better than the BR and SCG algorithms 

in two scenarios (T and RH) and are weaker than them in three scenarios (F, T-F, and T-

RH). Based on this, the BR training algorithm performed best in three scenarios (F, T-RH, 

and F-RH), and performed the weakest in two scenarios (T and T-F-RH). The SCG algo-

rithm is also evaluated better than the other two algorithms in the T-F and T-F-RH scenar-

ios, and weaker than them in the RH and F-RH scenarios. The closest distribution of pan 

evaporation estimation errors to the normal distribution is related to the MLP-SCG model 

under the T-F scenario, where AD is equal to 1.353. In the comparison of mean and stand-

ard deviation between the errors of the estimates provided for pan evaporation, the T-F-

RH scenario shows the best situation (the closer these values are to zero, the better the 

performance of the model is evaluated). Among these, the best evaporation belongs to the 

MLP-BR model, in which the average error of evaporation estimation is very close to zero 

(−0.014 mm per day) and its standard deviation is reported as 1.687 mm per day. To com-

pare the performance of the input scenarios, the evaluation criteria of NRMSE and NS 

have been used, which will be analyzed in the form of bar charts (Figure 10). 

 

Figure 10. Comparing the performance of supervised learning algorithms in each scenario, based 

on NRMSE and NS criteria. 
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In Figure 10, two measures NRMSE and NS were considered for the performance of 

all three training algorithms. At first glance, it is clear that the humidity-based (RH) sce-

nario has achieved the weakest estimate of evaporation; According to NRMSE classes (0.1 

< NRMSE < 0.2), its performance is evaluated as relatively well. Additionally, the amount 

of NS in this scenario is less than 0.75, while in the other 6 scenarios, it is in the range of 

0.8 and above. In other scenarios, the amount of NRMSE also approaches 0.1 (F, T, and T-

RH) and less (T-F, F-RH, and T-F-RH). It can be seen that the best performance belongs to 

the three-component scenario of T-F-RH, which in terms of NRMSE classes (NRMSE < 

0.1), the related performances are evaluated as excellent. The amount of NS also reaches 

its maximum in this scenario (0.840–0.834). In the comparison between the studied train-

ing algorithms, it can be clearly seen by referring to both NS and NRMSE criteria that in 

6 scenarios (T, F, RH, T-F, F-RH, and T-F-RH), the BR algorithm has been able to be a better 

training algorithm for MLP neural network. In the T-RH scenario, the SCG algorithm has 

provided the best estimate of pan evaporation; which shows that the LM algorithm has 

failed in all input combinations in front of the other two algorithms. 

4. Discussion 

Several studies have been conducted in the field of estimating evaporation and evap-

otranspiration, and all of them have confirmed the efficiency of the MLP model [22, 30, 

33-36, 57-60], and their results are in line with the present study. In regions with the same 

climate as Shiraz station, fewer studies have been conducted on evaporation estimation 

by the MLP model. Dehghanipour et al. [22] used this model for semi-arid and arid re-

gions of Iran. They also considered variables such as wind speed and sunshine hours as 

model inputs and reached an accuracy of RMSE = 1.971–3.897 mm/day. This is while the 

RMSE value obtained from the estimation of evaporation in the current research is equal 

to 1.629–1.742 mm/day. The reason for this difference can be seen in the training algo-

rithms of the MLP; Where Dehghanipour et al. [22] achieved their results by the LM algo-

rithm, and the current research by BR. Additionally, Ashrafzadeh et al. [3] used MLP-LM 

in a study in the very humid climate of northern Iran and achieved an accuracy of RMSE 

= 1.088–1.197 mm/day and WI = 0.903–0.942. It can be seen that the data range of the two 

data studies has a significant difference (in Ashrafzadeh et al. [3], 0.0 mm/day < Epan < 

