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Abstract: The contamination of seawater with anthropogenic factors is a global challenge because 

of its negative impacts on marine environments and coastal societies. Therefore, assessing water 

contamination is crucial. The present work uses pollution indices and multivariate statistical anal-

yses to document high-level heavy metal concentrations and identify potential polluters by analyz-

ing 35 seawater samples collected from Al-Uqair coastline, Arabian Gulf, Saudi Arabia. The total 

content of heavy metals (HMs) (μg/L) ranged from 7109 to 7398 for Sr, 7.00–14.50 for Cr, 3.30–9.90 

for Zn, 3.00–8.80 for Fe, 4.40–7.60 for As, 1.20–6.90 for Ni, 2.30–4.70 for V, 1.10–3.80 for Cu, 2.50–3.10 

for Se, 0.31–1.43 for Al, 0.18–1.10 for Hg, 0.04–0.08 for Cd, 0.09–0.43 for Pb, and 0.02–0.10 for Sb. The 

recorded average concentrations of HMs were below the maximal admissible concentration of the 

World Health Organization (WHO). The heavy-metal pollution index (HPI) indicates that 14.29% 

of the water samples were below medium pollution, and 85.71% were below high pollution. All 

seawater samples were categorized under low contamination and good water on the basis of the 

degree of contamination (Cd) and water pollution index (PIj), respectively. Multivariate analysis 

indicates mixed anthropogenic and natural sources for the investigated metals, with increasing con-

trol of the anthropogenic factors for Cr, Zn, As, V, Ni, Se, Cu, Hg, Pb, Sb, and Cd; and the control of 

natural factors for Sr, Fe, and Al. 
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1. Introduction 

Heavy metals (HMs) released into the environment by ever-increasing industrial and 

domestic human activities profoundly affect ecosystems [1,2]. Even low levels of As, Pb, 

Hg, Cd, and Ni are classified as mutagens and human carcinogens [3]. Abnormally high 

concentrations of HMs pose grave environmental risks, negatively affecting animals, 

plants, and humans alike [4,5]. HMs sourced from natural sources are usually found in 

the environment at low concentrations, whereas anthropogenically sourced HMs are 

characterized by higher concentrations with severe negative environmental impacts [6,7]. 

For instance, eutrophication in aquatic ecosystems is caused by the accumulation of nu-

trients in lakes and coastal waters from agricultural pollution sources, and critically im-

pacts biodiversity and fisheries [8]. 

Extensive development along coastal regions often has a negative impact due to the 

production of waste pollutants in the coastal and marine resources [9–13]. HM pollutants 

are not evenly dispersed in the sea, but are mainly concentrated in coastal waters. Human 

settlements, industries, and farming are considered to be major contributors to water pol-

lution [8]. Other causes of marine pollution include: accidental spillages (chemical and oil 

spills), operational discharges, emissions from antifouling paints, medicinal products (an-

tibiotics, parasiticides, anesthetics, disinfectants), and off-shore oil and gas mining opera-

tions [14,15]. HMs also circulate in nature through rock weathering, airborne sediment 
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particles, and volcanic eruption processes, where they are transferred from land to rivers 

to ocean. HMs then adsorb onto the particles and sink into the sediment [15]. Metal con-

tamination is ecotoxicologically important in coastal marine regions because of its toxicity 

and long-term stay in these environments [2,16–18]. 

Sediments along the Saudi Arabian Gulf coasts and associated environments were 

intensely investigated [18–29]. The ecological impact of the heavy-metal contamination in 

sediment samples from Al-Uqair beach was assessed and valuated [30]. The authors con-

cluded that the sediments were enriched to the contamination level with Se, Hg, As, and 

Cd. The authors attributed the enrichment of the metals to anthropogenic sources linked 

to agricultural runoff and sewage leakage. However, the environmental and quality as-

sessment of surface seawater along the Saudi Arabian Gulf coasts have not been fully in-

vestigated, and studies in this regard are scarce. The present study, therefore, aims to as-

sess HM pollution in the surface seawater of Al-Uqair coastline using pollution indices, 

and to pinpoint potential HM sources using different statistical parameters. 

