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Abstract: The current water scarcity and world population increase cause the need for more food,
pushing the demand on water resources due to crop production such as rice. Increasing agricultural
water productivity by reducing the amount of irrigation water without affecting the yields, especially
in paddy rice, is necessary. This is possible with alternate wetting and drying (AWD) irrigation.
This study was conducted under greenhouse conditions at Tokyo University of Agriculture and
Technology, Japan to evaluate the response of yield, water productivity and harvest index with
different water regimes. The experiment was performed in pots with four water regimes as treatments
and three replications, making 12 pots. The water regimes were continuous flooding irrigation as
control and three AWD conditions—AWD5, AWD10 and AWD15—in which pots were irrigated when
water reached 5, 10 and 15 cm soil depth, respectively, after the disappearance of surface ponding
water. Yield components, harvest indexes and water productivity showed no significant difference
(p < 0.05) between irrigation treatments. In this research, as there is more than a 25% reduction in
water use and only 6.4% in grain yield, AWD15 was considered the best irrigation practice among
the other treatments. This study provides data reference for theoretical scientific knowledge and
understanding of safe AWD practice for countries facing water shortages.

Keywords: drought; irrigation water management; ponding water; soil drying

1. Introduction

Water scarcity is becoming a bigger global concern. Additionally, irrigation agriculture
uses over 70% of the world’s fresh water, and the demand is expected to increase to
meet future food security. Drought is becoming a serious global issue and crises in many
countries contributing to water scarcity, the drying of water sources such as lakes, rivers and
seasonal streams and reducing irrigated rice yields [1]. Rice is one of the most staple food
crops; it is critically important for food security to half of the world’s population, where
rice accounts for about 80% of their food consumption [2,3]. In addition, 114 countries grow
rice, and more than 50 have an annual production of 100,000 tons of rice or more [4]. Rice
has been cultivated in more than 146.5 million hectares of the world agricultural lands [5,6],
although the production is significantly affected by drought issues. As in most sub-Saharan
African countries, rice is one of the cereal crops grown in Uganda mostly by smallholder
farmers for income [7] with few large schemes and total production of 350,000 MT annually
(upland and paddy).

For a long time, paddy rice cultivation has been carried out using the traditional contin-
uous flooding (CF) irrigation which provides enough water supply and weed management
by keeping root zones in anaerobic conditions. The anaerobic conditions in paddy rice fields
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result from oxygen restrictions in the soil due to the long duration of ponded water in the
field after flooding. The same conditions were observed with pot experiments in CF mostly
at the vegetative to reproductive stages. Traditional CF is being practiced by smallholder
farmers in Uganda who face several challenges such as underdeveloped irrigation and
water structures, poor water management and drying of water sources due to drought [8].
In contrast, the country’s rainfall pattern can support two rice seasons in the year, with
precipitation of 750 mm/year in the driest areas in the northeast to 1500 mm/year in the
high rainfall areas of the northern, eastern, and western parts of the country [9]. This is
becoming impossible due to climate change, since rice cultivation under the traditional
system demands higher water input than the other cereal crops [10].

On the other hand, the water demand is increasing for both domestic and industrial use.
This contributes to a reduction in the water availability for agriculture purposes and water
conflicts among water users and among farmers which cannot be avoided. Additionally,
surface and underground water resources are shrinking, which is posing a threat to the
future of rice production [11]. The current challenge for paddy rice cultivators is to increase
the water productivity by growing rice with less water, which is possible [12,13]. The
promotion and adoption of effective water use-saving techniques for rice production to
reduce water use in the agricultural sector without affecting the yields [14], with climate
change being inevitable, is necessary. Alternate wetting and drying (AWD) irrigation is
one of the water-saving techniques widely being promoted for rice cultivation [15]. It has
been considered as a climate-smart water-saving technique being practiced in many Asian
countries such as China, Bangladesh, India, and Vietnam [16–18].

