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Abstract: The Drinking Water Quality Index (DWQI) and the Human Health Risk Index (HHRI)
are two of the most promising tools for assessing the health impact of water quality on humans.
Each of these indices has its own ability to determine a specific level of safety for drinking, and
their results may vary. This study aims to develop an aggregated index to identify vulnerable
areas in relation to safe drinking water and, subsequently, risk areas for human health, particularly
non-cancerous diseases, in the Maku–Bazargan–Poldasht area in NW Iran through the use of a data
fusion technique. Nitrate (NO3

−) and fluoride (F−) are the predominant contaminants that threaten
the local population’s health. The DWQI revealed that the majority of the study sites had poor to
improper quality for drinking water class. Health risk assessments showed an excessive potential
for non-carcinogenic health risks because of high NO3

− and F− exposure through drinking water.
Children are at a higher risk for non-carcinogenic changes than adults, according to the total hazard
index (THI; NO3

− and F−), suggesting that locals have faced a lifetime risk of non-cancer changes
as a consequence of their exposure to these pollutants. Using data fusion techniques can assist in
developing a comprehensive water resources risk map for decision-making.

Keywords: human health risk assessment; drinking water quality index; non-carcinogenic; data
fusion; water resources risk

1. Introduction

The problem of water shortage and health issues associated with drinking water
has become widespread worldwide. In the context of water quality, fluoride (F−) and
nitrate (NO3

−) concentrations are of particular importance because of the significant health
impact they have on humans. In most developing countries, including Ghana, parts of
eastern and southern Africa, Turkey, and Iran, high F− and NO3

− concentrations have been
reported in groundwater [1–4]. It is well known that excessive F− exposure can damage
teeth, bones, and, in some cases, the kidneys. As a result of the inadvertent consumption
of F− by children, adverse effects are known to occur when inadequate F− amounts are
consumed [5]. Moreover, the lack of adequate intake of F− can lead to an increased risk
of dental caries in children, especially in cases where the F− concentration is lower than
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0.5 mg/L in drinking water [6]. Similarly, excessive amounts of NO3
− in drinking water

have the potential to negatively affect human health since they reduce the blood’s ability to
carry oxygen throughout the body [7,8].

Over the past few years, different water quality indices have been utilized for water
quality assessments. The Human Health Risk Index (HHRI) and Drinking Water Quality
Index (DWQI) are two indicators that have gained popularity as tools for quantifying
groundwater quality and assessing the magnitude of health risks posed to populations
exposed to toxic chemicals in the groundwater [9]. However, these indices have undergone
some changes in recent years. The major change can be attributed to both the method of
interpretation and the calculation procedure [10]. Numerous studies have imitated these
methods despite their drawbacks, such as their output classification. Most water quality
studies are conducted based on classifications without any rationale as to whether they
should be used for drinking purposes, and as a consequence, decisions about drinking water
can endanger human health. Therefore, an aggregated method that can combine different
water quality indices is needed. In this study, we propose a data fusion method for this
purpose. Data fusion has been used in several different settings to resolve the disagreement
between information. In general, it refers to using parameters or data in combination to
improve the quality of analysis, decrease uncertainty, or obtain new information. See and
Abrahart [11], describe information fusion as a method of combining information that
comes from a number of different resources, a practice that is generally used in the electrical
engineering field.

The groundwater quality assessment is not just concerned with the level of contam-
ination and the potential risk of exposure but also with determining and quantifying
the distribution of contamination sources [12–15]. Statistical methods such as correlation
and factor analysis have been frequently employed to address the contamination origin
when dealing with multivariate data. Correlation analysis helps us to understand how
hydrochemical parameters are related to one another, allowing us to identify their likely
origins. The factor analysis method does not necessitate an understanding of the numeral
of sources or features of contaminants but instead provides a method for identifying
potential hydrogeochemical processes as well as influencing factors (e.g., geogenic and
anthropogenic processes).

Asghari Moghaddam and Fijani [16], conducted research in West Azerbaijan, NW Iran,
and showed that the F− contamination of the water is common in the study area because of
the presence of basaltic lavas at a significant depth, which affects the Sari Su river with the
release of F [17]. Besides F− contamination, there are high levels of NO3

− in many parts of
the West Azerbaijan Province. However, it has not been explored in the Maku–Bazargan–
Poldasht area. Therefore, it is necessary to determine the F− and NO3

− concentrations in
the drinking water resources of Maku–Bazargan–Poldasht, West Azerbaijan province, in
order to determine the quality of water and assess human health risks. This study aims
to identify areas where high-F− and -NO3

− waters formed and then calculate the non-
carcinogenic disease risk of inhabitants exposed to NO3

− and F− through water supplies
using the United State Environmental Protection Agency’s approach. Previous studies
have revealed a number of major gaps, including (1) NO3

− contamination has not been
detected in water in the Maku–Bazargan–Poldasht, (2) water quality indices have not been
classified arbitrarily, and (3) data fusion has not been used to develop a comprehensive
risk map for water resources. The current study tries to address these gaps using the
proposed methodology.

The novelty of this study is the development of classifications for drinking water
quality indices and the enhancement of these classifications over conventional methods of
classification, as well as the development of a comprehensive risk map based on a fusion of
different types of information. The aim of this study is to develop an aggregated index with
data fusion techniques by identifying vulnerable areas in the discussion of safe drinking
water and consequently risk areas in terms of human health, with special emphasis on
non-cancerous diseases, by: (i) investigating the geochemical features of water quality
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samples; (ii) identifying the sources of contaminants; (iii) determining the DWQI and
the potential cumulative health risks of contaminated water through multiple exposure
pathways (e.g., dermal and oral) for both children and adults; (iv) improving DWQI
classification for drinking purposes; (v) developing a new data-fusion-based combined
system with aims regarding the health of people in the study area; and (vi) providing a
comprehensive health risk map (Figure 1).
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Figure 1. Flowchart of the planned information fusion-based human health risk assessment framework.

A key aspect of this study is the contribution of information about the issue of F− and
NO3

− contamination in water resources of the study area, as well as valuable evidence that
may have a significant impact on the way local authorities manage their risk to reduce the
adverse effects of toxic elements on citizens’ health. It should be noted that the aspects of the
hazard aggregation problem have been discussed at fluctuating points by different authors
(e.g., [15,18,19]), but in general, these functions are still in their beginning, especially those
that address the last three dimensions. Table 1 lists the selected cases of techniques used in
DWQI and HHRI applications.
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Table 1. Examples of different techniques used in HHRI and WQI.

Name of Index

Sources

Elements Methods
Rational

Classification
(Proposed

Classification) for
Drinking Water

Application Areas

M
ajor

Ions

M
inor

Ions

Properties

D
W

Q
I

H
R

A

Inform
ation

Fusion

HHRI [20] * * * *
Non-carcinogenic health risk

assessment of nitrate in bottled
drinking water sold

GIS Base [21] * * * *
Calculated HR from NO3

− in
drinking water using the Water

Quality Index

GIS,
mathematical

base
[22] * * * *

Assessed hazard index, water
resources quality, and

hydrochemical analysis using a
multivariate method

GQI/FGQI [23] * * *

Proposed a new hybrid
framework combining GQI with

Fuzzy Logic to examine
groundwater quality and its

spatial variability.