2. Materials and Methods 

2.1. Sampling 

Al-Uqair beach is part of the Arabian Gulf coast, eastern Saudi Arabia. It lies 55 km 

south of Al-Khobar between 50°00′–50°25′ E and 25°58′–25°23′ N (Figure 1). The coastal 

area mainly consists of Pleistocene and recent unconsolidated deposits of sand and gravel 

sheets that, in turn, rest on Miocene and Pliocene rocks of sandy limestone, calcareous 

sandstone, clay interbeds, and sandstone. Three sediment-based types of shores along Al-

Uqair can be distinguished: sand-dominated shores of fine- to very-coarse-grained sand 

mixed with minor amounts of broken and intact shells, gravel- and mud-dominated 

shores, and skeletal-dominated shores of macro- and microseashells [30]. The seashells 

were drifted by tidal currents, and are often mixed with sand and pebbles. Private pro-

tected areas were encountered during sampling along the studied coastline, especially the 

area between samples 5 and 6. We obtained 35 samples from Al-Uqair surface seawater 

(Figure 1). The exact locations of sampling sites are provided in Supplementary Table S1. 

 

Figure 1. Study area map showing the locations of surface seawater samples. 

2.2. Metal Content, Quality Assurance, and Statistics 
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Direct measurements of electrical conductivity (EC) and pH were conducted on site 

by using EC and pH meters (Model: EZ-9902, GoolRC, China). Water samples (approxi-

mately 1 L each) were contained in plastic bottles and transferred for analysis. For ele-

mental and metal analyses, the collected seawater samples were treated with 70% grade 

nitric acid (HNO3), and approximately 50 mL of each treated sample was then digested 

with concentrated nitric acid (HNO3; 5 mL) and perchloric acid (CHlO4; 2 mL). In order to 

achieve complete digestion, the solution was left overnight, followed the next day by 

gradual heating from 100 to 225 °C over a 6 h period. Each digested sample solution was 

diluted with the addition of up to 50 mL of distilled water before being filtered, following 

wastewater examination standards [31]. 

Inductively coupled plasma mass spectrometer (ICP–MS), NexION 300 D (Perkin 

Elmer, Waltham, MA, USA) was utilized in the measurement of Sr, Fe, Cr, As, Zn, V, Ni, 

Se, Cu, Hg, Al, Pb, Cd, and Sb concentrations. The measurement was conducted at King 

Saud University. An internal quality assurance standard and calibrated equipment with 

acceptable uncertainties were employed during metal content analysis. Internal quality 

control is based on the measurement of different levels of concentrations (e.g., 12.5, 25, 50, 

100, and 1000 μg/L). Relative standard deviation (RSD) values were less than 5%. The 

main parameters used in the pollution assessment are: water pollution index (PIj), degree 

of contamination (Cd), and heavy-metal pollution index (HPI) (Table 1). Statistical anal-

yses such as dendrograms, principal components, and Pearson’s correlation coefficient 

were used to determine the probable sources of the heavy metals in the study area. This 

was achieved by using Microsoft Excel 2016 and SPSS 16.0 statistical software. 

Table 1. Indices used in the analysis of HM contamination levels and water quality assessment. 
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where Mi, Ii, and Si are the measured heavy-metal, ideal, and standard values of the ith parameter, respectively. “-“, 

numerical difference of the two values. Three classes of HPI were classified [33]: 
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where Lij is the standard water quality parameter for each parameter at a specific quality purpose; Ci is the measured 

water quality parameters; (Ci/Lij) M is the maximal value of Ci/Lij; (Ci/Lij) R is the average value of Ci/Lij. The water 

pollution index has four categories [34]: 

0 ≤ PIj ≤ 1 1 ≤ PIj ≤ 5 5 ≤ PIj ≤ 10 PIj > 10    

Excellent wa-

ter quality  

Good water 

quality 

Poor water 

quality 

Very poor 

water quality 
   

3. Results and Discussion 

3.1. EC, pH, and HMs 

Electrical conductivity (EC) values (dS/m) widely ranged from 72.4 (Sample 33) to 

122.5 (Sample 25), with an average value of 81.04. The pH values ranged from 8.1 to 8.17, 
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averaging at around 8.12. The average amounts of HMs had the following order: Sr (av-

erage 7214 μg/L) > Cr (9.64) > Zn (6.72) > Fe (6.13) > As (5.45) > V (3.45) > Ni (3.01) > Se 

(2.69) > Cu (2.48) > Hg (0.65) > Al (0.68) > Pb (0.26) > Sb (0.07) > Cd (0.05). Table 2 presents 

the different concentration levels of HMs found in Al-Uqair samples as compared with 

the maximal admissible concentration (MAC) as outlined by the World Health Organiza-

tion [35]. The distribution of HMs along the investigated coastline shows a fluctuating 

pattern (Figures 2 and 3) with higher levels found in Samples 1 (As), 2 (Cu, Pb, Se), 3 (Cr), 

5 (Sb), 21 (Hg), 23 (V), 25 (Cd, Fe, Zn, Ni, Sr), and 33 (Al). EC, pH, and HM concentration 

values, and the results of the calculated pollution indices are presented in Supplementary 

Table S1. 

