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Abstract: The exploitation of shale gas resources brings in abundant hazardous oil-based drilling
cuttings (ODBCs). Herein, N, N-Dimethylcyclohexylamine (DMCHA) acted as the CO2 switchable
hydrophilic solvents (SHSs), and the OBDCs treated with DMCHA were studied, especially prior-
ity pollutant migration and produced wastewater assessment during the extraction process. The
petroleum hydrocarbon content of OBDCs decreased from 10.73 to 0.84 wt% after the DMCHA extrac-
tion was conducted at a DMCHA/OBDCs liquid–solid ratio of 20:1, 35 ◦C, and 200 rpm for 30 min.
Using the CO2 switchability of SHSs, the petroleum hydrocarbon and DMCHA were recovered.
There was wastewater, which was produced after recovering DMCHA, and the produced wastewater
assessment showed that chemical oxygen demand, 5-day biochemical oxygen demand, total nitrogen,
total organic carbon, and petroleum were 561.00, 238.00, 40.60, 309.00, and 0.27 mg/L, respectively.
Meanwhile, phenols (0.0031 mg/L), naphthalene (0.0000129 mg/L), phenanthrene (0.000059 mg/L),
anthracene (0.000058 mg/L), as well as heavy metal ions such as Cu (0.01 mg/L) could be detected
in the produced wastewater. As a result, a priority pollutant migration mechanism from ODBCs to
the produced wastewater was proposed. This would be helpful for the better management policy
making of the ODBCs treated by using CO2 SHSs and the produced wastewater.

Keywords: priority pollutants; wastewater; switchable hydrophilic solvents; oil-based drilling
cuttings; shale gas

1. Introduction

Shale gas, as one of the fossil fuels, is rich in shale reservoirs [1,2], which have been
supplying clean, low-carbon, and highly efficient energy to humans [3]. It is well known
that in order to create excellent borehole stability and reduce the formation damage of shale
gas reservoirs, large amounts of oil-based drilling fluids must be applied in the drilling
engineering of shale gas horizontal wells [2,4–6]. Generally, there would be huge oil-based
drilling cuttings (ODBCs) generated during drilling operations of the horizontal wells
worldwide [5,7–10]. For example, the shale gas resources in southwest China are mainly
distributed in the Sichuan Basin; thereby, the shale gas industry has drawn increasing
investments in this region over the last decade [11–14]. With the shale gas exploration and
development, however, the treatment and management of the ODBCs became a great issue
and concern in the regions of Sichuan, China [15,16].

Because of the serious potential risks to human health and the ecological environ-
ment, ODBCs containing harmful substances, such as heavy metals and organic matters,
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have been classified as hazardous waste [17,18], so that the discharge of ODBCs is strictly
regulated in many countries around the world. It is reported that the total petroleum
hydrocarbon, an important and obvious pollutant index, should be removed fully after the
treatment of ODBCs [17,18]. Traditional disposal methods, i.e., landfill and injection strata,
cannot eliminate the petroleum hydrocarbon (e.g., diesel and mineral oil), thus the envi-
ronmental risk still remains [18]. In recent years, several studies have reported some novel
strategies such as pyrolysis [19–23], superheated steam extraction [24], pressurized hot
water extraction [25], low-temperature thermal desorption [26], supercritical CO2 extrac-
tion [27], supercritical water oxidation [28], solvent extraction [29], surfactant washing [30],
and microemulsion cleaning [31–33] to remove the petroleum hydrocarbon of ODBCs. In
fact, the pressurized hot water extraction, superheated steam extraction, pyrolysis, and
thermal desorption would afford high energy consumption. The treatment cost of OBDCs
with the supercritical CO2 extraction and supercritical water oxidation was very costly.
It is difficult to reuse the surfactant components for surfactant-enhanced washing. The
use of microemulsion cleaning for the treatment of OBDCs has been investigated, but its
operations were complicated. Intriguingly, solvent extraction was favored to recover the
petroleum hydrocarbon of OBDCs because of its easy operations and simple processing
equipment. Alkane, toluene, petroleum ether, as well as their mixtures, were efficient
organic solvents for extraction, but such conventional solvents were highly toxic [34]. Thus,
eco-friendly solvents as extractants of ODBCs have attracted great attention.