HHRI [24] * Examined heavy metal contents
and evaluated HHRI

HHRI/WQI [25] * * * * Evaluated based on carcinogenic
and non-carcinogenic aspects.

FHI [26] * * * *
Studied trace elements’ health risk

in drinking water based on the
Water Quality Index

HHRI/EWQI [27] * * * * *

Evaluated the HHRI of F−

concentration in groundwater
resources based on fuzzy

logic approach

WQI/HHR [28] * * * * *
Water quality index and human

health risk from NO3
−

and fluoride

Information-
Fused

Technique

Current
study * * * * * * *

Water resources contamination;
NO3

− contamination; water
quality distribution; health risk

Note: *: Shows the applied methods.

2. Material and Techniques
2.1. Description of the Maku–Bazargan–Poldasht

The Maku–Bazargan–Poldasht is in West Azerbaijan, Iran, at the Ararat Mountain
range’s foothills, in the province’s north (Figure 2). The Maku–Bazargan–Poldasht is
located between longitudes 44◦21′ and 45◦10′ and between latitudes 39◦13′ and 39◦34′. In
the west, it is bordered by Turkey, whereas in the east, it is bordered by the Aras River. The
Maku–Bazargan–Poldasht covers nearly 1600 km2, of which up to one-fourth is covered
with basaltic lavas. This area has three main cities: Maku, Poldasht, and Bazargan. With an
average temperature range of −16.2 to 35.1 ◦C and annual mean precipitation of 300 mm,
the least and highest precipitation occurred in September and May, respectively. During
a typical year, there is approximately 1500 mm of evaporation, three times more than the
amount of precipitation expected. The Sari Su and Zangmar rivers are the two main rivers
flowing through the study area.
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Figure 2. Situation map of the Maku–Bazargan–Poldasht area, drainage system, and sampling
locations.

The Maku–Bazargan–Poldasht area is mainly supplied by water resources, which are
used for agriculture, drinking, and industry. In addition, 12 large-scale springs and several
withdrawal wells discharge groundwater [12]. According to geoelectrical surveying con-
ducted within the Bazargan Plain area, the basalt-alluvium aquifer’s thickness is estimated
to be about 150 m [12]. Most of the high F− water resources are found in rock formations
formed by basaltic magma(Figure 3). The Maku–Bazargan–Poldasht is predominantly
underlain by non-basaltic and basaltic aquifers. Prior reports have indicated a high F−

concentration in the Maku–Bazargan–Poldasht complex aquifers. The presence of F− in
some areas (called the mixing zone) is caused by the mixing of groundwater from basaltic
and non-basaltic origins. Phyllite–schist and gneiss, which are the main water-bearing rocks
in the region, have small amounts of primary porosity. The secondary porosity of these
formations, which is found in the form of fissures or fractures, enables groundwater to be
actively transported through the rocky formation, thus acting as a groundwater reservoir.
The majority of these zones can be found in basaltic aquifers and some of them can be
found in non-basaltic aquifers. As a result of drinking water from basalt springs and wells,
residents in the region suffer from dental fluorosis [12].
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Figure 3. Geological map of the Maku–Bazargan–Poldasht area.

2.2. Water Sampling and Analysis

Sixty samples were gathered from springs, rivers, and wells in January 2021. These
resources provide a large volume of water for consumption and irrigation. Electrical
conductivity (EC) and pH were measured directly in the field during sample collection.
Potassium (K+) and sodium (Na+) were measured with a flame photometer. A UV single-
beam spectrophotometer (UV-1200, Labman Scientific Instruments Pvt. Ltd, Chennai, India)
was used for Sulphate (SO4

2−), NO3
−, nitrite (NO2

−), ammonium (NH4
+), and bromine

(Br−). Bicarbonate (HCO3
−), carbonate (CO3

2−), chloride (Cl−), magnesium (Mg2+), and
calcium (Ca2+) were analyzed using the titration approaches [29]. The F− concentration was
calculated by utilizing an ion-selective electrode. Chemical analysis was validated using
an ion balance. The sum of cations and anions must be equal according to the principle of
neutrality. A cation–anion balance error [30], was calculated as follows:

CBE% =
∑ z.mc −∑ z.ma

∑ z.mc + ∑ z.ma
× 100 (1)

where A and C are the concentrations of HCO3
− + Cl− + SO4

2− and Ca2+ + Mg2+ + Na+ + K+,
respectively, in meq/L. Additionally, charge balance is the ratio of the ionic balance error. The
accuracy of ionic measurements was measured through the Charge Balance Error percentage
(CBE%). A CBE% within the range of ±5% is accepted as a good analysis measure [31].

2.3. Physicochemical Characteristics of Water Resources

A statistical investigation of the physicochemical parameters of water resources mea-
sured in the field and the laboratory are presented in Table 2. There was a major difference
between the median and maximum values of Na+, Ca2+, Cl−, SO4

2−, NO3
−, NO2

−, and
CO3

2−, and the maximum values were more than five times the median values, implying
the presence of some external contaminants in the groundwater [32]. The EC value varied
between 525 and 5530 µS/cm, with an average value of 1503 µS/cm. It was found that
65% of the samples were freshwater, 20% were brackish, and 15% were saline, according to
the EC classification for water samples (i.e., fresh: 1500 S/cm; brackish: 1500–3000 S/cm;
saline: >3000 S/cm). The pH values of the water samples in the Maku–Bazargan–Poldasht
area ranged from 7.37 to 8.3, indicating a slightly acidic to a slightly alkaline environment.
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According to the US EPA, all samples fell within acceptable limits regarding the pH pa-
rameter. Na+ concentrations ranged between 16 and 1001 mg/L, with an average value
of 221 mg/L. According to EPA standards [33], the maximum allowable concentration
of Na+ for drinking water was 200 mg/L. Table 2 shows that 24 sampling sites exceeded
the standard threshold for drinking purposes. In total, 10% of the samples contained
Ca2+ concentrations that ranged between 32 and 518 mg/L, with a mean concentration
of 102 mg/L, which was larger than the acceptable limit (i.e., 100 mg/L). Mg2+ and K+

concentrations varied between 11–245 mg/L and 3–70 mg/L, with 65 and 12 mg/L mean
values, respectively. In total, 95% of the samples violated the standard threshold of 30 mg/L.
In the Maku–Bazargan–Poldasht area, the Cl− concentration in the water resources varied
from 4 to 769 mg/L with a mean of 132 mg/L. According to the results, about 15% of them
exceeded the 250 mg/L drinking water guideline [33]. Additionally, HCO3

− and CO3
2−

concentrations showed a wide range of 107–536.5 mg/L and 0–80.6 mg/L, respectively.
On the other hand, there was no recommended value for either one. The SO4