Table 2. Statistics of HMs measured in Al-Ugair surface seawater samples as compared to the max-

imal admissible concentration (MAC) of WHO [35]. 

 Minimum Maximum Mean Standard Deviation MAC 

pH 8.1 8.17 8.12 0.08 7–8.5 

EC (dS/m) 72.4 122.5 81.04 3.39  

Al (μg/L) 0.31 1.43 0.68 0.301 200 

As (μg/L) 4.40 7.60 5.45 0.822 10 

Cd (μg/L) 0.04 0.08 0.05 0.0113 3 

Cr (μg/L) 7.00 14.50 9.64 1.785 50 

Cu (μg/L) 1.10 3.80 2.48 0.786 2000 

Fe (μg/L) 3.00 8.80 6.13 1.522 200 

Hg (μg/L) 0.18 1.10 0.65 0.257 6 

Pb (μg/L) 0.09 0.43 0.26 0.094 10 

Sb (μg/L) 0.02 0.10 0.07 0.018 20 

Se (μg/L) 2.50 3.10 2.69 0.163 40 

V (μg/L) 2.30 4.70 3.45 0.677 NA 

Zn (μg/L) 3.30 9.90 6.72 1.489 40 

Ni (μg/L) 1.20 6.90 3.01 1.360 20 

Sr (μg/L) 7109 7398 7214.11 56.989 NA 

The average values of Sr, As, and V exceeded the averages found in surface seawaters 

of Al-Khobar and Al-Khafji coastlines further north [17,25], and Rosetta coastline, Medi-

terranean Sea [33] (Table 3). The high Sr values can be attributed to factors such as the 

hypersaline nature of the Gulf waters and the aragonite contribution from scleractinian 

corals and carbonate bed dissolution due to water acidification, and sources related to 

continental crust weathering [25,36,37]. Average values of Cr in the analyzed samples 

were relatively high compared to averages recorded in seawater samples from many lo-

cations around the world (Table 3), with the exception of Tarut Island [18]. The average 

values of Pb, Cd, Zn, Ni, Cu, and Hg fluctuated compared to those global average values 

listed in Table 3. 
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Figure 2. Distribution of Cr, Zn, Fe, Hg, Pb, Al; Cu, Se, and Ni in seawater samples. 
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Figure 3. Distribution of Cd, Sb, As, V, and Sr in seawater samples. 
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Table 3. Comparison between HM levels in the investigated seawaters and those in other global 

sites. 

 Se V Pb Cd Zn Ni Cr Cu Hg As Sr Reference 

Uqair coastaline, Saudi Arabia 2.69 3.45 0.26 0.05 6.72 3.01 9.64 2.48 0.65 5.45 7214 Present study 

Sharm Al-Kharrar lagoon, 

Saudi Arabia 
  0.28 0.06 4.19 5.76 0.26 1.24  2.07  [13] 

Gulf of Aqaba, Red Sea, Saudi 

Arabia 
  1.31 0.05 5.51 2.45 0.26 2.34 0.008 2.43  [24] 

Al-Khobar beach, Saudi Arabia 0.38 1.25 0.04 0.11 16.21 4.36 1.38 5.24 0.68 2.41 200.9 [12] 

Al-Khafji beach, Saudi Arabia  2.86 0.28 0.07 1.53 4.40 2.44 2.44 0.06 1.74 1513 [25] 

Average oceanic concentration   0.001 0.07 0.4 - 0.33 0.12 - -  [38] 

North Atlantic   125 5.5 0.15 2 3.5 1.15 1–7 20  [39] 

North Pacific   32 5.5 0.15 2 3 0.9 0.5–10 20  [39] 

Gulf of Aqaba   0.32 0.57 0.24 0.22 - 0.14 - -  [40] 

Red sea coast, Egypt   0.03 0.06 5.5 0.76 0.18 0.97 - -  [41] 

Gulf of Aqaba, Saudi Arabia   0.20 0.03 3.32 - 0.96 6.18 0.06 0.82  [42] 

Tarut coastline, Saudi Arabia 1.52  0.48 0.03 0.97 - 12.95 2.65 0.30 11.13  [18] 

Rosetta coast, Mediterranean 

Sea, Egypt 
  0.426 - 1.694 1.92 0.133 - - 0.30 5860 [43] 

Caspian beach, Iran   1.67 0.27 16.94 9.93 - 5.02 - -  [44] 

3.2. Pollution Indices and Multivariate Analyses 

The quality of surface seawater and heavy-metal contamination in the area were as-

sessed using three quantitative methods, namely, the heavy-metal pollution index (HPI), 

water pollution index (PIj), and degree of contamination (Cd). The measured average con-

centrations of the heavy metals were all below the maximal admissible concentration set 

by the WHO [32]. 