To the best of our knowledge, the treatment of OBDCs by using green hydrophobic
deep eutectic solvents (DESs) has been reported [34]. However, the treatment process with
DESs was complex because of its cumbersome workflow. Therefore, eco-friendly solvent
extraction with simple workflow would be extremely advantageous. Fortunately, other
green CO2 switchable hydrophilic solvents (SHSs), such as tertiary amine derivatives and
amidine compounds, can change reversibly between hydrophilicity and hydrophobicity
through the entry and removal of CO2, which was discovered by Jessop et al. [35–39]. Soon
afterward, some studies have shown that CO2 SHSs have great potential applications in
extracting oil. For example, Phan et al. conceded that using CO2 SHSs, soy oil could be
extracted successfully from crushed soybeans [36]. Holland et al. described that CO2 SHSs
were efficient to extract bitumen of oil sands [40]. Samorì et al. confirmed that extraction
of hydrocarbons using CO2 SHSs was possible from microalga botryococcus braunii [41].
Wang et al. studied the solubility of diesel oil in CO2 SHSs and demonstrated that CO2 SHSs
could be applied to recover the diesel oil [42]. As a result of the reported studies [35–42], it
is possible that an eco-friendly CO2 switchable hydrophilic solvent extraction with simple
workflow can be found for the treatment of OBDCs, as illustrated in Figure 1. Furthermore,
few reports focused on priority pollutant migration and produced wastewater assessment
during the CO2 SHSs extraction process.

In this work, OBDCs from deep shale gas wells treated with CO2 SHSs were studied,
especially priority pollutant migration and produced wastewater assessment during the
extraction process. The influence of operating parameters, such as SHSs/OBDCs liquid–
solid ratio (volume versus mass), temperature, contact time and stirring speed on residual
petroleum hydrocarbon content, and the petroleum hydrocarbon removal rate of the shale
gas OBDCs, were explored. The residual cuttings were studied by FT–IR, SEM, EDS, as
well as contacted angles, and the recovered petroleum hydrocarbon and SHSs from the
switchable hydrophilic solvent extraction process were determined by FT–IR. In addition,
an optimized dose of water was explored, and the quality of produced wastewater in
the switchable hydrophilic solvent extraction process was evaluated. Finally, a possible
priority pollutant migration mechanism during the treatment of ODBCs by using SHSs
was proposed.
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Figure 1. The treatment process of shale gas OBDCs with CO2 SHSs.

2. Materials and Methods
2.1. Materials

The sample of ODBCs was obtained from a well site of shale gas blocks in the south
of the Sichuan Basin (Sichuan, China). N, N-Dimethylcyclohexylamine (DMCHA, 98%),
perchloroethylene (AR), and anhydrous sodium sulfate (AR) were purchased from Macklin
Biochemical Co., Ltd., Shanghai, China. Deionized (DI) water (18.25 MΩ cm) used through-
out was prepared with a UPH Automatic Water Purifier (Sichuan Ulupure Science and
Technology Co., Ltd., Chengdu, China).

2.2. Extracting Petroleum Hydrocarbon from ODBCs with CO2 SHSs
2.2.1. Extracting Petroleum Hydrocarbon Procedure

Figure 1 depicts the treatment process of shale gas OBDCs by using CO2 SHSs, and
DMCHA was a candidate of the CO2 SHSs. As shown in Figure 1, shale gas OBDCs
were washed with DMCHA through the extracting petroleum hydrocarbon process under
mechanical agitation. The DMCHA/OBDCs liquid–solid ratio, temperature, contact time,
and stirring speed varied 5:1~30:1, 25~50 ◦C, 10~60 min, and 100~350 rpm, respectively.
Then, the residual cuttings were separated and extracts of OBDCs were obtained by utilizing
high-speed centrifugation at 1500 rpm for 10 min.

To optimize the dose of fresh water (DI water), the CO2 response of DMCHA in DI
water was investigated. The DMCHA/DI water liquid–liquid ratio (volume versus volume)
varied from 1:1 to 1:3, and CO2 was bubbled at a rate of 150 mL/min for 2 h. Conductivity
changes were recorded every 1 h. Furthermore, to recover petroleum hydrocarbon, DI
water was added in the obtained extracts of OBDCs and bubbling CO2 continued at a rate
of 150 mL/min for 2 h, and then the amount of the DI water was optimized by the above
studies. The petroleum hydrocarbon was separated by means of a liquid–liquid separation.