2− content
ranged from 5.5 to 9079 mg/L with an average of 1263 mg/L, and the greater part of the
samples (80%) were within the acceptable drinking limit of 250 mg/L. In this area, the
presence of high levels of SO4

2− may be attributed to little rain and strong evaporation as
well as an aquifer medium abundant in sulfate. The concentration of SO4

2− in the water
was also affected by the contact between the water and the rock as well as evaporation-
induced enrichment. NO2

− concentrations in the samples ranged from 0 to 4.79 mg/L,
with about 95% having NO2

− concentrations more than the standard limit of 1 mg/L [33].
In summary, the average concentration of major cations was in the order of Na+ > Ca2+

> Mg2+ � K+. A correlation analysis was conducted to determine whether there was a
consistent relationship between the hydrochemical parameters. It was determined through
SPSS that the data were normally distributed to determine which correlation analysis
approach (i.e., parametric or nonparametric) should be used in order to determine the most
appropriate correlation analysis approach. As a result of the non-normal distribution of
the hydrochemical data, Kendall’s correlation test, a method of nonparametric correlation
analysis, was applied to the hydrochemical data.

Table 2. Statistical analysis of the measured water parameters compared to US EPA standard (2014).

Parameter Units Range Mean Standard
Deviation US EPA Type of Problem Samples Exceeded

US EPA Limit

October 2021

Institute measurements

EC µS/cm 525–5530 1503.9 1099.27 1000 62%

pH - 6.7–8.37 7.37 0.37 7.5 28%

Major Elements

Na+ mg/L 16–1001 221.39 217.63 200 40%

K+ mg/L 3–70 12.44 10.15 12 45%

Ca2+ mg/L 32–518 102.70 82.68 200 9%

Mg+ mg/L 11–245 65.68 51.56 30 81%

Cl− mg/L 4–770 132.02 162.25 250 17%

SO4
2− mg/L 6–9079 479.21 1263.94 250 20%

HCO3
− - 107–537 265.59 109.48 300 -

F− mg/L 0.39–10 2.94 2.43 1.5 Caused fluorosis 48.33%

Br− mg/L 0–1 2.78 4.74 0.1 83.3%

Nutrients

NO3
− mg/L 0.23–169 32.22 39.04 10 Methemoglobinemia 75%

NO2
− mg/L 0–5 0.32 0.86 3 4%

NH4
+ mg/L 0–4 1.05 1.05 0.05 76.6%
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2.4. Multivariate Statistic

Pre-processing of the data (i.e., normalization, log transformation) was performed to
standardize the measured water quality parameters and remove the impact of their diverse
units on the multivariate statistics. Then, the Pearson correlation analysis of the water
quality parameters was calculated to decipher the relationship between the parameters.
Significance (p value) and strength (r) were essential factors when determining the signif-
icance of relationships. The higher the r value, the stronger the relationship, and in this
study, r > 0.7 was considered to be a strong relationship, while 0.5 < r < 0.7 and r < 0.5 were
deemed to be average and weak relationships, respectively. Factor analysis (FA) is usually
utilized to determine the hidden dimension, which may not be described by direct analysis.
In total, 14 water quality parameters, including pH, EC, Ca2+, Mg2+, Na+, K+, HCO3

−,
SO4

2−, Cl−, NO3
−, F−, NO2

−, Br−, and NH4
+, were considered when carrying out the FA.

The Kaiser’s criterion and varimax rotation technique [34], were used to improve factor
loadings, achieve a simple structure, and find factors with eigenvalues greater than 1. Con-
sequently, factor loadings greater than 0.75 were well thought-out as high, whereas factor
loadings between 0.50 and 0.75 were considered medium [35]. As mentioned above, NO3

−

contamination was severe in the Maku–Bazargan–Poldasht area. The oxidative conditions
of the water resources in the Maku–Bazargan–Poldasht area facilitates the conversion of
NO2

− and NH4
+ contaminants to NO3

− as a result of the nitrification process [36]. Ac-
cording to the linear correlation between TDS and NO3

− + Cl−/HCO3
− [37], a positive

correlation coefficient of 0.7 was determined (Figure 4), indicating that the water resource
under study was contaminated by anthropogenic activities.
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Figure 4. Bivariate plot to check the relation between TDS and NO3
− + Cl−/HCO3

−.

The NO3
− in water resources can result from anthropogenic and geogenic inputs. It

is common for water resources to contain nitrogen concentrations below 10 mg/L, and
those above this limit are considered anthropogenic. Figure 5 shows that most samples
in the Maku–Bazargan–Poldasht area had NO3

− concentrations exceeding the standards
limit of 10 mg/L [33], suggesting that the anthropogenic NO3

− contamination affected
water quality in the study area. Fluorosis is a prevalent disease in tropical climates, but
this is not entirely the case. Water with high F− concentrations in wide geographical belts
are related to: (i) sediments with marine sources in the mountainous regions; (ii) igneous
rocks; and (iii) gneissic and granitic rocks. A classic example of the first reason covers
Iran and Iraq through Turkey and Syria to the Mediterranean region, from Algeria to
Morocco [38]. The F− contamination was as severe as the NO3

− contamination in the study
area. Approximately 50% of the sampling sites revealed F− and NO3

− concentrations
higher than the recommendations given by [33] (Figure 5). Studies have shown that
approximately 90% of F− in drinking water is absorbed in the digestive system, while only
30–60% of F− is absorbed in food [33]. Therefore, there is a risk of skeletal fluorosis and
dental fluorosis with excessive F− concentrations, e.g., between 1.5 and 5.0 mg/L. High
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levels of F− in drinking water can cause more diseases, such as hypertension, neurologic
disorders, Alzheimer’s disease, etc., posing a serious threat to human health [39]. According
to studies conducted by the Poldasht Health Center, available data and information confirm
the prevalence of bone fluorosis [40].
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Figure 5. Excessive contaminants (non-carcinogenic) at the sampled water resources ((a): Nitrate;
(b): Fluoride) [33].

F− concentrations are often relative to the level of water–rock contact because F−

mainly originates from geology [41,42]. The study region is primarily occupied by basalts,
which contain a large amount of F−-bearing minerals [43]. The F− concentration likely
increased because of this in the study area. Compared to NO3

− contamination, F− contami-
nation was highly severe in the study area. The NO3

− concentration in the Maku–Bazargan–
Poldasht water resources ranged from 0.23 to 167 mg/L with a mean of 32.2 mg/L. The
threshold of public health standards on NO3

− in drinking water set by the US EPA is
10 mg/L. Overall, 75% of the samples had NO3

− concentrations that exceeded the US EPA
standard of 10 mg/L (Table 2). In natural water resources, the higher concentrations of
NO3

− can have anthropogenic origins such as unsuitable surplus disposal, severe agricul-
ture practices, and animal surplus [18,19,43]. Figure 5 shows a bar chart that shows the
NO3

− and F− values of the study region relative to the US EPA. A wide variation in F−

concentrations are observed (Table 2), varying between 0.39 and 9.89 mg/L, with a mean
of 2.94 mg/L. On the other hand, in most samples (54%), the F− concentration exceeds its
maximum allowable threshold (1.5 mg/L) for drinking water [33].

