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Abstract: The dump, with the compact rock platform and high and steep loose slope that is formed
during coal mining, is the most serious area of soil erosion in a surface coal mine. Ground fissures are
a typical geological hazard in coal mining areas. However, the effect of ground fissures on soil erosion
remains unclear. Rainfall experiments were conducted to determine the varying characteristics
of wetting front, runoff and sediment production, and soil denudation rate, as well as the effects
of ground fissures on these factors in a platform-slope system of a dump. Ground fissures could
significantly enhance wetting front and soil erosion. Rill erosion was formed as the rainfall and
runoff flushed the soil, which eventually developed into erosion gullies. Erosion failure modes
with platform-slope systems in the dump could be divided into the surface erosion stage, fissure
deformation stage, rill erosion stage, fissure collapse-rapid increase stage, and stable stage. Runoff
power and flow shear stress had the greater influence on soil denudation rate, which indicated that
erosion energy of concentrated flow had important influence on soil erosion. Moreover, shallow
mudflow induced by rainfall was one of the forms of soil slope instability; it occurred in a short time
with great soil erosion. Soil erosion in the dump with ground fissures was mainly shallow mudflow
and rill erosion, resulting from the combined effect of hydraulic erosion and gravity erosion.

Keywords: soil erosion; shallow mudflow; ground fissure; coal mining area; rainfall

1. Introduction

Coal is an irreplaceable stable main energy source in the short term in China [1,2]. In
2018, the total national coal consumption was 2.74 billion tons of standard coal, providing
energy security for China’s development [3]. However, the mining of coal resources
can not only bring about rapid economic development, but also cause serious ecological
and environmental problems, among which open-pit mining is the most serious [4,5].
During the 55 years from 1950 to 2005, about 10,869 geological disasters occurred in
China’s mining developments, with 4779 deaths and direct economic losses of about
RMB 17.458 billion [6]. In particular, mine spoils are an important driver of environmental
damage land degradation [7–9]. Hence, it is necessary to study the geological disasters in
coal mining areas.

Most of the large coal mines are located in the vulnerable environments of northwest-
ern China [10]. As a typical geomorphic unit of the mining area, the dump has loose slopes
with steep slopes and long slopes, a platform with rock and soil compaction, complex
material composition, developed porosity, uneven subsidence, etc. [11]. The dump is the
most serious area of soil erosion in a surface coal mine [10], with multiple soil erosion types,
such as splash erosion, surface erosion, rill erosion, collapse, landslide, and debris flow,
and so on [12–14]. The process of soil erosion in the dump is special and complex, and
the magnitude is extremely serious. The erosion rate in a dump is 43.6–239.2 times that
of abandoned land [15]. Therefore, it is necessary to study soil erosion of the dump in a
surface coal mine.
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Ground fissures (GF) are a typical geological hazard in coal mining areas. They oc-
cur in large numbers with extensive distribution, causing severe damage and seriously
affecting the ecological security of mining areas [16–18]. They not only cause the decrease
of land productivity and serious water pollution, but are also a threat to mine electrical
and mechanical equipment and production personnel safety [19,20]. Ground fissures have
relatively strong spatial variability, yet clear self-similarity. Ground fissures change the
movement path of surface runoff, so that surface runoff and rainfall directly move from the
fissures to the interior of the soil, reducing the stability of the soil [21]. Relevant research
shows that the appearance of ground fissures improves the soil infiltration capacity and
is the main reason for slope deformation and instability [22,23]. Hence, the occurrence of
ground fissures greatly affects the hydrological cycle processes such as surface runoff, infil-
tration, and evaporation, and also increases the possibility of soil and water loss disasters
such as collapse, landslide, and debris flow in the dump [24]. Therefore, understanding
the laws of water movement with ground fissures in a dump response to soil erosion
is essential.