9.2 mm/day and the current study, 0.1 mm/day < Epan < 18.2 mm/ day), so it is better to 

use the NRMSE criterion for discussion [61]. NRMSE of the MLP model with the LM al-

gorithm in the study of Ashrafzadeh et al. [3] was around 0.118–0.130, while in the current 

research, BR and SCG algorithms achieved NRMSE around 0.094–0.095. In the same area, 

Ghorbani et al. [36] also developed similar research that achieved NRMSE = 0.133 in their 

best case. This comparison shows that Ashrafzadeh et al. [3] and Ghorbani et al. [36] pro-

vided a poorer accuracy than the present study from other components such as precipita-

tion, wind speed, and sunshine hours. The reason for this difference in accuracy can be 

primarily related to the used training algorithm, i.e., LM, the results of the current study 

show that BR and SCG algorithms are superior to it. Additionally, the inevitable difference 

in the geographical and climatic conditions of the two regions can be another factor in the 

difference between the results of the two studies. Climatic class as well as natural factors 

such as distance and proximity to the sea, the average angle of solar radiation to two re-

gions, as well as the height above the surface of open water and the difference in dynamic 

systems affecting the two regions, are all reasons that can affect the accuracy of the esti-

mates provided. In South Korea, Kim et al. [58] conducted a similar research using the 

MLP-LM model, which, despite the three components used in the current research, also 

used the components of wind speed, radiation, and sundial hours as input to the model. 

In this study, the value of R2 was around 0.650–0.692; which is actually weaker than the 

results of the present study. The reason for this difference can be related to the difference 

in the climatic and geographical conditions of the two regions. In addition, considering 

different combinations of meteorological variables as input of supervised algorithm can 

improve hydrological modeling, which is in same direction with finding of Mohammadi 
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et al. [60] and Moazenzadeh et al. [61], and applying different supervised learning meth-

ods can have different results under various types of climates. 

This study investigated different activation functions of the MLP model for pan evap-

oration estimation in a semi-arid region. Also, it is recommended to use different activa-

tion functions of the MLP model for hydrological modeling by MLP model, such as actual 

evaporation [57, 62], rainfall [63], runoff [64], solar radiation [65], snow cov-er area [66], 

soil temperature [67], soil pore-water pressure [68] simulation. In some studies, the per-

formance of different learning algorithms for training the MLP model was evaluated [63, 

68, 69] for modeling different hydrological variables. For example, Mustafa et al. [69] used 

different learning algorithms to improve the modeling of soil pore water pressure re-

sponses to rainfall. They showed that in the test phase, the MLP-SCG model with R2 equal 

to 98.5% had a relatively better performance than MLP-LM with R2 equal to 98.3%. In the 

current research, the MLP-SCG model (R2 equal to 84.39%) was evaluated better than the 

MLP-LM model (R2 equal to 84.01%) for pan evaporation modeling. Additionally, in the 

research of Tezel and Buyukyildiz [68], the modeling of the monthly pan evaporation pa-

rameter in the southwestern part of Turkey using different learning algorithms showed 

that the MLP-SCG model is superior to the MLP-LM model according to the performance 

indicators R2, RMSE, and MAE. However, the performance of MLP-SCG and MLP-LM 

models in simulating monthly evaporation in research of Tezel and Buyukyildiz [68] (R2 

equal to 90.5% for MLP-SCG and 90% for MLP-LM) was better than the current research, 

which can be related to the difference in climatic and geographical conditions of the two 

regions. 

5. Conclusions 

In this study, the MLP model was tested using three supervised learning algorithms, 

LM, BR, and SCG, to estimate pan evaporation. In this regard, various combinations of 

temperature, pressure, and relative humidity components were used as input variables of 

the model. In the analyzed input combinations, the humidity-based components provided 

the weakest estimates, while the most accurate estimates were obtained from the temper-

ature–pressure–humidity-based input scenario. This article can give researchers as well 

as managers and planners of water resources in arid and semi-arid climatic regions of Iran 

the possibility to, in the absence of solar radiation data (which is severely affected in Iran 

due to the lack of a regular ground measurement network) with optimal accuracy, achieve 

a reliable estimate of pan evaporation only by using the usual variables of temperature, 

pressure and relative humidity (which are measured in all weather stations in these areas). 