2.5. Drinking Water Quality Index (DWQI)

The Drinking Water Quality Index (DWQI) exposes the general quality of drinking wa-
ter. This index can be determined by standardizing each hydrogeochemical parameter [44].
The DWQI switches the samples’ water quality parameters into a sole code and the analysis
of water quality information is compared with data from the World Health Organization to
check their appropriateness for drinking in Appendix A (Table A1). The DWQI calculation
is based on three steps. First, each of the 14 parameters (EC, pH, major and minor ions,
and nutrients) receives a weight (Wi) depending on its relative importance on the general
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water quality for drinking in Appendix A (Table A1). The steps for calculating the DWQI
are estimated using Equations (2)–(5):

1. Consider the weights, Wi, for each element (i) of drinking water constituents; these
weights can be changed from 1 (minimum value) to 5 (maximum value) and are
assigned based on expert opinion. The corresponding weights utilized in this study
are presented in Appendix A (Table A1).

2. Determine the relative weight, Wi, considering the number of elements (n):

Wi =
wi

∑n
i wi

(2)

3. Calculate the quality rating scale (qi) of each parameter [45]:

qi =
ci
si
× 100 (3)

where ci is the ith chemical concentration in the considered water sample (mg/L); ac-
cording to WHO standards, the sub-index of the ith parameter (SIi) can be determined
as follows (mg/L):

SIi = Wi × qi (4)

4. By calculating the SIi for each parameter, the DWQI is determined using the following
equation [46]:

DWQIi =
n

∑
i

SIi (5)

2.6. Human Health Risk Index (HHRI)

The health impact of water contaminated with toxic chemicals is checked based on
the model developed by the US Environmental Protection Agency [33]. In this regard, risk
assessment map of water resources might include important data to better address both
qualitative and quantitative issues [47,48]. An HHRI describes the nature and likelihood
of adverse health effects resulting from chemicals found in contaminated environmental
media, which may be harmful to humans [49]. In general, there is a great deal of risk associ-
ated with oral exposure to the dermal and inhalation pathways of exposure. Accordingly, a
non-carcinogenic pollutants health risk evaluation (e.g., NO3

− and F−) is carried out [50,51].
The US EPA provides a “Regional Screening Levels (RSLs) for Chemical Contaminants”
online calculator [13]. HQ values greater than 1 suggest an increased risk of developing
non-carcinogenic consequences throughout life. The exposure to F− and NO3

− in these
groups is estimated using Equations (6) to (10) [33]:

CDIOral =
(CW × IR× EF× ED)

(BW × AT)
(6)

HQOral =
CDI

R f DOral
(7)

CDIDermal =

(
CW × CA× Kp × ET × EF× ED× CF

)
(BW × AT)

(8)

HQDermal =
CDI

R fDermal
(9)

HITotal =
n

∑
i=1

HQi (10)

where CDI is the chronic daily intake through the oral pathway [mg/(kg × day)]; C repre-
sents the contaminant concentration (i.e., F− and NO3

−) in the water resources (mg/L); IR
is the ingestion rate (L/day, IR = 2.5 L/day for adults, 0.78 L/day for Child); EF and ED are
Exposure Frequencies (365 days/year) and Exposure Duration (standard exposure in the
literature is suggested to be 30 years for adults and 12 years for children), respectively; BW
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and AT are the average body weight (Kg, BW = 57.5 Kg and 18.7 Kg for adults and children,
respectively) and the average exposure time (days, AT = 23,360 days and 4380 days for
adults and children, respectively), respectively; and finally, HQi and RfD are the hazard
quotient of ith pollutant and reference dose for non-carcinogenic contaminants, respectively.
The RfD values for F− and NO3

− are 0.04 and 1.6 mg/(Kg × day), respectively [33]. HI is a
hazard index that indicates the total non-carcinogenic risk. Non-carcinogenic risk values
above 1 indicate health risks, while those below 1 indicate no health risks from drinking
water containing toxic elements [33]. A detailed list of non-carcinogenic health risks can be
found in Appendix A (Tables A2 and A3) Water resources containing high levels of NO3

−

and F− may pose high health risks to humans if consumed for long periods as drinking and
bathing water sources [13,52]. Thus, these two contaminants were considered in assessing
non-carcinogenic risk for children and adults (i.e., Females and Males). More than 90% of
the study region’s population consumes untreated water resources for drinking. It was
found that 55.81% and 65% of sampling points exceeded the prescribed levels of NO3

− and
F−, respectively. Therefore, the consumption of such water in the region posed health risks
to people of all ages.

According to Table 3, most samples fell within the F− concentration range of 1–3 mg/L
(38.33%), followed by 3–4 mg/L (6.6%). The number of samples greater than 4 also had a
higher percentage (33%) in the Maku–Bazargan–Poldasht region, which may cause dental
fluorosis and joint stiffness and brittleness in the region. NO3

− concentrations of the
samples showed that 21.6% of them were below the permissible limit, 25% were within the
safe limit (NO3

− < 10 mg/L), 58% were at health risk (NO3
−: 10–50 mg/L), and 8.33% were

at a high health risk (NO3
−: 50–100 mg/L). Therefore, there was a very high health risk

of NO3
− (>100 mg/L) in 8.33% of samples, which causes methemoglobinemia in children

(6 months old) and abortion in pregnant women [53].

Table 3. Classification of water resources based on F− and NO3
− (mg/L) HHRI.

Corresponding Effects on
Human Health Risk Assessment

Concentration
(mg/L) Station No. % of the

Samples

F−

Safe limit <1 3, 4, 6, 8, 11, 15, 19, 26, 30, 32, 42, 49, 57 21.6%

Dental Fluorosis 1–3 7, 9, 10, 13, 14, 23, 24, 27, 28, 29, 31, 33, 37, 38, 39,
40, 41, 43, 47, 48, 53, 54, 60 38.3%

Stiff and fragile Bones/Joints 3–4 1, 17, 25, 59 6.6%

Defects in knees; crippling fluorosis; bones
conclusively paralyzed resulting in

incapability to walk or stand straight
>4 2, 5, 12, 16, 18, 20, 21, 22, 34, 35, 36, 44, 45, 46, 50,

51, 52, 55, 56, 58 33%

NO3
−

Safe limit <10 4, 5, 8, 11, 12, 15, 19, 20, 26, 27, 28, 30, 32, 36, 49 25%

Health risk 10–50
1, 2, 3, 9, 10, 13, 14, 17, 21, 22, 23, 24, 25, 29, 31,
33, 34, 35, 37, 40, 42, 43, 44, 45, 46, 47, 48, 50, 51,