The AWD practice was developed by the International Rice Research Institute (IRRI)
in the 1970s [19,20]. The practice comprises three basic elements: (1) shallow flooding for
the first 2 or 3 weeks after seeding or transplanting to recover seedlings from transplanting
shock and to suppress weed emergence [21], (2) ponding layer of 2−5 cm of standing
water from panicle initiation (PI) to the end of flowering because this duration is very
sensitive to any water stress, and (3) AWD cycle through the rest of the crop growth
periods [22]. The AWD system ensures supply of the physiological water demand [23] of
rice by controlling water supply and reducing the total water input. In AWD, fields are
subjected to periodic cycles of wetting and drying of soil, which is closely linked with the
number of factors such as the soil texture, soil water potential, plant water status, and soil
hydraulic conductivity [24]. The field water observation tube developed by IRRI can be
used to monitor the water level beneath the soil surface. Half-perforated field water tubes
can be made using bamboo, PVC pipe, tin cans, or even plastic bottles with a diameter
of 10−20 cm and based on the materials availability. Using perforated field water tubes
enables farmers to monitor the water table easily. Water is first applied to a depth of around
5 cm, and then, the farmers wait until the perched water table falls to a certain limit beneath
the soil surface due to percolation, drainage, and evapotranspiration. The fields are then
re-irrigated when the field water level (FWL) reaches 15 cm or less (in water pipes) below
the soil surface, which is referred to as ‘’safe AWD” [25]. The threshold level at “safe
AWD” increases or maintains the yield with water saving of 15–30%, as at this threshold
level, the roots of plants are still able to acquire sufficient water from the saturated soil
and perched groundwater for growth and development [23]. Farmers are encouraged to
implement the “safe AWD” technique during vegetative growth (tillering to PI) and then at
the grain-filling stage [26].

Several studies have reported that compared to traditional continuously flooding con-
ditions, AWD can maintain or even increase grain yield [16–18]. In contrast, a yield penalty
is commonly observed under AWD compared with traditional continuous flooding [19,20].
Generally, AWD increased water productivity with respect to total water input because the
yield reduction was smaller compared to the amount of water saved [17]. AWD can save
water while maintaining rice yields, but in some countries, its adoption by farmers remains
limited due to lack of knowledge and skills, perception due to the key knowledge gaps in
AWD practice which include its effect on early vegetative vigor, unknown relationship with
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yield and water use efficiency based on different local cultivars used by smallholder farm-
ers, and the socio-economic factors influencing AWD irrigation scheduling, which involves
frequent field monitoring [27]. Additionally, there are two primary methods to further
increase rice yield. The first is to increase the harvest index (HI) when the biological yield
is certain [28]. The second is to increase the biological yield under the condition of a certain
HI. The HI is the ratio of the crop marketable yield to the biological yield. This concept was
first proposed by the former Soviet scholar Niki Porovich in 1954 [29]. Currently, a series
of studies have been conducted to increase yields by improving HI [30]. The research by
Mai et al. [31] showed that the cultivation method of sowing effectively improved the rice
HI. It is important to note that one aspect of field research such as experimental studies
with crop cultivation should be carried out for at least two or more seasons [32].

One of the challenges is defining the AWD practice. Since the water application is
based on either soil water potential or field water level, there are three categories of AWD
conditions: safe-AWD, mild/moderate-AWD, and severe-AWD approach. Safe AWD is
defined by field water level when the water level reaches less or 15 cm depth below the
soil surface [23], while mild AWD condition is when the water level reaches 15 to 20 cm
and severe AWD is when the FWL reaches 25 cm. Safe AWD is considered appropriate,
since it has a minimal effect on yield. Additionally, the AWD practice by matric potential is
defined when the matric potential head in the rootzone reaches −20 kPa or less for safe
AWD, −45 kPa for mild AWD or −70 kPa for severe AWD [14]. This relationship varies
depending on the soil type, soil hydraulic conductivity, environmental factors and farmers’
experience. Whereas IRRI recommends water application with AWD practice two or three
weeks after transplanting or direct seeding [19,20], then there is continuous flooding at the
panicle initiation to the end of flowering, since this stage of rice is sensitive to any water
stress [22]. However, in this research, water regimes in AWD conditions were set under
safe AWD (less or 15 cm depth), and the water regime was defined when FWL reached 5,
10 and 15 cm depth below the soil surface to evaluate safe AWD. The water application
after the start of the water regimes was carried out throughout the whole cultivation period,
which is opposed to the IRRI recommendations. The effect of water regimes with safe
AWD practice throughout the whole cultivation period has not been studied. Similarly,
if promoted, for example, in Uganda, the safe AWD practice can enhance water use and
management since the government, through agricultural and rice sector development and
investment plans, is rehabilitating irrigation schemes to increase paddy cultivation [8].