Research on soil erosion in a surface coal mine dump includes soil erosion mechanisms
and characteristics [25], influencing factors [7], and erosion prediction [15]. Of course, some
researchers have focused on the role and contribution of the platform of the dump in soil
erosion [26,27]. However, few studies have been carried out regarding the soil erosion on
platform and slope in a dump. In China, studies related to the source of erosion sediment
of the dump model [28], and the soil erosion characteristics of the dump under different
rainfall intensity [29] are rare. Platform catchment is a key link that affects the process
and amount of soil erosion in the dump. The surface runoff collected by the platform in
the dump provides erosion power, and the preferential flow caused by ground fissures
promotes soil erosion and slope instability. In addition, the slope of the dump was the main
source of soil erosion. Therefore, it is necessary to take the platform and slope of the dump
as a system to reveal the erosion failure characteristics.

Therefore, taking a platform–slope system of the dump as an example, the soil erosion
process and erosion failure characteristics were studied by a simulated rainfall test. The
goals of this study were to analyze: (1) the wetting front depth with time, (2) the process of
soil erosion and effect of ground fissures on erosion failure, and (3) the relation between the
soil denudation rate and hydraulic parameters in a surface coal mine dump. These results
are of significance for controlling soil erosion in a dump.

2. Materials and Methods
2.1. Study Site

The study area is in the south dump of Shenglidong Open-pit Coal Mine No. 2 of
Datang International Power Generation Company in Xilinhot city, Xilingol league, Inner
Mongolia (Figure 1). The local climate is arid and semiarid in the middle temperate
zone. The average annual temperature is 1.7 ◦C, and the average annual precipitation is
284.74 mm. Precipitation mainly occurs in June–August, accounting for more than 71%
of the annual rainfall. The annual average evaporation is 1794.6 mm, and the annual
average wind speed is 3.4 m/s. The climate conditions are mainly derived from the China
Meteorological science data sharing service platform, with an average value of 30 years.
The soil is typical chestnut soil. To restore the vegetation of the dump as soon as possible,
soil covering measures were applied for the platform and slope reclamation (the soil is
sandy loam).
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bulk density of 1.35 g/cm3. According to the rainstorm occurrence frequency based on 
the rainfall data, the rainfall intensity was set to 1.5 mm/min. According to the survey 
results of the dump, the designed ground fissure depths were 5, 10, 15, and 20 cm and 
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sprayer could be controlled independently, and the number of water sprayers to be used 
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infiltration water was removed by 4 rows and 4 columns of circular holes. The 
equivalent model of ground fissures was determined by the survey results and related 
research [31], which was made of a thin rigid metal plate. The length of the equivalent 
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Figure 1. Location of the study area.

2.2. Experimental Design

When conducting indoor simulation research, the similarity principle was usually
used to determine the geometric size of the dump, and the similar proportional constant
between the actual dump in the field and the simulated dump in the room was used as
the basis for the experimental design. The similarity coefficient of this study was 50. The
dump slope was made of sandy loam soil and coal gangue with a thickness of 50 cm and
the thickness of each layer was 10 cm. The lower layer was coal gangue with a thickness
of 20 cm, a particle size of 10–30 mm, and a soil bulk density of 1.7 g/cm3. The upper
layer was sandy loam with a thickness of 30 cm, a particle size of 0–10 mm, and a soil
bulk density of 1.35 g/cm3. According to the rainstorm occurrence frequency based on the
rainfall data, the rainfall intensity was set to 1.5 mm/min. According to the survey results
of the dump, the designed ground fissure depths were 5, 10, 15, and 20 cm and these tests
were marked GF1, GF2, GF3, and GF4, respectively (Table 1).

Table 1. Each conditions with different ground fissure.