2.2.2. Recovering CO2 SHSs Procedure

N2 was bubbled into the solution containing the protonated DMCHA at 70 ◦C for 2 h,
in which the ventilation rate was controlled at 150 mL/min. The DMCHA was recovered
and reused after another liquid–liquid separation operation, but wastewater was produced
in this treatment process.
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2.3. Analytical Methods

The pH measurements were conducted on a SevenGo Duo Pro pH meter (METTLER
TOLEDO, Zurich, Switzerland), and all of conductivity measurements were carried out with
a DDS-307 conductometer (INESA and Scientific Instruments Co., Ltd., Shanghai, China).
The petroleum hydrocarbon content was measured by using an Oil 460 Infrared Oil Content
Analyzer (Huaxia Kechuang Instrument Technology Co., Ltd., Beijing, China). The chemical
oxygen demand (COD), five-day biochemical oxygen demand (BOD5), total organic carbon
(TOC), phenols, polycyclic aromatic hydrocarbons, and total dissolved solids (TDS) were
analyzed according to the APHA Standard Methods [43,44]. The ammonia nitrogen content
and total nitrogen content were quantified with a UV7504 UV–Vis Spectrophotometer
(Shanghai jingmi instrument Co., Ltd., Shanghai, China). Petroleum was detected by
using a JLBG-126U infrared oil content analyzer (Jilin Jiguang Technology Co., Ltd., Jilin,
China). The inorganic ions such as Cl−, PO4

3−, SO4
2−, and NO3

− were detected by using
a ECO ion chromatography with an 863 Compact IC Autosampler (Metrohm AG, Herisau,
Switzerland) after samples were filtered through a 0.22 µm filter. Trace analysis of metal
elements such as Na, K, Ca, and Mg was conducted on a PinAAcle 900 atomic absorption
spectrophotometer (PerkinElmer, Waltham, MA, USA). The other metal elements (e.g., Al,
As, Ba, Co, Cr, Cu, Fe, Mn, Ni, etc.) were detected on an Optima 8300 Inductively Coupled
Plasma Optical Emission Spectroscopy (PerkinElmer, Waltham, MA, USA).

2.4. Characterizations

Fourier transform infrared (FT-IR) spectrums were recorded using a Nicolet 170SX
infrared spectrometer (Perkin Elmer Co., Madison, WI, USA), and the FT–IR measurements
were conducted in the optical range of 400–4000 cm−1 by averaging 16 scans with a
resolution of 4 cm−1. The contacted angles of DI water on the surface of ODBCs before
and after treatment by using CO2 SHSs were recorded with an SDC-200 S Contact Angle
Measuring Instrument (Shengding Precision Instruments Co., Ltd., Dongguan, China). The
measurements of scanning electron microscopy (SEM) and energy dispersive spectroscopy
(EDS) were performed on a ZEISS Gmini 300 field emission scanning electron microscope
(Carl Zeiss Jena, Jena, Germany), and an accelerating voltage of 10 kV was employed to
obtain high resolution images.

3. Results and Discussion
3.1. Morphology and Composition of Shale Gas OBDCs

In general, there were 250~300 m3 OBDCs produced from a single shale gas well in
the south of the Sichuan Basin (Sichuan, China), and this production lasted approximately
one month. Furthermore, the throughput of shale gas OBDCs would be enlarged in the
scale of increasing deep regional shale gas development. Apparently, it can be seen from
Figure 2a that deep regional shale gas OBDCs which smelt like oil were of semi-solid state.
To efficiently manage and treat the shale gas OBDCs, their composition was studied, as
shown in Figure 2b. Figure 2b shows that the shale gas OBDCs consisted of petroleum
hydrocarbon, inorganic matter, moisture, and others, which is consistent with the previous
studies. All studies reported that human health and environment suffered easily from the
petroleum hydrocarbon of OBDCs. Thus, it is more important to deal with the shale gas
OBDCs for deep regional shale gas development.
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gas well site in the southern Sichuan Basin, China.