The spatial distribution of HPI (Figure 4) mostly accepts the spatial distribution of 

HMs (Figures 2 and 3). HPI levels spatially varied from 9.55 in the south to 13.04 as we 

moved north along the shores of the study area, with an average value of 11.01 (Supple-

mentary Table S1). Five water samples (14.29%) were under medium pollution (HPI = 5–

10), and the remaining 30 samples (85.71%) fell under high pollution (HPI > 10). The de-

grees of contamination (Cd) also varied spatially from 1.46 in the south to 2.33 in the 

northernmost part of the study area, with an average of 1.78. All seawater samples were 

categorized under low contamination (Cd < 4). The levels of the pollution index (PIj) var-

ied from 2.01 to 4.22. PIj is a water quality parameter, and, on the basis of its measured 

values, all the analyzed seawater samples were within the range of good quality (1 ≤ PIj ≤ 

5) [34]. 
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Figure 4. Q-mode HCA of Al-Ugair surface seawater samples. 
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HMs are transformed in seawater under the effect of water dynamics and are not 

persistent. Consequently, the sources of HMs in seawater bodies appear to be more com-

plex [10,45,46]. Q-mode HCA clustered the 35 studied localities into 2 clusters that had 

distinctive HM characteristics (Figure 5). The first cluster, which includes only Sample 25, 

contained the highest concentrations of Cd, Fe, Zn, Ni, Sr, and EC. The remaining 34 sam-

ples constitute the second cluster, which was further subdivided into two clusters (Figure 

6). The first cluster group comprised pH, EC, Al, As, Cd, Cr, Cu, Fe, Hg, Pb, Sb, Se, V, Zn, 

and Ni, whereas the second cluster group only contains Sr. The sources of HMs were de-

termined with Pearson’s correlation [47], which suggested the low positive correlations of 

Sr–EC, Sr–As, Sr–Ni, and Sr–Zn; V–Fe and V–Sb. (Table 4). The presence of V was corre-

lated with Fe and Sb, implying that these metals might have originated from combined 

geogenic and anthropogenic sources, and are associated with oxides and hydroxides of 

Fe during rock weathering [48,49]. Moreover, the positive correlations of Cu–Cr, Cr–Se, 

Ni–Pb, Ni–Zn, and Zn–As suggest anthropogenic sources from industrial and agricultural 

effluents apart from their natural sources [50,51]. The absence of strong positive correla-

tions among many heavy-metal elemental pairs indicate that these HMs are derived from 

different contamination sources [52]. 

Six principal components were extracted from PCA. The variances of these six com-

ponents are 16.19%, 13.15%, 13.15%, 11.82%, 8.86%, and 8.35% (Table 5). PC1 presented a 

high loading for pH, EC, Ni, Zn, and Sr. PC3 presented positive high loading for As and 

Cr, whereas PC6 showed high loading for Hg. The aforementioned high loadings reflect 

anthropogenic sources from zinc production, and associated bronze and brass manufac-

turing, alloys, paint pigments, and antifouling paint [53]. The increased Sr concentration 

in the Arabian Gulf waters is possibly linked to the release of strontium stored in car-

bonate buildups such as corals as these carbonates are bleached due to increasing water 

acidity. Increasing acidification in the area is associated with desalination activity and the 

fact that the Gulf is a semienclosed sea affected by high evaporation rates [34,35]. Arsenic 

toxicity is mainly associated with the enzymes in the human body causing metabolic dis-

orders, skin hyperpigmentation and hyperkeratosis of the skin. The PC2 component pre-

sented high loading for EC, Fe, Sb, V, PC4 presented a high loading for Fe and Se, and 

PC5 showed high loading for Al. The presence of Sb, V, and Se, with Fe and Al may be 

attributed to combined geogenic and anthropogenic sources for these heavy metals from 

rock weathering and industrial activities such as electrical power production, steel man-

ufacturing, algaecides, and antifouling paint [53]. 
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Figure 5. R-mode HCA of HMs in seawater samples. 
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Figure 6. Distribution of water pollution index (PIj), degree of contamination (Cd), and heavy-metal 

pollution index (HPI) of Al-Ugair surface seawater samples. 