The current results were obtained in an area that also has natural lakes; therefore, from 

this point of view, the proposed model can be used to estimate the actual daily evapora-

tion from the lakes of the current region, using the mentioned variables. In the comparison 

between the training algorithms, the results indicated the optimal performance of all three 

algorithms in MLP training. In the comparison between the algorithms, slight differences 

were reported, with the difference that the two algorithms BR and SCG, in most cases, 

showed better performance than the powerful and common LM algorithm. The obtained 

results suggest to future researchers in this field that for the numerical estimation of pan 

evaporation by the MLP model, they must consider the training algorithms of BR and SCG 

for the supervised training of MLP. Additionally, use bio-inspired optimization algo-

rithms such as genetic, firefly, particle swarm, etc., to optimize the MLP model, and as a 

result, improves the accuracy of the estimates provided for evaporation. 
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ANFIS Adaptive neuro-fuzzy inference system 

T Mean air temperature 
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Tdew Dew point temperature 

ELM Extreme learning machine 

FG Fuzzy  genetic 
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Tmax Maximum air temperature 
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RHmax Maximum relative humidity 

F Mean pressure 

Tmin Minimum air temperature 

Fmin Minimum pressure 

RHmin Minimum relative humidity 

MLP Multilayer perceptron 

MLR Multiple linear regression 

MARS Multivariate adaptive regression spline 

NS Nash Sutcliff 

NNARX Neural network autoregressive with exogenous input 

Epan Pan evaporation 

P Precipitation  

QRF Quantile regression forests 

RBNN Radial basis neural networks 

RF Random forests 

RH Relative humidity  

RH03 Relative humidity at 03:00 

RH09 Relative humidity at 09:00 

RH15 Relative humidity at 15:00 

RVM Relevance vector machine 

RP Resilient backpropagation 

RMSE Root Mean Square Error 

SCG Scaled conjugate gradient 

SOMNN self-organizing feature map neural network 

RS Solar radiation 

SS Stephens and Stewart 

S Sunshine  

SVM Support vector machine 

VP Vapor pressure 

Twet Wet-bulb temperature 

WI Willmott’s index of agreement 

WS Wind speed 
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Appendix A 

Table A1. Literature review on pan evaporation modeling cases using machine learning ap-

proaches. 

Reference Study Region Models Input Variables 

Ashrafzadeh et al. [3] Iran MLP, SVM, SOMNN Tmin, Tmax, T, RH, P, WS, S 

Kişi [7] USA MLP, RBNN, MLR, SS T, RS, WS, RH 

Ali Ghorbani et al. [30]  Iran MLP Tmin, Tmax, WS, RH, S 

Ghorbani et al. [36] Iran MLP, SVM Tmin, Tmax, WS, RH, S 

Kim et al. [33] Iran MLP, KSOFM, GEP, MLR T, WS, RH, S, RS 

Wang et al. [34] China 
MLP, GRNN, FG, LSSVM, MARS, 

ANFIS, MLR, SS 
T, RS, S, RH, WS 

Ashrafzadeh et al. [21] Iran MLP, SVM Tmax, RHmax, RHmin, WS, S 

Ehteram et al. [35] Malaysia MLP T, WS, RH, RS 

Al-Mukhtar [6] Iraq RF, QRF, SVM, MLR, ANN Tmax, Tmin, RH, WS 

Zounemat-Kermani et al. [28] Turkey NNARX, GEP, ANFIS T, RS, RH, WS 

Deo et al. [29] Australia RVM, ELM, MARS Tmax, Tmin, RS, VP, P 
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