Test Dimension (cm) Ground Fissure Depth (cm) Ground Fissure Volume (cm3) Platform Catchment Area (cm2)

GF1 110 × 50 × 50 5 375 2000
GF2 110 × 50 × 50 10 750 2000
GF3 110 × 50 × 50 15 1250 2000
GF4 110 × 50 × 50 20 1500 2000

The experimental facilities are shown in Figure 2. The artificial rainfall simulator was
portable with 10 water sprayers and it was same as that of Lv et al. [30]. Each water sprayer
could be controlled independently, and the number of water sprayers to be used depended
on the specific experimental conditions. The thickness of glass flume was 10 mm and the
length, width, and height were 110, 50, and 60 cm, respectively. The excess infiltration
water was removed by 4 rows and 4 columns of circular holes. The equivalent model of
ground fissures was determined by the survey results and related research [31], which was
made of a thin rigid metal plate. The length of the equivalent model was 30 cm, and the
height was 5, 10, 15, or 20 cm (Table 1). During the filling process, the equivalent model
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of the ground fissure was embedded and taken out after 48 h. The outlet was set at the
front edge of the glass flume. After the occurrence of slope runoff, the time of runoff was
recorded. Then, the runoff sediment samples were collected every 3 min and the rainfall
lasted for 60 min. The number of erosion gullies were calculated after rainfall, and their
length, width, depth were measured by steel ruler.
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Figure 2. Schematic of the experimental setup.

2.3. Data Analysis

The soil denudation rate and hydraulic parameters were determined from by Peng et al. [32]
and Zhang et al. [33]. The Grey Relational Analysis was used to analyze their relationship [34].
The Pearson correlation coefficients and regression equation were used by Origin 9.1 and SPSS
17.0 software.

3. Results
3.1. Wetting Front

Figure 3 indicates the variation characteristics of wetting fronts with different ground
fissures under rainfall conditions. As shown in Figure 3, the wetting front increased
continuously. The depth of the wetting front for GF1, GF2, GF3, and GF4 were 4.0, 4.3, 4.5,
and 4.5 cm at 5 min, respectively, and then increased in different degrees. At the end of
the rainfall test, the depth of the wetting front for GF1, GF2, GF3, and GF4 were 14.5, 17.8,
22.7, and 30.5 cm, respectively. The relationship between the wetting front and time with
different fissure depths were as follows:

5 cm depth (GF1) y = 1.619x0.534 (R2 = 0.996; p = 0.000; n = 12)

10 cm depth (GF2) y = 1.706x0.578 (R2 = 0.997; p = 0.000; n = 12)

15 cm depth (GF3) y = 2.45x0.553 (R2 = 0.975; p = 0.000; n = 12)

20 cm depth (GF4) y = 1.919x0.69 (R2 = 0.988; p = 0.000; n = 12)
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Figure 3. Variation characteristics of wetting fronts.

3.2. Soil Erosion Process

The soil on the slope was changed from dry to wet, and splash erosion and surface
erosion occurred successively. The rill erosion developed into gully erosion by rainfall and
runoff (Figure 4). The soil water content was low at first, and then increased, and the thin
layer flow was formed. It provided a foundation for the occurrence of surface erosion. As
the same time, a large amount of rainwater and surface runoff flowed into the ground
fissure, and then moved to the deep soil. With the water volume increasing, the water
level of the ground fissure increased, and the soil stability decreased, which caused soil
collapse in the ground fissure. When the runoff on the slope had a certain erosive ability, rill
erosion occurred, and it first appeared at the bottom of the slope. Next, rill erosion moved
upwards, and multiple rills on the slope were formed. As the rainfall time increased, under
the combined action of water pressure in the ground fissure and rill erosion, the soil at the
slope shoulder was washed away. The result was the rapid increase of runoff and erosion.