52, 55, 56, 58, 59, 60
58%

High health risk 50–100 7, 38, 41, 54, 57 8.3%

Very high health risk >100 6, 16, 18, 39, 53 8.3%

2.7. Information- Fusion

In accordance with Esteban et al. [54], it is essential to formulate a strategy in advance
of engaging in any undertaking of information fusion to assist in solving the problem
efficiently and robustly. Data fusion architecture is a platform that connects databases with
the help of data fusion techniques to create an integrated system. It is a mathematical
model that functions as the basis for merging data from several sources into one. This
methodology is based on goals and combines low- and high-level information. This term
refers to a variety of methods and approaches used to combine information to enhance
quality, reduce uncertainty, or uncover novel knowledge or characters from the collected
data. Theoretically, information fusion combines data from a number of diverse data
sources [11]. Typically, it can be characterized at the signal level, the pixel level, the feature
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level, or the Top level [55], each with its own definitions and associated procedures. There is
also another way of categorizing fusion in terms of top-level, medium-level, and high-level
fusions [56]. Several techniques support information fusion, including statistical matching,
grey relational analysis, moving average filters, and Bayesian inference [2,57].

3. Results and Discussion
3.1. Statistical Analysis

Table 2 gives a comprehensive statistical summary of the various physicochemical
parameters (EC, pH, Ca2+, Mg2+, Na+, K+, NH4

+, Cl−, Br−, SO4
2−, NO2

−, NO3
−, and F−)

as well as their comparison with the drinking water quality limits set by US EPA for 60
water samples. The main factors contributing to the significant F− concentration in water
resources are low velocity, rock chemistry, long water–rock interactions [58], and high HCO3

−

and Na+ concentrations. There was a positive correlation between F− concentrations and
the values of HCO3

−, Na+, and K+ concentrations, according to the correlation analysis
(Table 4). Groundwater with dominant HCO3

−, Na+, and K+ concentrations originated from
igneous rocks [59], so the correlation indicates that excessive F− ion concentrations may have
resulted from fluorine-bearing minerals associated with the source volcanic rocks as well as
the application of fertilizers and pesticides on the field [60,61]. Generally, most ions were
positively correlated with Cl−, and particularly Na+, Mg2+, and SO4

2− showed a strong
correlation with Cl−, suggesting that they came from the same origin of saline water [62],
meaning they are furthermore representative of a high occurrence of chemical weathering and
the subsequent leaching of secondary salts. Chemical weathering, anthropogenic impacts,
and salt leaching were the main factors contributing to the Cl− contamination in the study
area. The correlation of F− and the other ions showed that it is poorly correlated with Ca2+

and Mg2+ and positively correlated with Na+, K+, and HCO3
−. It can therefore be concluded

that high F− concentrations exist in water with low Ca2+ and Mg2+ levels, as well as in water
with high Na+ levels. Low Ca2+ resulted from the intense cation exchange reaction between
Na+ and Ca2+. The presence of a high HCO3

− and an alkaline pH in the samples resulted in
the precipitation of Mg2+ as Dolomite and Ca2+ as Calcite. According to Sarma and Rao [63],
this process leads to a higher concentration of Na+ in water resources. It is evident that
HCO3

− is highly correlated with F−, indicating that volcanic rock weathering is the major
cause of F− formation [60]. Low levels of Ca2+ and Mg2+ in the groundwater within the area
may be contributing to high concentrations of F− in the water resources.

Table 4. Correlation matrix between the hydrochemical variables in the Maku–Bazargan–Poldasht area.

EC pH Na+ NH4
+ K+ Ca2+ Mg2+ F− Cl− NO2− Br− NO3− SO42− HCO3−

EC 1

pH −0.27 1

Na+ 0.95 ** −0.29 * 1

NH4
+ 0.45 ** −0.23 * 0.56 ** 1

K+ 0.66 ** −0.29 * 0.73 ** 0.22 1

Ca2+ 0.87 ** −0.31 * 0.76 ** 0.25 0.63 ** 1

Mg2+ 0.91 ** −0.25 0.82 ** 0.33 0.56 ** 0.85 ** 1

F− 0.38 ** −0.16 0.52 ** 0.41 ** 0.46 ** 0.18 0.16 1

Cl− 0.75 ** −0.44 ** 0.72 ** 0.33 * 0.44 ** 0.71 * 0.65 ** 0.40 ** 1

NO2
− −0.09 −0.04 −0.09 −0.006 −0.07 −0.11 * −0.06 0.04 −0.08 1

Br− 0.33 ** −0.08 0.39 ** 0.25 0.27 * 0.13 0.18 0.35 ** 0.15 −0.07 1

NO3
− 0.26 * −0.30 * 0.17 −0.16 0.22 0.26 * 0.35 ** −0.06 0.34 ** −0.003 −0.04 1

SO4
2− 0.30 * −0.009 0.25 * 0.02 0.19 0.34 ** 0.31 * 0.04 0.31 * −0.07 −0.01 0.05 1

HCO3
− 0.25 * −0.35 ** 0.37 ** 0.26 * 0.36 ** 0.05 0.04 0.71 ** 0.35 ** −0.09 0.17 −0.05 −0.07 1

Notes: ** Correlation = significant at the level 0.01 (2-tailed). * Correlation = significant at the level 0.05 (2-tailed).
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3.2. Factor Analysis (FA)

Factor analysis (FA) is a method that has been successfully used by different authors
for the assessment of water quality and chemistry [64], since it helps in the distribution
analysis as well as in tracing the source(s) of the chemical components in water [65]. The
factor analysis for the physicochemical parameters in the water resources of the Maku–
Bazargan–Poldasht region is given in Table 5. A total of four components were extracted
based on the results of the FA analysis, which accounted for 81.83% of the variance in the
data. A rotating factor matrix for the parameters studied can be found in Table 5. The
interpretability of the factor loads without rotation is difficult, so in order to make the factors
more interpretable, the factors were rotated. The results showed that the FA1 described
35.86%, the FA2 described 18.07%, the FA3 described 10.45%, and the FA4 described 7.51%
of the total variance. With a variance of 35.86%, FA1 was positively and considerably related
to EC, Na+, K+, Ca2+, Mg2+, Cl−, and SO4

2− concentrations. These associations indicated:
(i) the interaction between water and rocks in the study area; and (ii) the general trend
of dissolution in waters within the study area. This interaction was unlimited to one site,
but rather the flow through the aquifer encouraged the tendency for further interactions
and the dissolution process to occur in the future. With a total variance of 18.07%, FA2
can be associated with the concentration of F− and HCO3

−, and F− anomalies resulted
predominantly from geogenic processes. The F− concentration in the samples with a high
HCO3

− concentration was higher than those with a low HCO3
− concentration. The FA3,

with a total variance of 10.4%, correlated well with pH and Br- concentrations, and the
existence of NO3

− with negative loading indicated anoxic conditions in the study area [66],
and denitrification and NO3

− reduction are related geochemically [67]. A major source of
anthropogenic NO3

− and nitrite is artificial fertilizers, and various industrial processes
also produce NO3

