
Citation: Ni, J.; Feng, J.; Sun, R.;

Zhang, Y. Assessing Sea Surface

Temperatures Estimated from Fused

Infrared and Microwave Data. Water

2022, 14, 3357. https://doi.org/

10.3390/w14213357

Academic Editor: Zheng Duan

Received: 1 October 2022

Accepted: 20 October 2022

Published: 23 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Assessing Sea Surface Temperatures Estimated from Fused
Infrared and Microwave Data
Jinyang Ni 1, Jiajun Feng 1 , Runxia Sun 1 and Yuanzhi Zhang 1,2,*

1 School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
2 Department of Geography and Resource Management, Faculty of Social Science,

Chinese University of Hong Kong, Shatin, Hong Kong
* Correspondence: yuanzhizhang@cuhk.edu.hk or yzhang209@nuist.edu.cn; Tel.: +852-6995-2064

Abstract: Sea surface temperature (SST), a critical parameter of the global ocean–atmosphere system,
is an essential element in the study and in the application of marine science. Satellite–infrared
observations currently represent the only available method for continuous, large-scale observation of
SST. Although passive microwave observations are not blocked by clouds, allowing for data collection
in all weather conditions, this technological tool is characterized by low spatial resolution. Conversely,
infrared observations offer high resolution but are susceptible to cloud obscuration. Accordingly, a
technique that effectively fuses microwave and infrared satellite observations into a high-resolution
SST field with global coverage close to the actual distribution is of practical significance. This paper
describes fusing MODIS infrared remote sensing and AMSR-2 microwave remote sensing SST data
with an optimal interpolation (OI) approach to produce a high-resolution SST data. The study chose
the coastal Kuroshio region of China to establish an appropriate scale for examining the spatial
structure of SST and attaining a more realistic picture of SST observations and impacts. The included
discussion of the sources of error in the fusion process provides a reference for improving the accuracy
of fused marine remote sensing data. The study also compared the fused SST results and the current
international mainstream multi-temporal resolution of the three using the OI algorithm. We compared
the fusion product with ARGO data with and without typhoon impact to explore and practice the
OI in SST fusion when evaluating the accuracy of different data in the case of external disturbance
being present. The research results have great significance for improving regional SST forecast
accuracy while ensuring the applicability of various approaches to fusing SST data by incorporating
the influence of typhoons in the offshore region of the East China Sea (ECS). Implications for the
future development of SST fusion data are also included in the discussion.

Keywords: sea surface temperature; optimal interpolation; assimilation

1. Introduction

The Earth has a surface area of 510 million km2, 71% of which is covered by seawater.
Due to the enormous specific heat capacity of seawater, the surface layer of the ocean
stores most of the energy from solar radiation, and this stored heat essentially controls
atmospheric motion. Along these lines, the energy sources that drive atmospheric motion
include the sensible heat exchange between the sea surface and the atmosphere, the latent
heat of seawater, and long-wave radiation. Heat exchange between the atmosphere and the
ocean takes place primarily at the ocean’s surface, where changes in thermal conditions
impose corresponding changes in atmospheric movement. As a parameter that correlates
to the thermal conditions of the ocean surface, sea surface temperature (SST) is frequently
featured in studies examining upper ocean processes and sea–air heat exchange. SST is also
widely used in numerical simulations and forecasts concerning the ocean and atmosphere.
The results of sea–air interaction studies have indicated that changes in SST can have
fundamental effects on long-term weather processes [1], leading to alteration in the marine
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environment and global climate. In particular, SST conditions influence the development
and production of marine fisheries in light of the specific temperature range required
for growth by various oceanic fish species. Hence, accurate SST data are essential in
effectively identifying the ideal location of central fishing grounds as well as assessing the
development status of fishing grounds. SST also serves as a critical indicator for the regular
assessment of established marine fisheries, whose production in terms of the growth of
the fish cultured is heavily dependent on SST conditions. The availability of SST data is
an integral part of forecasting fishing conditions. Lastly, SST is a factor in global climate
change and is implicated in the occurrence of natural disasters, such as typhoons, and
climate patterns, such as El Niño [2]. Accordingly, practical production applications require
the ready availability of high-resolution spatial and temporal SST data with global coverage
that supports the efforts to sensibly exploit the ocean, improve the efficiency of fishery
production, and study marine science and global climate change.

The development of methods that will improve SST data accuracy has continued
to draw increasing scholarly attention. Traditional in situ measurement data, such as
information collected by ships and buoys, are constrained to ship routes and buoy positions,
leaving wide stretches of ocean unmonitored and large blank areas on comprehensive SST
charts. Compared with traditional observation methods, marine satellite remote sensing
technology can cover wide range of ocean waters in all weather conditions over long
periods of time, while reporting data nearly in real time [3]. In addition, satellites can
periodically repeat observations for the same sea area. Although the many advantages of
satellite remote sensing thus lend themselves to fishery production and marine research,
it is also vital to recognize that different satellite sensors are accompanied by various
disadvantages. For example, infrared sensors offer high spatial and temporal resolution
but cannot penetrate the cloud layer to obtain data. Conversely, microwave radiometers
can penetrate the cloud layer but cannot meet the requirement for production and research-
related accuracy because of their low spatial resolution [4].