Comparing the soil erosion of dump at different ground fissures depth, it could be
seen that the greater the ground fissure depth, the more serious the soil erosion. It was
observed that the number of erosion gullies with GF1, GF2, GF3, and GF4 were 5, 4, 3, and
3, respectively. For GF1, the lengths of all the erosion gullies were 36.4, 43.2, 45.4, 50.3, and
60.5 cm, the corresponding widths and depths were 5.67, 6.31, 5, 4.65, and 5 cm, and 3, 2, 3,
4.63, and 6, respectively. The soil erosion of GF4 was faster and more serious than that of
GF1. There were 3 erosion gullies for GF4 with lengths of 50.40, 55.60, and 86.10 cm, widths
of 12.32, 9, and 26 cm, and depths of 9.67, 7.38, and 14 cm, respectively.
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3.3. Runoff and Sediment

As shown in Figure 5, for GF1, with the rainfall time increasing, the runoff rate
increased and then stabilized. The runoff rate had a similar variation law for GF2, GF3,
and GF4, but there was a special point for GF2. When the rainfall time increased from 3
to 6 min, the runoff rate increased by 4.13 times. The runoff rate at 6 min was 2.36 L/min,
which was 2.41 times the average. This was the main reason for the fluctuation of the
runoff rate with time. The average runoff rates for GF1, GF2, GF3, and GF4 were 0.39, 0.98,
0.59, and 1.27 L/min, respectively, which demonstrates increases of 150.81%, 50.54%, and
224.53% between the rates. The cumulative runoff with different fissure depths were 23.41,
58.7, 35.24, and 75.95 L, which increased significantly with time. The relationship between
cumulative runoff and time with different fissure depths were as follows:

5 cm depth (GF1) y = 0.131x1.268 (R2 = 0.999; p = 0.000; n = 20)

10 cm depth (GF2) y = 2.443x0.772 (R2 = 0.993; p = 0.000; n = 20)

15 cm depth (GF3) y = 0.261x1.202 (R2 = 0.998; p = 0.000; n = 20)

20 cm depth (GF4) y = 0.356x1.302 (R2 = 0.998; p = 0.000; n = 20)
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As shown in Figure 6, it could be seen that the erosion rate presented successive
fluctuations with multiple peaks and valleys. At the beginning of the test, the runoff
erosion capacity was low, not enough to wash out soil. Then the erosion rate increased and
fluctuated because of the rill erosion. Under the action of runoff, the erosion pattern on the
slope changed by the merging and bifurcation of the rills, and then the erosion rate also
changed. For GF1, the erosion rate varied from 46.92 to 82.18 g/min, and its value was
lower than that of GF2, GF3, and GF4. The erosion rates varied from 135.62 to 552.62 g/min
and from 198.65 to 863.74 g/min for GF3 and GF4. The average erosion rates for GF1, GF2,
GF3, and GF4 were 63.20, 327.66, 383.45, and 576.16 g/min, respectively, which shows
increases of 418.49%, 506.78%, and 811.72%. The cumulative sediment with different fissure
depths were 3791.71, 19659.47, 23007.26, and 34569.88 g, which increased significantly with
time. The relationship between cumulative sediment and time with different fissure depths
were as follows:

5 cm depth (GF1) y = 79.489x0.947 (R2 = 0.999; p = 0.000; n = 20)

10 cm depth (GF2) y = 5634.448x0.325 (R2 = 0.739; p = 0.000; n = 20)

15 cm depth (GF3) y = 214.592x1.148 (R2 = 0.996; p = 0.000; n = 20)

20 cm depth (GF4) y = 215.182x1.234 (R2 = 0.996; p = 0.000; n = 20)
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3.4. Soil Denudation Rate