− in their waste streams. In this study, the spatial distributions of nitrate,
nitrite, and ammonium were investigated. High-NO3

−, low-NO2
−, and high-NH4

+ water
resources were observed. The proportions of high-NO3

− and high-NH4
+ water resources

in urbanized areas were nearly or more than twice those in non-urbanized areas (Figure 6).
High NO3

− levels in the Maku–Bazargan–Poldasht aquifers probably originated mainly
from industrialization accompanied by wastewater leakage. Urbanization accompanied
by the leakage of domestic sewage, is likely to be another main driving force for high
NO3

− levels in the water resources. The high loading of NO3
− ions indicated that there

was anthropogenic input to the system via the leaching of fertilizers from farming regions,
which is linked to the interaction of surface water with the geological formations in the area.
The element Br- can originate from old rivers and seas, as well as from animal waste, which
can have a profound impact on water supply quality and create contaminations that are
mainly caused by the impact of human activities related to farming, with slight influences
from domestic sewage. The total variance of 7.51% can be attributed to the FA4, which is
related to the concentration of NO2

−.

Table 5. Results of factor loading based on factor analysis of the samples in the Maku–Bazargan–
Poldasht area.

Parameters Factor 1 Factor 2 Factor 3 Factor 4

EC 0.94 0.23 0.032 0.026
pH −0.2 −0.44 0.62 −0.22
Na+ 0.87 0.42 0.12 0.046
NH4

+ 0.38 0.41 0.37 0.3
K+ 0.64 0.40 −0.05 −0.10
Ca2+ 0.91 0.023 −0.13 −0.03
Mg2+ 0.93 −0.006 −0.081 0.049
F− 0.22 0.82 0.23 −0.02
Cl− 0.74 0.34 −0.23 −0.003
NO2

− −0.08 −0.11 −0.06 0.87
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Table 5. Cont.

Parameters Factor 1 Factor 2 Factor 3 Factor 4

Br− 0.28 0.27 0.55 −0.07
NO3

− 0.32 −0.06 −0.67 −0.08
SO4

2− 0.50 −0.23 0.068 −0.23
HCO3

− 0.029 0.90 −0.058 −0.085

% of Variance 35.86 18.07 10.45 7.51

Cumulative % 35.86 53.93 64.39 71.9
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3.3. DWQI

The DWQI was employed to assess the status of the water resource quality for drinking
water objects in the Maku–Bazargan–Poldasht area. Unlike previous studies on water
quality, which used a common classification for drinking purposes, this study determined
the ranges between excellent and unsuitable water quality based on a rational classification.
As a result, the DWQI was classified as belonging to the excellent water quality class if
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it was smaller than the minimum data utilized to calculate the Drinking Water Quality
Index; the good water quality class if it was among US EPA standards and the average of
the data used; the poor quality class if it ranged from the safe limit to the average data;
and the unsuitable class if the results of calculating the drinking water index were between
the average to maximum data. The calculated DWQI ranged from 51.19 to 2200, with a
mean of 502.71. In total, 28 samples (46%) were classified as poor and 22 samples (36%)
as unsuitable in terms of their quality, while the remaining 10 samples were classified
as good for drinking (Table 6). The water samples were analyzed for F− and NO3

−

concentrations and then the rational (i.e., proposed classification) and conventional DWQI
values were calculated as follows: (i) classify the concentrations of NO3

− and F− into three
categories: safe (<10 mg/L), health risk (10–50 mg/L), and high health risk (>50 mg/L),
and safe (<1 mg/L), dental fluorosis (1–4 mg/L), and defects in knees—crippling fluorosis
(>4 mg/L), respectively; (ii) classify the DWQI (conventional–rational) into “Good”, “Poor”,
and “Unsuitable” bands; (iii) assign a ‘3’ to a given index performance at the samples if
the difference in the categories of F−-NO3

− concentration and the DWQI value is 0 but
assign scores of two or one when the differences are one or two, respectively; and (iv) add
the scores for the DWQI and calculate their Correlation Index (CI). Consider the following
example for obtaining the CI for the prediction rational (proposed classification) DWQI. The
results showed that there were 38 and 30 samples for the same class, 19 and 24 samples with
a difference of one in the categories of the F−-DWQI and nitrate-DWQI values, respectively,
and 3 and 6 with a difference of two in the categories of the F−-DWQI and nitrate-DWQI
values, respectively. A higher CI means a higher correlation. The coincidence of the water
samples (the F−-NO3

− concentration) and the predicted DWQI categories are presented
in Table 6. Ultimately, this indicated that a higher percentage of the water samples from
the study region were unsuitable in terms of quality. The spatial distribution of the DWQI
(Figure 7) showed that the east and southeast of the area had a high DWQI compared to
the north and west of the Maku–Bazargan–Poldasht area. The water quality along the
Zangmar and Sari Su rivers has deteriorated in recent years, and the worst quality for
drinking occurred at the confluence of the two rivers with the Aras River.
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Table 6. Non-carcinogenic HR for adults and children as well as DWQI and corresponding water quality classification of the samples and Correlation Index (CI)
between Drinking Water Quality Indices (conventional–rational) and F−-NO3

− levels at the water samples.

Samples
Non-Carcinogenic DWQI Classify

Samples
Non-Carcinogenic DWQI

Adults Child Value Conventional Rational (Proposed
Classification) Adults Child Value Conventional Rational (Proposed

Classification)

1 3.73 3.57 102.2 Poor Poor 31 1.67 1.78 209.2 Unsuitable Poor

2 5.17 4.54 1057.5 Unsuitable Unsuitable 32 0.96 0.9 167.3 Poor Poor

3 0.84 0.97 100.8 Poor Good 33 1.33 1.35 235.2 Unsuitable Poor

4 0.47 0.48 150.1 Poor Poor 34 4.72 4.14 506.9 Unsuitable Poor

5 3.79 3.27 1812.9 Unsuitable Unsuitable 35 6.56 5.71 518 Unsuitable Poor

6 4.83 6.39 636.2 Unsuitable Unsuitable 36 8.01 6.92 213 Unsuitable Poor

7 3.16 3.42 268.7 Unsuitable Poor 37 1.99 2.23 211.9 Unsuitable Poor

8 0.64 0.60 104.5 Poor Good 38 3.57 4.10 263.8 Unsuitable Poor

9 1.37 1.34 64.9 Good Good 39 4.63 5.90 343.9 Unsuitable Poor

10 1.62 1.63 69.6 Good Good 40 1.87 2.12 205.06 Unsuitable Poor

11 0.31 0.26 695.7 Unsuitable Unsuitable 41 2.81 3.16 296 Unsuitable Poor

12 3.72 3.20 1576.7 Unsuitable Unsuitable 42 1.49 1.71 160.6 Poor Poor

13 1.69 1.61 335.5 Unsuitable Poor 43 2.22 2.27 245.6 Unsuitable Poor

14 1.55 1.54 252.7 Unsuitable Poor 44 6.64 5.85 877.1 Unsuitable Unsuitable

15 0.65 0.66 51.1 Good Good 45 4.80 4.22 578.5 Unsuitable Unsuitable

16 7.35 8.44 971.8 Unsuitable Unsuitable 46 4.49 4.23 679.7 Unsuitable Unsuitable