3.2. Extracting Petroleum Hydrocarbon from shale gas ODBCs by Using CO2 SHSs

DMCHA, one of the CO2 SHSs, has been used for extracting petroleum hydrocarbon
of deep regional shale gas OBDCs, and a sustainable treatment process of the shale gas
OBDCs with DMCHA is illustrated in Figure 1. Residual petroleum hydrocarbon content
and petroleum hydrocarbon removal rate of the shale gas OBDCs after treatment by using
DMCHA were explored, as shown in Figure 3. It can be observed from Figure 3a that
the residual petroleum hydrocarbon content decreased with the increasing liquid–solid
ratio at 35 ◦C and 200 rpm for 30 min, but hardly changed after reaching the liquid–solid
ratio of 20:1. This is because most of the petroleum hydrocarbon from shale gas ODBCs
can be dissolved by DMCHA but DMCHA could not perfectly drive the desorption of
petroleum hydrocarbon on surfaces of drilling cuttings. Furthermore, the influence of
contact time, temperature, and stirring speed on residual petroleum hydrocarbon content
and petroleum hydrocarbon removal rate was studied, as shown in Figure 3b–d. Figure 3b
shows that the residual petroleum hydrocarbon content changed with contact time increas-
ing at the liquid–solid ratio of 20:1, 35 ◦C, and 200 rpm, suggesting that a contact time of
30 min is enough. Figure 3c exhibits the residual petroleum hydrocarbon content reduced
with the increasing temperature at the liquid–solid ratio of 20:1 and 200 rpm for 30 min,
which indicates that the temperature increasing would be beneficial for the desorption
of petroleum hydrocarbon. However, the temperature influence became weak when the
temperature exceeded 35 ◦C. What is more, a higher temperature might result in a worse
DMCHA loss because of DMCHA volatilization, so extracting petroleum hydrocarbon
from the ODBCs with DMCHA at 35 ◦C would be better. Figure 3d shows the changes of
the residual petroleum hydrocarbon content with stirring speed, which reveals 250 rpm
was favorable. As result of Figure 3, under the optimal conditions (namely liquid–solid
ratio of 20:1, 35 ◦C, 250 rpm, and 30 min contact time), the minimum of residual petroleum
hydrocarbon content and the maxima of petroleum hydrocarbon removal rate were 0.84%
and 92.17%, respectively. These results indicate that the petroleum hydrocarbon has been
efficiently extracted from the ODBCs.
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An optimized dose of fresh water was confirmed, as shown in Figure 4. Figure 4a
shows that DMCHA was not insoluble in DI water at 25 ◦C, and a DMCHA-DI water
interface could be observed clearly. After bubbling CO2 at a rate of 150 L/min for 120 min,
DMCHA was partly dissolved in DI water, but the DMCHA-DI water interface still existed
for DMCHA and DI water mixtures with a 3:1 volume ratio. In contrast, the DMCHA-DI
water interface which existed in DMCHA and DI water mixtures with a 1:1 and 1:3 volume
ratio disappeared completely, and aqueous solutions formed (see Figure 4b). Moreover,
Figure 4c exhibits that the conductivity of these mixtures increased when CO2 was bubbled
continuously within 120 min. The conductivity change is because DMCHA can enforce
a reversible conversion from hydrophobic DMCHA to hydrophilic DMCHAH+ through
bubbling CO2. Therefore, to reduce water consumption and achieve an excellent separation
of DMCHA with recovered petroleum hydrocarbon, the dose of water with DMCHA in a
proportion of 1:1 (by volume) was favorable.
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To reveal the potential values of recovered petroleum hydrocarbon and DMCHA,
FT–IR measurements were conducted. The recovered petroleum hydrocarbon from the
shale gas OBDCs was analyzed with FT–IR, as shown in Figure 5. In the spectrum of the
initial diesel oil (i.e., base oil of oil-based drilling fluids), characteristic peaks such as 2930
(C–H stretching vibration of methyl groups), 2855 (C–H stretching vibration of methyne
groups), 1453 (C–H symmetric deformation vibration of methyl or methyne groups), and
1373 cm−1 (deformation vibration of methyl groups) can be found. Importantly, the charac-
teristic peak at 777 cm−1 belonged to the (–CH2–)n (n ≥ 4) rocking vibration. Moreover,
similar characteristic peaks could be found in the spectrum of the recovered petroleum
hydrocarbon. These indicate that the saturated long straight-chain alkanes were the main
components of the initial diesel oil and the recovered petroleum hydrocarbon from OBDCs.
Furthermore, Figure 5b shows the FT–IR spectrums of the initial and recovered DMCHA.
In the spectrum of the initial DMCHA, characteristic peaks such as 2931 (C–H stretching
vibration of methyl groups), 2770 (C–H stretching vibration of methyne groups), and
1448 cm−1 (C–H bending vibration of methyne groups) can be observed. Meanwhile, it is
found that the C–N stretching vibration of tertiary amine compounds varied between 1350
and 1000 cm−1. Obviously, the FT–IR spectrum of the recovered DMCHA was similar with
that of the initial DMCHA, suggesting that the recovered DMCHA could be reused in the
treatment process of shale gas OBDCs.
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3.3. Priority Pollutant Migration and Produced Wastewater Assessment
3.3.1. FT-IR Analysis