It could be seen that variation in the trend of soil denudation rate was similar to that of
erosion rates (Figure 7). In particular, the fluctuation of GF4 was the most violent. For GF1,
the soil denudation rate varied from 121.99 to 249.41 g/m2/min, and its value was lower
than that of GF2, GF3, and GF4. The maximum soil denudation rate for GF2 was as high
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as 5633.11 g/m2/min at 6 min. Then, soil denudation rates for 9, 12, 15, and 18 min were
3774.78, 2066.25, 1569.78, and 529.63 g/m2/min, respectively. For GF3, the maximum soil
denudation rate was 2471.45, and the minimum was 328.55. For GF4, the soil denudation
rate continued to increase, with a maximum of 5352.59. The average soil denudation rates
for GF1, GF2, GF3, and GF4 were 191.26, 842.1, 1369.43, and 2367.3 g/m2/min, respectively,
which show increases of 340.3%, 616%, and 1137.73%.
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Figure 8 and Table 2 indicate the relationship between soil denudation rates and
hydraulic parameters. It could be seen that the soil denudation rate showed an increasing
trend with increasing flow velocity, flow shear stress, runoff power, Reynolds number,
and Froude number, while the Darcy–Weisbach roughness coefficient showed a decreas-
ing trend. Table 2 indicates that soil denudation rates with different fissure depths had
different correlations with hydrodynamic parameters. For GF1, the soil denudation rate
significantly increased with Reynolds number (Pearson correlation coefficients R = 0.496;
p = 0.026 < 0.05) and Froude number (R = 0.631; p = 0.003 < 0.01), and decreased with
Darcy–Weisbach roughness coefficient (R = 0.680; p = 0.001 < 0.01) (Table 3). For GF2,
the soil denudation rate significantly increased with flow velocity (R = 0.792; p = 0.000),
flow shear stress (R = 0.984; p = 0.000), runoff power (R = 0.988; p = 0.000), Reynolds
number (R = 0.447; p = 0.048 < 0.05) and Froude number (R = 0.596; p = 0.006 < 0.01), and
decreased with Darcy–Weisbach roughness (R = 0.485; p = 0.03 < 0.05). For GF3, the soil
denudation rate significantly increased with flow velocity (R = 0.639; p = 0.002 < 0.01), and
decreased with Darcy–Weisbach roughness (R = 0.56; p = 0.01 < 0.05). For GF4, the soil
denudation rate significantly increased with flow velocity (R = 0.774; p = 0.000), runoff
power (R = 0.654; p = 0.002 < 0.01), and Reynolds number (R = 0.701; p = 0.001 < 0.01).
Moreover, it could be seen that a significant correlation was found between soil denudation
rate and hydraulic parameters on all the ground fissures, for which Pearson correlation
coefficients ranged in such order as runoff power (0.771) > flow velocity (0.764) > Reynolds
number (0.709) > flow shear stress (0.659) > Froude number (0.327) > Darcy–Weisbach
roughness coefficient (0.326). Comparing different hydraulic parameters, it could be seen
that the correlation between soil denudation rates and runoff power was the highest, and
the correlation with the Darcy–Weisbach roughness coefficient was the lowest.

As shown in Table 3, the hydraulic parameters were ranked in the order of runoff
power (0.866) > flow shear stress (0.851) > Reynolds number (0.801) > flow velocity
(0.781) > Froude number (0.763) > Darcy–Weisbach roughness coefficient (0.716). Among
these hydraulic parameters, runoff power and flow shear stress were of great influence on
soil denudation rate, which indicated that erosion energy of concentrated flow had impor-
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tant influence on soil erosion. The Darcy–Weisbach roughness coefficient had the weakest
correlation with soil detachment rate, which was essentially identical to that obtained using
the Pearson correlation coefficients (Table 2).
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Table 2. Pearson correlation coefficients (R) between soil denudation rate and hydraulic parameters.

Plots Parameter Flow
Velocity

Flow Shear
Stress

Runoff
Power

Reynolds
Number

Froude
Number

Darcy–
Weisbach

Roughness
Coefficient

GF1
R −0.243 0.427 0.330 0.496 b −0.631 a 0.680 a

p 0.301 0.061 0.155 0.026 0.003 0.001
n 20 20 20 20 20 20

GF2
R 0.792 a 0.984 a 0.988 a 0.447 b 0.596 a −0.485 b

p 0.000 0.000 0.000 0.048 0.006 0.030
n 20 20 20 20 20 20
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Table 2. Cont.