17 3.71 3.78 871.9 Unsuitable Unsuitable 47 1.26 1.30 109 Poor Good

18 7.41 7.65 707.14 Unsuitable Unsuitable 48 2.29 2.11 392.8 Unsuitable Poor

19 0.47 0.48 714.7 Unsuitable Unsuitable 49 0.76 0.71 330.5 Unsuitable Poor

20 3.79 3.27 2211.3 Unsuitable Unsuitable 50 4.20 3.86 513.4 Unsuitable Poor

21 4.01 3.75 1171.6 Unsuitable Unsuitable 51 5.79 5.16 443.7 Unsuitable Poor

22 7.01 6.38 1475.2 Unsuitable Unsuitable 52 3.63 3.34 579.8 Unsuitable Unsuitable

23 1.24 1.23 352.8 Unsuitable Poor 53 5.62 6.67 588.4 Unsuitable Unsuitable
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Table 6. Cont.

Samples
Non-Carcinogenic DWQI Classify

Samples
Non-Carcinogenic DWQI

Adults Child Value Conventional Rational (Proposed
Classification) Adults Child Value Conventional Rational (Proposed

Classification)

24 1.52 1.57 233 Unsuitable Poor 54 3.90 4.50 627.4 Unsuitable Unsuitable

25 3.07 2.85 332.6 Unsuitable Poor 55 7.36 6.5 724.05 Unsuitable Unsuitable

26 0.65 0.65 105.3 Poor Good 56 4.07 3.77 987.5 Unsuitable Unsuitable

27 1.47 1.34 354.3 Unsuitable Poor 57 2.67 3.35 109.8 Poor Good

28 1.08 1.00 65 Good Good 58 3.94 3.57 695.6 Unsuitable Unsuitable

29 1.55 1.54 221.2 Unsuitable Poor 59 3.92 3.89 655.4 Unsuitable Unsuitable

30 0.65 0.66 101.3 Poor Good 60 1.61 1.73 338.8 Unsuitable Poor

Index Class

NO3
− concentration

CI

F− concentration

CISafe
(<10 mg/L)

Health Risk
(10–50 mg/L)

High Health
Risk (>50 mg/L)

Safe
(<1 mg/L)

Florsis
(Dental–
Bones)

(1–4 mg/L)

Defects in
knees;

crippling
fluorosis

(>4 mg/L)

Rational
(proposed
classifica-
tion)

Good 3 5 5

144

4 6 3

155Poor 4 21 11 4 19 4

Unsuitable 1 4 6 0 5 15

Conventional

Good 2 4 7

94

1 8 4

139Poor 2 5 29 3 2 22

Unsuitable 0 1 10 0 0 20

Note: # HR: Health Risk.
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3.4. Non-Carcinogenic Health Risk Assessment

A non-carcinogenic hazard is mainly associated with the consumption of portable
water and contact with the skin. Three factors influence the CDI values: the concentration
of the contaminants, the rate at which the water is ingested, and the individual’s body
weight. The CDI values in children are comparatively higher than those in adults. The
child’s HQ oral intake values range from 0.27 to 6.82, and the adult’s HQ oral intake ranges
from 0.31 to 7.95 (with an average of 2.94). In the case of children, the dermal intake ranges
from 0.002 to 1.7, and in the case of adults, the oral intake ranges from 0.001 to 0.96 (with
an average of 0.18). The spatial distribution of human health risk for both children and
adults (Figure 8) along the study area indicates that high HI values (i.e., high HHR) prevail
in the southeast and patches in the west.
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Health risks were assessed using the model developed by the US EPA to assess the
health risks related to this study area. A summary of the calculated results of the non-
carcinogenic health risks posed by NO3

− and F− contaminations through the pathways
of drinking water contamination for adults and children is explicitly presented in Table 6
and Figure 9. It summarizes both the oral intake and dermal intake of each of the different
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groups of inhabitants in the studied region, as well as the total hazard index (THI) corre-
sponding to each group of inhabitants. In children and adults, the HQ values ranged from
0.002 to 1.7 and 0.0013 to 3.2, respectively, depending on the dermal pathway. The mean
dermal contact values for children and adults were 0.32 and 0.18, respectively. The hazard
index values for children and adults (HQOral + HQDermal = HI) ranged from 0.000014 to 7.2
for children and from 0.0000062 to 3.2 for adults. The body weight of a child is lower than
that of an adult. The estimated hazard quotient for children is higher than for adults. Non-
carcinogenic risks to children in this region were higher than those for adults. The mean
values for all the groups of people (i.e., children and adults) were, however, within the
allowable limits (HI < 1) [53]. Since most samples present a high level of non-carcinogenic
risks, they are not suitable for direct consumption. According to the results, the majority
of the samples were not fit for human consumption, as they posed unacceptable health
risks to both adults and children alike. Children are at an increased risk when compared to
adults. Through the ingestion pathway, infants are the most vulnerable group of people.
It is evident from the hazard index that the majority of the samples (i.e., 72% and 60%)
may pose a risk to adults and children, respectively. There is a need to take immediate
remedial steps in this region to prevent the residents from being exposed to NO3

− and
F− through ingestion. Moreover, the results of the total risk via ingestion and dermal
contact showed that ingestion was the predominant pathway. Different strategies can
be used to reduce the risk of dental fluorosis, including (a) the use of alternative water
sources, (b) improving nutrition, and (c) the defluoridation of water. The defluoridation
methods can be divided into adsorption ([68–72]), participation/coagulation [73], electroco-
agulation [74–78], nanofiltration [79,80]), and nanofiltration [81]. In addition, F−-resistant
bacteria play a crucial role in the bioremediation and biotransformation of anions in order
to convert them into less available and less harmful forms.
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3.5. Data Fusion

The main data integration objectives in this research are: (i) refining data and im-
proving data quality; (ii) inventing additional inferences and rising advantage from data;
(iii) improving understanding and decisions. To incorporate datasets from numerous
sources, specialized data fusion techniques can be incorporated into the HHRI framework
recommended earlier by the National Academy of Sciences [82]. In this study, information
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fusion was performed in order to combine index values by DWQI and HHRI indicators to
produce a comprehensive risk map, a scheme depicted in and outlined below [83],

DF1 =

[
2
√

HIAdult +
3
√

HIChild
2

]
(11)

DFTotal =

[
3
√

DWQI + 2
√

THI
2

]
(12)

The data-fused HI (i.e., aggregating HI for both children and adults) values ranged
between 0.01 and 0.99 in the Maku–Bazargan–Poldasht area. The spatial distribution of the
fused Health Index (Figure 9a) shows that the water resources of the southeast regions had
a greater health hazard, followed by the west of the area.