So far, the petroleum hydrocarbon is known to be a priority pollutant index. Priority
pollutant migration of the shale gas OBDCs was studied by using FT–IR. Figure 6 shows
the FT–IR spectrums of shale gas OBDCs before and after treatment using SHSs. It can
be seen from Figure 6 that the absorption bands at 3433 cm−1 (O–H stretching vibrations
of water), 2924 and 2855 cm−1 (–CH stretching vibrations of alkanes), 1636 cm−1 (C=C
stretching vibrations of aromatic hydrocarbons), 1455 and 876 cm−1 (C–O asymmetric
stretching vibrations and in-plane bending vibrations of carbonate ions resulting from
CaCO3, respectively), 1086 and 466 cm−1 (Si–O stretching vibrations and O–Si–O bending
vibrations of SiO2), and 610 cm−1 (corresponding to a characteristic absorption peak of
BaSO4) existed in FT–IR spectrums of shale gas OBDCs before treatment and after treatment
using SHSs. Compared with the absorption peak intensity of shale gas OBDCs before
treatment, however, the absorption peak intensity of shale gas OBDCs after treatment by
using SHSs decreased dramatically at 3443, 2924, 2855, and 1636 cm−1, suggesting that the
moisture and petroleum hydrocarbon have been removed away from the shale gas OBDCs.
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3.3.2. Contacted Angle Analysis

To confirm petroleum hydrocarbon migration, contacted angle measurements were
carried out (see Figure 7a). As shown in Figure 7b, the contacted angle value of initial
shale gas OBDCs (115.8◦) was higher than 90◦, and that of shale gas OBDCs after treatment
by using DMCHA (65.9◦) was lower than 90◦. As a result, these reveal that the surface
wettability of shale gas OBDCs changed from a hydrophobic surface to hydrophilic surface
because of removing abundant petroleum hydrocarbon.
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3.3.3. SEM Analysis

On the other hand, SEM measurements were conducted to study micromorphology
changes of shale gas OBDCs before and after treatment by using DMCHA, as shown in
Figure 8. Figure 8a,b show that initial shale gas OBDCs looked like compact agglomera-
tions, and cutting particles cannot be found clearly because of covering by the petroleum
hydrocarbon, even under a high magnification (×10,000). Compared with Figure 8a,b,
Figure 8c exhibits that the micromorphology of shale gas OBDCs after treatment by using
DMCHA had changed. The profile of cutting particles can be clearly observed within view
of SEM observation (Figure 8c), because the agglomerations were destroyed. Moreover, it is
seen from Figure 8d that surfaces of the cutting particles were rough at a high magnification
(×10,000). Thus, all SEM results indicate that the petroleum hydrocarbon of shale gas
OBDCs reduced significantly as well.
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3.3.4. EDS Analysis

In order to obtain insights into shale gas OBDCs before and after treatment by us-
ing DMCHA, EDS measurements were conducted. Figure 9 shows the EDS profile and
elemental mappings involved in the surface of shale gas OBDCs before treatment. It is
found from Figure 9 that elemental compositions of the initial shale gas OBDCs contained
C, O, S, Cl, Na, K, Ca, Cr, Fe, Co, Ni, Cu, Zn, Sb, and Ba. In addition, the shale gas OBDCs
after treatment by using DMCHA were comprised of 12 chemical elements such as C, O,
N, S, Cl, Si, As, Na, Al, Ca, Sr, and Ba, as shown in Figure 10. It is not surprising, that
there were real differences between the elemental compositions of Figures 9 and 10. This is
because the shale gas OBDCs could take on different elemental compositions, depending on
which horizontal layers they were in. Therefore, EDS analyses might ensure the elemental
compositions of the shale gas OBDCs including heavy metals such as Cr, Co, Ni, Cu, Zn,
Sb, and As, which is in agreement with preceding studies.