In this study, the response of water productivity and HI was studied by analyzing
the rice yield data, seasonal water use, dry matter accumulation, and HI under different
safe AWD regimes throughout the whole season. Therefore, the objectives of this research
are (1) to apply and evaluate the FWL of safe AWD practice to determine the appropriate
observation depth leading to optimum water use, and (2) to evaluate water productivity,
water saving, and HI under the different safe AWD regimes. The findings of the present
study provide useful information to farmers carrying out paddy rice cultivation in countries
facing water shortages due to climate change and drought. The study also provides
scientific knowledge on the application of safe AWD practice throughout the whole season.

2. Materials and Methods
2.1. Experimental Design and Site Characteristics

The study was carried out from December 2021 to March 2022 in glass greenhouses at
Tokyo University of Agriculture and Technology (TUAT), Fuchu, which has a longitude
and latitude of 139.4787◦ E, 35.6840◦ N, respectively, and is 67 m above sea level. The
temperature inside the glass greenhouse was set between 20 and 30 ◦C. Paddy soils were
collected from the Honmachi experimental field of TUAT and sieved with a 4 mm sieve. The
site has clay loam soils as defined by the United States Department of Agriculture (USDA)
of soil texture classification. Meteorological data such as temperature, relative humidity,
and solar radiation were measured and recorded from a meteorological station placed
within the glass greenhouse. Additionally, relative humidity and temperature sensors were
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placed in all the glass greenhouses. The average relative humidity and temperature during
the cultivation experiment are plotted in the Figure 1.

Water 2022, 14, 3368  4  of  14 
 

 

and latitude of 139.4787° E, 35.6840° N, respectively, and is 67 m above sea level. The tem‐

perature inside the glass greenhouse was set between 20 and 30°C. Paddy soils were col‐

lected from the Honmachi experimental field of TUAT and sieved with a 4 mm sieve. The 

site has clay loam soils as defined by the United States Department of Agriculture (USDA) 

of soil texture classification. Meteorological data such as temperature, relative humidity, 

and solar radiation were measured and recorded  from a meteorological station placed 

within  the glass greenhouse. Additionally,  relative humidity and  temperature  sensors 

were placed in all the glass greenhouses. The average relative humidity and temperature 

during the cultivation experiment are plotted in the Figure 1. 

 

Figure 1. Average temperature and relative humidity conditions in glass greenhouses, where Av. 

Tempe.; average temperature and Av. Rh (%); average relative humidity. 

Water Regimes 

The pots in the glass greenhouses were arranged in a randomized block design with 

four treatments and three replications as described below: 

The continuous flooding  irrigation (CF) as a control treatment was applied during 

the whole rice‐growing period, in which water was applied when ponded water dropped 

to a zero level on the soil surface. The water application to the pots was always measured 

and applied by a watering can. 

Alternate wetting and drying (AWD) conditions described as AWD5, AWD10 and 

AWD15  correspond  to  the  irrigation period when water  level  in  the observation  tube 

reaches 5, 10 and 15 cm in soil depth after the disappearance of surface ponding water, 

respectively. All the AWD conditions fall under the safe approach recommended by the 

International Rice Research Institute (IRRI) not to cause yield decline [33]. However, in 

this research, water was applied through the whole cultivation period in AWD regimes 

after  the start of  irrigation treatments, which  is opposed to  the IRRI recommendations. 

The AWD wetting and drying conditions are shown in the schematic illustration in Figure 

2. 

All pots were of  the same size of 24 cm diameter and 30 cm height with a closed 

bottom. In total, 12 experimental pots were placed in two glass greenhouses of the same 

conditions, as shown in Figure 3. Paddy soils collected from the experimental paddy field 

of TUAT were packed in the pots with the same dry density of the field soil to maintain 

the field conditions after sieved with a 4‐mm sieve. 
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Water Regimes

The pots in the glass greenhouses were arranged in a randomized block design with
four treatments and three replications as described below:

The continuous flooding irrigation (CF) as a control treatment was applied during the
whole rice-growing period, in which water was applied when ponded water dropped to a
zero level on the soil surface. The water application to the pots was always measured and
applied by a watering can.