Plots Parameter Flow
Velocity

Flow Shear
Stress

Runoff
Power

Reynolds
Number

Froude
Number

Darcy–
Weisbach

Roughness
Coefficient

GF3
R 0.639 a -0.206 0.060 0.026 0.438 −0.560 b

p 0.002 0.384 0.801 0.915 0.054 0.010
n 20 20 20 20 20 20

GF4
R 0.774 a 0.423 0.654 a 0.701 a 0.373 −0.429
p 0.000 0.063 0.002 0.001 0.106 0.059
n 20 20 20 20 20 20

All the
fissure

R 0.764 a 0.659 a 0.771 a 0.709 a 0.327 a −0.326 a

p 0.000 0.000 0.000 0.000 0.003 0.003
n 80 80 80 80 80 80

Notes: a Correlation is significant at the 0.01 level (2-tailed). b Correlation is significant at the 0.05 level (2-tailed).
N is the sample number.

Table 3. Relationship between soil denudation rate and hydraulic parameters.

Flow Velocity Flow Shear Stress Runoff Power Reynolds Number Froude Number Darcy-Weisbach
Roughness Coefficient

0.781 0.851 0.866 0.801 0.763 0.716

4. Discussion
4.1. Influence of Wetting Front on Soil Erosion

Rainfall infiltration directly affects the distribution characteristics of soil moisture
and soil erosion on the slope [35–37]. Ground fissures are a typical geological hazard
in coal mining areas [38]. The movement path of surface runoff on the platform was
changed by ground fissures, leading to the water flow changing from a horizontal flow to
longitudinal movement [29]. The soil infiltration was changed because a large amount of
rainwater and surface runoff flowed into the ground fissure [39,40]. This also increased
the possibility of soil and water loss disasters [13,22]. Hence, analyzing the role of ground
fissures on infiltration, wetting front, runoff, and sediment in a dump was key to reveal the
mechanisms of slope stability and soil erosion.

The soil on the slope had a high infiltration rate at the beginning of the test, and all
rainfall infiltrated into the soil, leading to a downward movement of the wetting front.
Guebert and Gardner [41] found that ground fissures provided preferential channels for
water movement, resulting in more water moving to the deep soil. At the same time, the
runoff collected by the platform of the dump flowed into the ground fissure. The volume of
ground fissure was determined by its size, such as length, width, and depth, which affected
the amount of stored rainwater. In our study, although the platform area of the dump was
same, the depth of ground fissure was different for each test. Therefore, the deeper the
ground fissures, the greater the stored rainwater. It indicated that ground fissures affected
the infiltration process of the rainwater (Figure 3). The results were consistent with the
results from Fu et al. [42], who found that ground fissures had a significant impact on
near-surface hydrological processes. Furthermore, the deeper the ground fissures, the more
obvious the water filling of the ground fissure was, the lower the depth of the wetting
front to move. Relevant studies had shown that the shape characteristics and number of
ground fissures had a significant influence on water movement [43,44]. We found that
the wetting front moved deeper around ground fissures. This result was consistent with
Zhang et al. [22]. Furthermore, the wetting front was relatively close at the beginning of
the test. With the rainfall time increasing, the difference of wetting front became more and
more obvious, and the difference reached the maximum after the end of the test. However,
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this was related to the rainfall time, and if the rainfall was long enough, the difference
between wetting fronts decreased.

4.2. Effect of Ground Fissure on Erosion Failure

The dump, with the compact rock platform and high and steep loose slope, was
formed during coal mining, and is the most serious area of soil erosion in a surface coal
mine [10]. The confluence of a compact platform was one of the most impactful causes of
soil erosion. Relevant studies have shown that the slope in a dump was the main source
of soil erosion, accounting for about 85% of the erosion [15,45]. Zhang et al. [22] found
that slope failure could be divided into three stages. In our study, the erosion failure mode
could be divided into the surface erosion stage, fissure deformation stage, rill erosion stage,
fissure collapse-rapid increase stage, and stable stage. There was a difference on the type
and characteristics of soil erosion within different stages. Su et al. [28] found that small
runoff erosion could also induce natural disasters in a dump such as shallow landslides
and collapses. Shallow mudflow may occur in the dump because runoff would come out
from the slope toe through a seepage channel [46].