Based on the EDS map sum spectrums (Figure 11a,c), atomic percentages of shale
gas OBDCs before and after treatment by using DMCHA were analyzed. As shown in
Figure 11b,d, the C percentage of untreated shale gas OBDCs was higher than that of treated
shale gas OBDCs with DMCHA, which should ascribe to the petroleum hydrocarbon of
shale gas OBDCs decreasing. Fortunately, although shale gas OBDCs contained heavy
metals, the percentage of heavy metals, for example Cr, Co, Ni, Cu, Zn, Sb, and As, was
very low (see Figure 11b,d). These proofs suggest that the environmental risks of shale gas
OBDCs have been weakened.
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3.3.5. Produced Wastewater Analysis

DI water was used throughout the treatment process of shale gas OBDCs with CO2
SHSs. To evaluate water quality, DI water and produced water were measured and ana-
lyzed, as listed in Table 1. The conductivity of DI water (0.75 µS/cm) was lower than that
of produced water (341.00 µS/cm), which indicates the influence of ionic substances during
the extracting petroleum hydrocarbon process (See Figure 1). There was no petroleum in
DI water, but unfortunately a little petroleum (0.27 mg/L) was detected in the produced
water, resulting from the first liquid–liquid separation operation. The pH value DI water
and produced water was 6.8 and 8.9, respectively. The pH of produced water was high
due to the existence of residual DMCHA after the second liquid–liquid separation oper-
ation, making the produced water alkalic. Furthermore, COD, BOD5, ammonia-N, TN,
and TOC of DI water and produced water were studied in detail. For DI water, COD,
BOD5, and ammonia-N were not detected, and TN and TOC were 0.19 and 1.00 mg/L,
respectively. Meanwhile, ammonia-N for produced water was still not detected, but COD,
BOD5, ammonia-N, TN, and TOC of produced water increased to 561.00, 238.00, 40.60, and
309.00 mg/L, respectively. This is because of the migration of organic matters from OBDCs
and the residual DMCHA into the produced water.

Table 1. Water quality of DI water and produced water.

Samples pH Conductivity
(µS/cm)

COD
(mg/L)

BOD5
(mg/L)

Ammonia-N
(mg/L)

Total Nitrogen
(mg/L)

TOC
(mg/L)

Petroleum
(mg/L)

DI water 6.8 0.75 ND ND ND 0.19 1.00 ND
Produced

water 8.9 341.00 561.00 238.00 ND 40.60 309.00 0.27

TDS of DI water and produced water is shown in Table 2. For DI water, TDS below the
lower detection limit was not detected, but TDS of the produced water was 264 mg/L. This
suggests that produced water includes many ionic substances. To discover information
of ionic substances, metal elements and anions of DI water and produced water were
investigated. Table 2 shows that DI water contained anions such as Cl− (5.36 mg/L), NO3

–

(0.096 mg/L), and SO4
2– (0.984 mg/L), but many metal elements were not detected because

their concentrations might be below lower detection limit. By contrast, produced water not
only included anions such as Cl−, NO3

−, and SO4
2−, but also contained metal elements
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such as K, Na, Ca, Ba, Cu, Fe, and Sr. The concentrations of Cl−, NO3
−, and SO4

− were
145, 0.802, and 9.830 mg/L, respectively. The dramatic increasing of Cl− indicates that the
main soluble salts of OBDCs were chlorides. Furthermore, the concentrations of K, Na,
Ca, Ba, Cu, Fe, and Sr were 6.44, 12.60, 28.80, 0.28, 0.01, 0.01, and 0.16 mg/L, respectively.
Importantly, it was found that heavy metals, i.e., Cu, could migrate into produced water
due to the existence of moisture.

Table 2. Metal elements, anions, and TDS of DI water and produced water.

Samples K
(mg/L)

Na
(mg/L)

Ca
(mg/L)

Ba
(mg/L)

Cu
(mg/L)

Fe
(mg/L)

Sr
(mg/L)

Cl−
(mg/L)

NO3−

(mg/L)
SO42−

(mg/L)
TDS

(mg/L)

DI water ND ND ND ND ND ND ND 5.36 0.096 0.984 ND
Produced

water 6.44 12.60 28.80 0.28 0.01 0.01 0.16 145 0.802 9.830 264

The release of organic pollutants, such as phenols and polycyclic aromatic hydrocar-
bons, was determined after the treatment of shale gas OBDCs by using CO2 SHSs, as shown
in Table 3. Table 3 shows that phenol, naphthalene, phenanthrene, and anthracene were
not found in DI water, but there was phenol (0.0031 mg/L), naphthalene (0.0000129 mg/L),
phenanthrene (0.000059 mg/L), and anthracene (0.000058 mg/L) in produced water. Thus,
it is concluded that the phenol, naphthalene, phenanthrene, and anthracene could move
from OBDCs to produced water after the treatment with CO2 SHSs.