Alternate wetting and drying (AWD) conditions described as AWD5, AWD10 and
AWD15 correspond to the irrigation period when water level in the observation tube
reaches 5, 10 and 15 cm in soil depth after the disappearance of surface ponding water,
respectively. All the AWD conditions fall under the safe approach recommended by the
International Rice Research Institute (IRRI) not to cause yield decline [33]. However, in
this research, water was applied through the whole cultivation period in AWD regimes
after the start of irrigation treatments, which is opposed to the IRRI recommendations. The
AWD wetting and drying conditions are shown in the schematic illustration in Figure 2.
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Figure 2. Schematic illustration of alternate wetting and drying practice in pot experiment: wetting
condition (a) and soil drying condition (b).

All pots were of the same size of 24 cm diameter and 30 cm height with a closed
bottom. In total, 12 experimental pots were placed in two glass greenhouses of the same
conditions, as shown in Figure 3. Paddy soils collected from the experimental paddy field
of TUAT were packed in the pots with the same dry density of the field soil to maintain the
field conditions after sieved with a 4-mm sieve.
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Figure 3. Experimental design and treatments: glass greenhouses (a,b) where CF is the control and
5, 10 and 15 are AWD5, AWD10 and AWD15 conditions; CF, continuous flooding irrigation; AWD,
alternate wetting and drying irrigation practice. Each treatment has three replications.

2.2. Field Conditions and Measurements

The glass greenhouses were set under the same temperature conditions with the
minimum and the maximum temperature of 20 ◦C and 30 ◦C, respectively, during culti-
vation. Rice variety, Ikuhikari, a short Japanese grain and widely grown rice cultivar [34],
was directly seeded on 14 December 2021, and water regimes were applied 17 days after
direct seeding (DAS). From direct seeding to harvest, the average pot seasonal rice water
consumption varied from 78 to 120 L depending on different water regimes. During each
irrigation, a known amount of water was applied (measured using graduated beaker) using
a watering can. The stages of rice cultivation from direct seeding, fertilizer application,
and irrigation application to harvest are summarized in Table 1. Water application in all
regimes was stopped 4 days prior to harvesting. The total number of days from direct
seeding to harvest was 105.

Table 1. Days of rice cultivation activities from direct seeding to maturity.

Stage Direct
Seeding

Start of Water
Regimes

1st Fertilizer
Application

2nd Fertilizer
Application

Maturity
Stage

DAS 1 17 30 64 105

2.2.1. Measurement of Growth, Tillers and Yield Survey

The crop height was measured on a weekly basis using a tape measure, and the
number of tillers was counted manually in each treatment. The yield components (number
of grain panicles, grain number, grain weight and brown/filled grains) were measured
after harvest. The yield survey was performed by measuring rice grain number using
rice counter and grain weight before and after dehusking. The rice pot was sampled each
treatment and the number of grains (mature and immature) was measured. Mature rice
grains were separated by sieving to separate them from immature ones. The grain numbers
were recorded, and the percentage of mature grains was obtained from the number of total
rice grains.

2.2.2. Crop Harvest Indexes and Biomass Dry Matter Content

The harvest index (HI) is one of the factors used to measure the difference between
the potential and actual yield. For this research, HI was based on above-ground biomass
and actual yields and estimated [27] using the formula below.

HI = Y/AGB (1)

where Y is the yield (kg/ha) and AGB is the above-ground biomass accumulation (kg/ha).
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Additionally, the fresh leaves were cut and separated from the rice stem after harvest
to obtain the fresh weight. The stems and leaves were further cut into small particles and
oven dried for 72 h at the temperature of 70 ◦C to avoid biomass burning. The total ratio of
biomass dry matter content to fresh biomass was expressed as a percentage.

2.2.3. Water Productivity

Generally, water productivity is expressed as the total of irrigation water productivity
(WP) and rainwater productivity (RWP), which are the total water (rain + irrigation) [35],
expressed in kg/m3; Y is the grain yield expressed in kg/ha. In this research, the rice’s
WP was obtained by dividing the average yield on the average season irrigation water
consumed per pot in each treatment during the whole cultivation growth period. WP is an
important index for the evaluation of irrigation water management [36].

WP = Y/I (2)

where Y is the yield of rice (kg/ha), and I is the amount of irrigation water (m3/ha).

2.3. Data Processing and Analysis

The data analysis was of variance (ANOVA), and this was performed in Microsoft
Excel with comparative analysis using the Fisher man’s pairwise comparison method [37].
The lowest significant difference (LSD) was obtained by Equation (3).