Relevant studies have shown that the ground fissure had a significant influence on
soil erosion [43,44]. Soil erosion failure mode in GF2 was different from other conditions
(Figure 9). At the beginning of the test, runoff not only flowed directly from the slope, but
also flowed into the ground fissure and filled it. With the rainfall time increasing, the soil
water content increased and tended to a saturated state. Infiltration of rainwater increased
soil bulk density, and the soil on the slope became wet and soft. This may be responsible
for soil erosion on the slope. Pu et al. [47] also found that the mechanical properties of soil
on the slope would decrease sharply under rainfall conditions.

In our study, Figures 5–7 indicate that the runoff rate, erosion rate, and soil denudation
rate at 6 min increased rapidly because of shallow mudflow, a gravitational erosion type,
similar to the low gravitational downslope movement of water-saturated soil [48]. The
shallow mudflow induced by rainfall was one of the forms of soil slope instability [49]. At
this stage, the soil on the slope had high water content, high sand content, strong fluidity,
and certain viscosity (Figure 9). Although the occurrence of the shallow mudflow had
a certain randomness and happened in a short time, the soil erosion rate was huge [50].
Once the shallow mudflow was over, soil erosion significantly decreased. Our results
have shown that the soil erosion accounted for 36.96% of the total erosion amount, which
was 6.39 times higher than the average erosion amount (Figure 6). The destruction of
the force balance state of the soil led to the change of the micro-topography on the slope,
forming a free surface. The fissure, appearing above the shallow mudflow area on the
slope, developed more rapidly because of creep deformation. Then, the shallow mudflow
occurred again under the action of fissure development and the soil on the slope slid down
the slope surface, until it reached the front edge of the slope top. However, compared with
6 min, the soil erosion rate caused by shallow mudflow decreased in the following period.
The soil at the slope shoulder (connection between the platform and the slope) was eroded
or even collapsed under the combined action of hydrostatic pressure in the ground fissure
and runoff on the slope. Fissures at the slope shoulder were the key factor controlling
the slope failure [23]. This may be responsible for the increase of erosion rate and soil
denudation rate in the later period of the rainfall. However, it was difficult to determine
the starting criterion of the shallow mudflow on the slope. At the same time, rill erosion
continued to develop until it tended to stabilize. That is, the erosion gully expanded in
width and cut down in depth. In summary, soil erosion in the dump with ground fissures
was mainly shallow mudflow and rill erosion, and its result was the combined effect of
hydraulic erosion and gravity erosion. Therefore, controlling the development of ground
fissures and strengthening the drainage of platforms were the keys to prevent soil erosion
of the dump in a surface coal mine.
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5. Conclusions

The wetting front depth with different fissure depths was in the order GF4 > GF3 > GF2 > GF1,
indicating that ground fissure had influence on the movement of the wetting front. Erosion rates
presented successive fluctuations with multiple peaks and valleys. In addition, the ground fissure
depth had an impact on soil erosion. The correlation between soil denudation rate and runoff
power was the highest. In our study, the erosion failure modes with platform-slope system in
the dump could be divided into the surface erosion stage, fissure deformation stage, rill erosion
stage, fissure collapse-rapid increase stage, and stable stage. Soil erosion in the dump with ground
fissures was mainly shallow mudflow and rill erosion, and its result was the combined effect of
hydraulic erosion and gravity erosion. Therefore, controlling the development of ground fissures
and strengthening the drainage of platforms were the keys to prevent soil erosion of the dump in a
surface coal mine.
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