Table 3. The content of phenols and polycyclic aromatic hydrocarbons in DI water and produced
water.

Samples Phenol
(mg/L)

Naphthalene
(mg/L)

Phenanthrene
(mg/L)

Anthracene
(mg/L)

DI water ND ND ND ND
Produced water 0.0031 0.0000129 0.000059 0.000058

3.4. Priority Pollutant Migration Mechanism from ODBCs to Produced Wastewater

Based on the present results obtained from studies on the migration of priority pol-
lutants and produced wastewater assessment, a possible priority pollutant migration
mechanism during the treatment of ODBCs by using CO2 SHSs is proposed in Figure 12.
As shown in Figure 12, shale gas OBDCs, including petroleum hydrocarbon, inorganic mat-
ter, moisture, and others (see Figure 2), are hazardous solid wastes. As one of the CO2 SHSs,
DMCHA can efficiently extract petroleum hydrocarbon from shale gas ODBCs, so that
the hazardous situation of residual cuttings reduced significantly because their petroleum
hydrocarbon content was below 1% (see Figure 3). Meanwhile, the petroleum hydrocarbon
was dissolved into DMCHA to form extracts of OBDCs, and salts were leached out of
OBDCs as well because the moisture existed (See Table 2). To achieve an excellent separa-
tion of the petroleum hydrocarbon with DMCHA, DI water was introduced, and CO2 was
bubbled into the extracts of OBDCs. Because DMCHA was protonated to form hydrophilic
DMCHAH+ (See Figure 4), the petroleum hydrocarbon was recovered successfully after
the first liquid–liquid separation operation (See Figure 5a). Unfortunately, there were few
phenols and polycyclic aromatic hydrocarbons and little residual petroleum in the lower
liquids located below the petroleum hydrocarbon layer. Furthermore, in order to recover
DMCHA, N2 was bubbled into the lower liquids at 70 ◦C. The hydrophilic DMCHAH+

was converted to hydrophobic DMCHA. Most of the DMCHA could be recovered after
the second liquid–liquid separation operation (See Figure 5b), but little residual DMCHA
existed in the lower liquids located below the DMCHA layer (i.e., produced wastewater).
As a result, the hazardous situation of the residual cuttings became weak because the
petroleum hydrocarbon was removed from OBDCs. However, COD, BOD5, TN, TOC,
petroleum, and TDS can be detected in the produced wastewater (see Tables 1 and 2),
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and the release of phenol, naphthalene, phenanthrene, anthracene, and heavy metals (Cu)
from OBDCs to the produced wastewater occurred (see Tables 2 and 3). Worst of all, the
wastewater with high COD, BOD5, TN, and TOC was produced after treatment of ODBCs
by using CO2 SHSs, which could ascribe to the priority pollutants such as the leachables of
OBDCs and the residual DMCHA.
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4. Conclusions

In summary, DMCHA, as one of the CO2 SHSs, was applied to deal with ODBCs, and
priority pollutant migration and produced wastewater assessment during the extraction
process were analyzed in this study. When the DMCHA extraction process was controlled
at DMCHA/OBDCs liquid–solid ratio of 20:1, 35 ◦C, and 200 rpm for 30 min, the petroleum
hydrocarbon content of OBDCs decreased from 10.73 to 0.84 wt%. The petroleum hydrocar-
bon and DMCHA were recovered by using the CO2 switchability of SHSs. Unfortunately,
wastewater was produced after recovering DMCHA. It was found that COD, BOD5, total
nitrogen, TOC, and petroleum were 561.00, 238.00, 40.60, 309.00, and 0.27 mg/L, respec-
tively. Additionally, phenols (0.0031 mg/L), naphthalene (0.0000129 mg/L), phenanthrene
(0.000059 mg/L), anthracene (0.000058 mg/L), as well as heavy metal ions such as Cu
(0.01 mg/L) were discovered in the produced wastewater. According to the produced
wastewater assessment, priority pollutant migration mechanism from ODBCs to produced
wastewater was elaborated. Although the environmental risks of shale gas OBDCs have
been weakened after DMCHA extraction, pollution of the produced wastewater should be
taken care of in the future.
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