Advances in satellite observation technology have supported an increasing number
of in-orbit observation satellites, fueling the growth of scholarly attention focused on
methods that can combine the characteristics of different types of satellite data to achieve
multi-source satellite SST data fusion. The leading data fusion methods currently include
objective analysis, stepwise revision, variational assimilation, Kalman filter, and optimal
interpolation (OI) [5]. The first application of an objective analysis method in the context
of oceanographic research was conducted by Bretherton et al. in 1976 [6]. In 1987, Carter
and Robinson [7] explained in detail and provided a methodology for assessing different
flow fields using objective analysis, which the researchers specified as applicable to marine
satellite remote sensing data. Reynolds and Smith [8] used the OI method to combine
in situ measured SST data with satellite-observed SST data to obtain fused SST data.
Reynolds further improved the OI fusion SST data method in 2002 [9], boosting the accuracy
of the fused data in high latitudes. Around the same time, He et al. [10] used the OI
method to fuse IR (AVHRR) and microwave (TMI) data in the Florida West Florida Shelf in
2003. Meanwhile, the European Commission’s Joint Research Centre (JRC) established the
GODAE High Resolution SST Pilot Project (GHRAAT-PP) [11] in 2000 and 2005. Most of
the SST L4 products released by the GHRSST-PP have used the OI method. Remote Sensing
Systems (RSS) developed the microwave OI global SST analysis system [1], combining
SST data from TMI, AMSR-E, and the Moderate-resolution Imaging Spectroradiometer
(MODIS) on the Aqua satellite platform. Lastly, the National Centre for Ocean Forecasting
(NCOF) developed the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA)
system [12], which used OI to combine measured SST data with satellite SST data to obtain
fused daily average SST data at a resolution of 1/20◦.

In summary, many approaches to obtaining high-quality remote sensing SST data via
the fusion of different types of SST data have been developed around the world. Among
them, widely used offerings that provide high accuracy include the National Climate Data



Water 2022, 14, 3357 3 of 16

Center’s (NCDC) OISST v2 [13], the National Weather Service’s RTG-HR and OSTIA, and
the UK Meteorological Offices’ OSTIA [12].

Most SST data analyses employ statistical analysis to transform irregular spatial data
into regular grid products [14]. However, these methods generally exclude the effects on
SST of extreme weather events, such as typhoons [15], leading to large local variations in
day-by-day results. The differences in SST data based on the data collection technology,
as mentioned earlier in this discussion, have led to the availability of many variations of
SST data, each of which offers unique advantages to various research areas and fulfills
different user requirements in terms of providing a particular solution that will best suit the
established purpose. This investigation pursued several objectives. First, the study sought
to verify the differences between single sensor data and the resulting spatially seamless
daily SST values in the case study of the East China Sea (ECS). The second objective was to
compare the differences between the measured data and the fused SST under the influence
of typhoons. Therefore, we began by defining the study area using Argo measurements
and then applied three typical global fusion SST data (AVRHH OISST, MISST, and OSITA),
and MODIS and AMSR2 data (SST-OI) with different spatial resolutions. The research
results have great significance for improving SST forecasting capability under the influence
of regional typhoons while also supporting the effective application of various fused SST
products in the ECS.

2. Study Area and Datasets
2.1. Study Area

The study area is the Kuroshio region in the East China Sea (15–45◦ N, 110–150◦ E),
which is part of the northwest Pacific Ocean (as shown in Figure 1), influenced by a
subtropical high pressure and monsoon system, with high typhoon occurrence, and the
Kuroshio winding northward through the region, which is a complex and variable climate
and hydrodynamic environment, making it an ideal sea area for accuracy testing of SST
fusion products.

Water 2022, 14, x FOR PEER REVIEW 4 of 19 
 

 

 

Figure 1. Study area, where the dots represent the location of the ARGO buoys (SST, colored shad-

ing; °C). The figure shows the overlay of daily ARGO buoy SST observation point locations in the 

study area in August 2015. 

2.2. Fusion Satellite Datasets 

The satellite SST data used in this fusion study include MODIS thermal infrared data 

and AMSR-2 radiometer microwave data. The MODIS data are from NASA’s Jet Propul-

sion Laboratory (JPL), whose SST data have a spatial resolution of 0.041°, named NASA 

OBPG. 2020. MODIS Aqua Global Level 3 Mapped SST. Ver. 2019.0. These data are avail-

able through the website https://podaac.jpl.nasa.gov/da-

taset/MODIS_AQUA_L3_SST_THERMAL_DAILY_4KM_Daytime_V2019.0 (dataset ac-

cessed on 26 June 2022). 