LSD = tv, α

√
MSs(A)

(
1

Sα
+

1
Sα1

)
(3)

With an equal number of observations within the group, Equation (3) is simplified as
Equation (4).

LSD = tv, α
√

MSs(A)S (4)

where α is the number of observations per treatment, MSs(A) is the mean square error
within the group A, t is the t-statistics from the statistical t-distribution table, and v is the
degree of freedom obtained from the same table.

To make the conclusion, the absolute value of the difference between means was
compared with LSD. If the difference between means was found to be greater than the LSD,
then it was recorded as a significant difference and vice versa.

3. Results
3.1. Effect of Water Regimes on Rice and Tiller Growths

Figure 4a shows the average crop height with different water regimes. There was a
gradual difference in rice growth among different water regimes. Forty days after direct
seeding, CF and AWD15 had small differences in crop height on AWD10 and AWD5. The
crop height difference is attributed to changes in water regimes. At heading, the lowest crop
height was noticed slightly in CF, AWD5 and AW10, while comparable height increments
were observed in AWD15. In addition, crop heights at the grain filling and maturing stage
were nearly the same under all water regimes.

In addition, tillering is an important trait in grain production, although the produc-
tivity of rice plants is highly dependent on the number of effective tillers with panicles
bearing at least one filled grain rather than the total number of tillers [38]. Figure 4b shows
the effect of different water regimes on crop tillers. Initially, the number of tillers was nearly
the same under all the water regimes, although between 40 and 50 DAS, AWD15 and CF
had a higher number of tillers compared to AWD5 and AWD10. Toward the end of the
vegetative stage, to the grain filling, CF had a slightly higher number of tillers compared to
all the AWD treatments. The water regimes did not significantly affect crop height and the
number of tillers.
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Figure 4. Average crop: height (a) and tilers (b), where Av. is the average, DAS is days after direct
seeding, CF is the continuous flooding irrigation, and AWD is the alternate wetting and drying
irrigation practice.

3.2. Effect for Irrigation Water Regimes on Yield and Yield Components

The results of crop yields, number of panicles, grain number and percentage of mature
grains are shown in Figure 5a,b. There was no significant difference for the yields observed
in all water regimes; however, CF (0.172 kg) had a slight difference of 0.028, 0.034 and
0.012 kg in the yields compared with AWD5, AWD10 and AWD15, respectively. In addition,
CF and AWD15 had the same average number of tillers with a slight difference of six and
eight tillers observed in AWD5 and AWD10.

On the other hand, grain maturity is an important factor in determining the optimum
harvest time and affecting grain yields. Water regimes affected the number of grains
and their maturity. The number of grains was highest in AWD5 with 7034 as compared
to the other water regimes with 6601, 4371 and 5421, corresponding to CF, AWD10 and
AWD15, respectively. The AWD5 and CF had a similar range of grains with a slight
difference of 433 grains. In addition, the lowest number of 4371 grains was observed in
AWD10. The percentage of mature of grains in AWD10 and AWD15 was the same. The
highest percentage (76) of mature grains was observed in CF compared to 73 in AWD5 and
70 corresponding to AWD10 and AWD15.
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3.3. HI and Biomass Dry Matter Content with Different Water Regimes

Figures 6 and 7 show the crop HI and percentage of dry matter content under different
water regimes, respectively. The HI values in all AWD water regimes range from 0.607 to
0.538 kg/kg, although CF had a slightly large HI value compared to AWD5, 10 and 15,
respectively. Similarly, the percentage of dry matter in AWD5 and AWD10 was slightly
higher than that of CF. The highest percentage of nearly 33% was observed in AWD5 and
10, while the lowest percentage of dry matter content of 25% was observed in AWD15.
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3.4. Seasonal Water Use, Water Productivity and Water Saving

Table 2 summarizes the average seasonal pot water use and productivity with different
water regimes. The seasonal water uses from direct planting to harvest represented 121, 78,
76 and 89 L under CF, AWD5, 10 and 15, respectively. The highest season water use was
observed in CF (121 L) and the lowest was observed under AWD10 (76 L). On the other
hand, the seasonal water use demonstrates water saving in AWD5, 10 and 15 conditions
by 35, 37 and 26%, respectively. It was also observed that rice plants required more water
during their mid to late vegetative growth stage; however, this depends largely upon
local soil and climatic condition, as mentioned by Chapagain and Yamaji [39]. In addition,
Figure 8 shows the cumulative changes in average pot water use with different rice growth
stages. It was observed that at the vegetative stage, rice used nearly the same water
amounts in all AWD conditions with the difference of 2.6, 4.4 and 2.6 L corresponding to
AWD5, AWD10 and AWD15, respectively, compared to CF.