Table 4. Correlation matrix of the investigated HMs. 

 pH EC Al As Cd Cr Cu Fe Hg Pb Sb Se V Zn Ni Sr 

pH 1.0                

EC –0.084 1.0               

Al 0.010 0.043 1.0              

As –0.002 0.039 –0.077 1.0             

Cd –0.045 0.460 ** –0.073 –0.121 1.0            

Cr 0.222 –0.310 0.117 0.261 –0.009 1.0           

Cu 0.077 0.025 0.206 0.208 0.083 0.346 * 1.0          

Fe –0.306 0.282 0.167 –0.046 0.095 0.062 0.236 1.0         

Hg –0.051 0.272 0.028 –0.346 * 0.024 –0.174 –0.012 0.110 1.0        

Pb 0.169 0.178 –0.077 –0.129 0.032 –0.161 –0.123 0.142 –0.182 1.0       

Sb –0.212 0.150 –0.024 0.272 0.054 –0.029 0.108 0.135 0.153 –0.381 * 1.0      

Se 0.057 –0.031 –0.203 0.056 0.184 0.300 0.157 0.261 0.027 0.292 –0.155 1.0     

V –0.337 * 0.286 0.199 –0.066 0.043 0.017 0.131 0.420 * 0.168 –0.227 0.385 * 0.047 1.0    

Zn 0.358 * 0.412 * 0.001 0.364 * 0.042 0.061 0.127 –0.115 0.119 0.010 0.011 0.146 0.111 1.0   

Ni 0.356 * 0.420 * 0.056 0.048 0.297 –0.264 –0.155 –0.049 –0.128 0.403 * –0.341 * –0.106 –0.214 0.381 * 1.0  

Sr 0.299 0.388 * 0.095 0.441 ** 0.148 0.084 0.241 –0.039 0.084 0.041 0.109 –0.240 –0.181 0.418 * 0.394 * 1.0 

*. Correlation is significant at the 0.05 level (2-tailed). **. Correlation is significant at the 0.01 level 

(2-tailed). 
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Table 5. Principal component loadings along with six variances for the components. 

 
Component 

1 2 3 4 5 6 

pH 0.55 –0.33 0.30 0.03 0.26 0.37 

EC 0.53 0.60 –0.44 –0.02 –0.08 –0.02 

Al –0.01 0.23 0.08 –0.02 0.80 –0.27 

As 0.28 0.21 0.65 –0.11 –0.42 –0.33 

Cd 0.31 0.29 –0.29 0.23 –0.19 0.05 

Cr –0.07 0.04 0.71 0.40 0.13 0.11 

Cu 0.05 0.40 0.49 0.30 0.26 0.01 

Fe –0.14 0.54 –0.20 0.51 0.11 –0.28 

Hg –0.06 0.36 –0.32 –0.15 0.20 0.69 

Pb 0.40 –0.31 –0.35 0.48 –0.02 –0.24 

Sb –0.25 0.61 0.17 –0.35 –0.30 0.003 

Se 0.01 0.03 0.079 0.82 –0.29 0.29 

V –0.30 0.70 −0.134 0.09 0.06 –0.02 

Zn 0.65 0.29 0.219 –0.04 –0.07 0.30 

Ni 0.81 –0.11 –0.297 –0.01 0.09 –0.19 

Sr 0.69 0.28 0.283 –0.27 0.07 –0.07 

% of Variance 16.19 13.15 13.15 11.82 8.86 8.35 

Cumulative % 16.19 29.34 42.48 54.31 63.17 71.52 

4. Conclusions 

After the application of pollution indices and multivariate analyses to document HM 

contamination and identify their potential sources in 35 seawater samples along Al-Uqair 

beach of eastern Saudi Arabia, the average concentrations of heavy metals (μg/L) were in 

the following descending order: Sr > Cr > Zn > Fe > As >Ni > V > Cu > Se > Al > Hg > Cd > 

Pb > Sb. The spatial distribution of HMs showed a fluctuating pattern, with certain sam-

ples showing higher concentrations of the same metals. Nonetheless, the average HM con-

centrations in these samples were less than the maximal admissible concentration of the 

WHO [32]. Furthermore, on the basis of HPI, 5 of the water samples fell under medium 

pollution, and 30 fell under high pollution. All seawater samples were categorized under 

low contamination and good water on the basis of Cd and PIj, respectively. Multivariate 

analysis indicates mixed anthropogenic and natural sources for the investigated metals, 

with an increasing role of anthropogenic factors for Cr, Zn, As, V, Ni, Se, Cu, Hg, Pb, Sb, 

and Cd, and natural factors for Sr, Fe, and Al. 

Supplementary Materials: The following supporting information can be downloaded at: 

https://www.mdpi.com/article/10.3390/w14213423/s1. Table S1: Coordinates of sampling sites, EC, 

pH, and HM concentration, and the results of the pollution indices. 
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