Total data-fused HI values varied from 0.21 to 0.96. Based on the aggregated HI
(i.e., combining the DWQI and data-fused HI at Strategy 1), the southeast of the area
bore the highest risk to the people consuming water. On the other hand, it was observed
that aggregating the DWQI to HI may decrease the health risk in the central parts of the
Maku–Bazargan–Poldasht area, even though there is a greater risk in Strategy 1 than in
Strategy 2. The aggregated index was compiled from the information from Strategy 1 by
implementing an unsupervised learning plan, which is shown to capture information on
the adverse water quality and health risks associated with water of poor quality.

4. Performance Metrics

The Area Under Curve (AUC) and Receiver Operating Characteristic (ROC) curve
can be utilized to measure the accuracy of a diagnostic system [84]. They were recently
used to evaluate a groundwater vulnerability map accuracy by [18]. The events related to
diagnosis can be clustered into four groups, including True Positive (TP), False Positive
(FP), True Negative (TN), and False Negative (FN). The ROC curve plots of FP versus TP
show that desirable performance has a deviation towards the upper left corner of this curve.
The AUC quantifies this as the ratio of the area under the ROC curve to the whole area that
varies between 0.5 to 1. The AUC values 0.5 and 1 mean poor and perfect performance,
respectively. The area under the curve is used as one of the error estimation methods;
whenever the AUC is close to one, the model has high accuracy. Table 7 presents the AUC
values of both Strategy 1 and Strategy 2. The AUC value is improved from Strategy 1
(0.92) to Strategy 2 (0.98). Figure 10 shows the ROC curves for both strategies obtained by
drawing TPR (sensitivity) versus FPR (one—specificity). As shown in Figure 10, Strategy 2
has the highest level under the curve and has the highest accuracy. These results provide
evidence of the feasibility of aggregated indices.

Table 7. Performance metrics to evaluate different water quality assessment strategies.

Test Result
Variable(s) Area Std. Error a Asymptotic

Sig. b
95% Confidence Interval

Lower Bound Upper Bound

Strategy 1 0.92 0.003 0.00 0.92 0.93

Strategy 2 0.98 0.001 0.00 0.97 0.98
Notes: the test result variable(s): Strategy 1 and Strategy 2 have at least one tie between the positive and negative
actual state group. Statistics may be biased. a Under the nonparametric assumption. b Null hypothesis: true
area = 0.5.
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5. Conclusions

This study evaluated water quality and human health risks, considering the hydrogeo-
logical and hydrochemical properties of Maku–Bazargan–Poldasht, Iran. The water quality
analysis showed that F− and NO3

− concentrations were higher than the permissible level
for drinking. A multivariate analysis combining factor analysis and correlations revealed
that both geogenic and anthropogenic agents significantly impacted the quality of the
water resources in the study area. Using the US EPA water quality standards for elements
in drinking water, this study modified the water quality index classes for the first time.
The DWQI results indicated that most of the study area fell within poor or inopportune
drinking water conditions. Based on the calculation of the CI and the comparison of the
assessment of drinking water quality as well as the accurate determination of suitable and
unsuitable areas with the rational (proposed classification) and conventional classification,
the results indicated that rational classifications for drinking water quality indicators and
the definition of drinking water quality categories were more accurate than conventional
classifications. Health risk results demonstrated a considerable non-carcinogenic health
risk due to high NO3

− and F− exposure through drinking water. Children were found
more defenseless than adults in the age categories. A fusion model based on the DWQI
and HHRI was developed for fast safety control of residues related to water quality and
health. The northwest, southeast and central portions of Maku–Bazargan–Poldasht were
considered to be the most unsafe regions in the study area. A high level of NO3

− and
NH4

+ pollution occurred in the study area, and since there is no effective control and
treatment in such a rapidly urbanized region, this process is bound to get worse in the
future. For newly and old-urbanized areas, especially in developing countries, there is a
need for the long-term monitoring of NO3

− and NH4
+ in the area’s water resources. These

results suggest that the governing bodies require immediate intervention in these areas.
Furthermore, the obtained results showed that alternate preparations should be made for
drinking water sources, and people must be aware of the water quality they consume in
the affected areas.
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Appendix A

Table A1. Weight and relative weight of each parameter compared with US EPA standard.

Parameter Unit US EPA Weight (wi) Weight for DWQI

EC (µS/cm) 1000 3 0.068
pH - 7.5 3 0.068
Na+ (mg/L) 200 3 0.068
NH4

+ (mg/L) 0.05 4 0.09
K+ (mg/L) 12 2 0.045
Ca2+ (mg/L) 200 2 0.045
Mg2+ (mg/L) 30 2 0.045
F− (mg/L) 1.5 5 0.11
Cl− (mg/L) 250 3 0.068
NO2

− (mg/L) 3 4 0.09
Br− (mg/L) 0.1 3 0.068
NO3

− (mg/L) 10 5 0.11
SO4

2− (mg/L) 250 3 0.068
HCO3

− (mg/L) 300 2 0.045
Total Weight 44 1

Table A2. Definitions, symbols, units, and values associated with equations used for health risk
assessment.

P Meaning Unit
Oral Values Dermal Values

References
(Adults) (Children) (Adults) (Children)

AT Average exposure
time for ingestion Days 25,550 3650

Non-carcinogenic
effects = ED ×

365 = 10950 (Adults).
Carcinogenic effects

AT = 70 × 365 = 25,550

2190 (Child).
Carcinogenic

effects
AT = 70 × 365

= 25,550

[33,85]

BW
Average body
Weight of a

population group
Kg 70 25 70 25 [33]

CF Conversion factor L/cm3 1.1000 [85]

CDI Chronic daily intake µg/kg/day - - - - [85]

CW Concentration in
water µg/L - - - - Study data

ED Exposure Duration
through ingestion year 70 10 30 6 [33]
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Table A2. Cont.

P Meaning Unit
Oral Values Dermal Values

References
(Adults) (Children) (Adults) (Children)

EF Dermal exposure
frequency days/year 365 350 [33]

ET Exposure time in the
shower h/event - - 0.58 1 [33]

IR Daily groundwater
ingestion rate L/day 2.2 1 - - [85]

Kp Dermal permeability
coefficient cm/h

Al(0.001), As(0.001),
Cr(0.003), Cu(0.001),
Fe(0.001), Mn(0.001),
Ni(0.004), Pb(0.001),

Zn(0.0006), Cd(0.001)

[33]

SA Exposed skin area
during bathing cm2 - - 18,000 6600 [33]

Table A3. Dermal permeability coefficient, reference dose, slope factor, and gastrointestinal absorp-
tion coefficient for each element.

Elements Units
Non-Carcinogen Carcinogen

Oral RfD
(µg/Kg/day)

Dermal RfD
(µg/Kg/day) SF (kg × day/mg)

F− (µg/L) 0.04 [33] 60 [33] Not Determined
NO3

− (µg/L) 1.6 [33] 0.025 [33] Not Determined
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