Table 2. Average seasonal pot water use and productivity.

Treatments Av. Irrigation (L) Wp (kg/m3) Water Saving (%)

CF 121 1.43 -
AWD5 78 1.86 35

AWD10 76 1.83 37
AWD15 89 1.81 26

Note: CF, continuous flood irrigation as control; Av., Average; AWD, alternate wetting and drying practice; Wp,
water productivity.
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4. Discussion
4.1. Impact of Irrigation Conditions on Rice Growths and Tillers

In AWD practice, paddy soils are subjected to periodic irrigation and drying conditions,
which are related factors such as irrigation, air temperature, soil type and properties [40].
In this research, the water regimes were applied 17 days after seeding (DAS) and are in
line with IRRI recommendations. The water application in different water regimes varied
according to the rice growth stages. Water ponding depth varied from 2 to 4 cm, while
its duration under all water regimes at the tillering to vegetative stage varied from 2 to
7 days, although this changed to 1 to 2 days under AWD conditions and even to a half-day
in both CF and AWD conditions, at grain formation and maturity. Rice is sensitive to any
severe water stress, and this was observed in plant height reduction at the end of booting to
panicle initiation (AWD5 and AWD10) and maturity stage (AWD10). Any change in water
application tended to induce drought stress, contributing to a decline in net photosynthesis
and reduced growth through the inhibition of cell elongation or cell division [35]. Similarly,
the induced short water stress in this research was observed with a difference in crop height
and tiller numbers [41] in AWD conditions compared with CF between 49 and 70 DAS.
Additionally, not all the tillers were developed to maturity (productive tillers). Some
degenerate to become dormant when young and die later depending on environmental
and nutritional conditions [42], affecting the final yields. The rate of the crop recovery due
to re-water application depended on the soil conditions such as soil water, pre-drought
intensity and duration [43] of soil drying, which was very short, causing visible water stress
in all AWD conditions during the studied period. On the contrary, and due to the short
soil drying periods in this study, crop growth and tillering were insignificantly affected by
water regimes. This is in support with the research by Nguyen et al. [44], who compared
various water-saving systems in rice and found an insignificant difference in tiller number
among water regimes. The same study also suggested that tillering was less sensitive than
other characteristics, such as plant height and leaf area.

4.2. Effect for Irrigation Treatments on Yield and Yield Components

Our results demonstrate that the yields, numbers of panicles and grains, and per-
centage of mature grains were not significantly affected by the water regimes. However,
there were slight declines in the yields, grains and percentage of mature grains. Much of
the induced invisible short water stress seems to have occurred due to water applications
with different water regimes. This was not critical, since the amount of water application
based on different regimes contributed to the infiltration rate that coincided in time with
water uptake [35]. The availability of soil water conditions did not reach a critical point for
the crops to develop a deeper root system as an adaptation measure but also due to the
depth of the pots. The decline in the percentage of mature grains supports the findings of
Kumar et al. [45], who indicated that the percentage of unfilled grains was significantly
higher in sites that were affected by drought at the reproductive stage. Further research
by Davantgar et al. [46] showed that any water stress at flowering causes flower abortion
and an increase in unfilled grain percentage. This induces spikelet sterility or grain filling
delay, leading to a high unfilled grain percentage, which further reduces the overall grain
yield, as observed in AWD10 and AWD15. Additionally, the delay in plant growth, due
to any induced water stress during panicle initiation, delays the heading rate, decreasing
the panicle number and grain formation [39]. Any water stress at panicle initiation is more
destructive to panicle number biomass dry mass and total grains, irrespective of the culti-
vars, resulting in a drastic decrease per hectare in paddy yield as noted by Akram et al. [47].
However, in this research, the number of panicles for each water regime produced similar
results though decreased average yields with the AWD conditions.

4.3. Harvest Indexes and Biomass Dry Matter Content with Different Treatments

The water regimes had an insignificant effect on the HI of the rice as observed by
HI values of 0.607, 0.550, 0.538 and 0.576 Kg/Kg corresponding to CF, AWD5, AWD10
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and AWD15, respectively. This could have been due to the similarity in morphological
aspects of vegetative growth such as same time of head initiation, duration of grain heading,
biomass accumulation in the formation of stems, leaves at heading and decline in grain
filling affecting the final yields in the same rice cultivars as noted by Elkheir et al. [48],
which is the similar case in this research. The study by Chen et al. [49] on the rice cultivars
also showed the similarity in the change of stem biomass between aerobic rice cultivars
and little increase after the booting stage, whereas there were differences in duration
from the booting stage to the heading stage. Other research indicates that seed priming
reported its effect on harvest index and reproductive stage components. Its attributes
may be due to pre-germination metabolic activities that make the seed ready for radical
protrusion, leading to good crops establishment [48,50]. Similarly, our results indicated
that the biomass dry matter content was not affected significantly. However, the highest
percentage of biomass dry matter was produced under AWD5 (33%), which was followed
by AWD10 (32%). Furthermore, the lowest biomass dry matter content was observed in
AWD15 (25%). Therefore, the application of fertilizer at the appropriate rate and time with
different water regimes can improve above-ground biomass and can increase rice yield,
as observed by Haung et al. [51], since the effects of water and nutrients on crop growth,
yield and HI are interactive [28]. Our findings also demonstrated the potential to increase
the HI of rice with directly seeding.

4.4. Seasonal Water Use, Water Productivity and Water Saving

Generally, high irrigation WP was produced in all AWD conditions, with the highest
WP (1.86 kg/m3) observed in AWD5, which was followed by AWD10 and AWD15 with
1.83 and 1.81 kg/m3, respectively, compared to CF (1.43 kg/m3). However, the lowest
yield reduction (0.033 kg) and highest immature grains (30%) was observed in AWD10,
indicating that 0.033 kg of yield was lost for saving 1 m3 of water compared with CF.
Similarly, research on different water regimes by Zhang et al. [52] observed a significant
increase in grain yield and water use efficiency when the soil water potential was reduced
to 25 kPa in AWD. This indicates that a drying period with AWD water regimes is the major
factor affecting paddy yield, although soil drying to 25 kPa is beneficial to grain growth
during grain filling. Based on the AWD conditions, the soil drying varied from 2 to 5 days
at the crop development stage and 0.5 to 2 days at the reproductive and ripening stages.
On the other hand, an increase in water use in all water regimes was observed toward
the end of the vegetative stage to ripening, as seen in Figure 8. In addition, AWD15 had
high seasonal water use as compared to other AWD regimes due to increased water use
in different pots with the same treatment due to changes in plant morphological activities
in the vegetative and ripening stages. It was observed that irrigation water application in
paddies with AWD conditions must be carried out as soon as water drops the required soil
depth to avoid any induced water stress, which may affect rice productivity. AWD15 was
accepted as the best irrigation practice among the other different irrigation management
practices with a 26.3% reduction in water use and only a 6.7% reduction in grain yield
compared to the CF, AWD5 and AWD10 conditions.

5. Summary

The conclusions drawn from this study are:

• The grain yield of paddy rice did not reduce significantly in AWD conditions. The
reduction is ineffective so long as the soil moisture is in the range of readily available
water for the rice depending on the soil type and soil hydraulic conditions.

• Any induced water stress due to different water regimes especially at panicle and
grain formation can delay rice growth, causing a difference in the number of tillers
panicles and yields

• AWD has the potential to improve irrigation water productivity with an insignificant
difference in yields and increase in the HI of paddy rice. Timely water application and
fertilizers can contribute to yields, biomass and HI.
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• AWD15 was accepted as the best irrigation practice due to a 26.34% reduction in water
use and only a 6.40% reduction in grain yield compared to the control continuous
flooding treatment.

The findings of the present study provide data reference from glass greenhouse
conditions for the theoretical scientific knowledge and understanding of safe AWD practice.
This is support for water management and water saving in paddy rice cultivation with
safe AWD practice applied throughout the whole cultivation period in countries facing
water shortages.

Given that our study was conducted in glass greenhouse conditions, it is important
to conduct this research in in situ field conditions. Water application by both matric
potential and FWL with safe AWD practice throughout the whole cultivation period on
different paddy soil types should be evaluated. Effects on water, crop productivity and clay
physical properties such as hydraulic conductivity, expansively and plasticity should be
further explored.
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