AMSR-2 SST data are provided by Remote Sensing Systems (RSS), named GHRSST 

Level 3U Global Subskin Sea Surface Temperature version 8a from AMSR2 on the GCOM-

W satellite, Ver. 8a. The product, with a spatial resolution of 0.25°, is available through the 

website https://podaac.jpl.nasa.gov/dataset/AMSR2-REMSS-L3U-v8a (dataset accessed 

on 26 June 2022). 

This study uses MODIS SST data from January 1–3, 2015, for validation of OI method 

feasibility. AMSR-2 SST data of the same time and study area as MODIS were selected for 

this thesis study, allowing a final SST data fusion product with 9 km spatial resolution (to 

facilitate intercomparison among the fused SST products, see Section 3.1 for details) to be 

obtained. August is a time when typhoons are frequent in the study area, meaning we can 

conveniently compare the impact of typhoons on SST products. Therefore, the fusion 

product also uses data from August 2015, which is then compared with other products 

(see Section 4.2 for details). 

2.3. In Situ Data and Typhoon Data 

Among the various raw SST data sources, drifting buoys have been widely used to 

validate numerous satellite-derived SST data due to the measurement depths observed by 

satellite sensors close to the sea surface [16]. Although the measured depths of the drifting 

buoy and the satellite SST are slightly different, there is a strong correlation between the 

measured values of the drifting buoy and the satellite SST [17]. The Argo program is a 

Figure 1. Study area, where the dots represent the location of the ARGO buoys (SST, colored shading;
◦C). The figure shows the overlay of daily ARGO buoy SST observation point locations in the study
area in August 2015.



Water 2022, 14, 3357 4 of 16

2.2. Fusion Satellite Datasets

The satellite SST data used in this fusion study include MODIS thermal infrared
data and AMSR-2 radiometer microwave data. The MODIS data are from NASA’s Jet
Propulsion Laboratory (JPL), whose SST data have a spatial resolution of 0.041◦, named
NASA OBPG. 2020. MODIS Aqua Global Level 3 Mapped SST. Ver. 2019.0. These data are
available through the website https://podaac.jpl.nasa.gov/dataset/MODIS_AQUA_L3
_SST_THERMAL_DAILY_4KM_Daytime_V2019.0 (dataset accessed on 26 June 2022).

AMSR-2 SST data are provided by Remote Sensing Systems (RSS), named GHRSST
Level 3U Global Subskin Sea Surface Temperature version 8a from AMSR2 on the GCOM-W
satellite, Ver. 8a. The product, with a spatial resolution of 0.25◦, is available through the
website https://podaac.jpl.nasa.gov/dataset/AMSR2-REMSS-L3U-v8a (dataset accessed
on 26 June 2022).

This study uses MODIS SST data from January 1–3, 2015, for validation of OI method
feasibility. AMSR-2 SST data of the same time and study area as MODIS were selected for
this thesis study, allowing a final SST data fusion product with 9 km spatial resolution (to
facilitate intercomparison among the fused SST products, see Section 3.1 for details) to be
obtained. August is a time when typhoons are frequent in the study area, meaning we
can conveniently compare the impact of typhoons on SST products. Therefore, the fusion
product also uses data from August 2015, which is then compared with other products (see
Section 4.2 for details).

2.3. In Situ Data and Typhoon Data

Among the various raw SST data sources, drifting buoys have been widely used to
validate numerous satellite-derived SST data due to the measurement depths observed by
satellite sensors close to the sea surface [16]. Although the measured depths of the drifting
buoy and the satellite SST are slightly different, there is a strong correlation between the
measured values of the drifting buoy and the satellite SST [17]. The Argo program is a
global ocean observing program launched in 1998 to collect fast and accurate profiles of
seawater temperature, salinity, and currents in the upper layers of the global ocean [18,19].

The Argo SST data adopted in this work were taken from the Coriolis Global Data
Acquisition Center of France. The Argo program is part of the Global Ocean Observing
System (GOOS) [20], covering the full month of August 2015 and the area of ECS. These
data include delayed-mode profiles with a quality flag of 1. The Argo buoy returns a set of
profiles every 10 days, and the shallowest water depth at which it collects temperatures
is 4–5 m, with very little data in the 0-m layer. To obtain sufficient surface temperature
information, the 0–5 m layer was selected as the validated surface measurements, following
Marcello et al. [21]. Figure 1 illustrates the distribution of surface (0–5 m) depth Argo in the
study area in August 2015.

To compare the differences among SST products under extreme conditions, this paper
considers the effects of typhoons. The typhoon data sources were taken from the “CMA-
STI Tropical Cyclone Best Track Dataset” [22,23], which includes the central location,
minimum pressure, maximum wind speed, average speed, and duration of the typhoon
(tcdata.typhoon.org.cn, accessed on 26 June 2022). The typhoon situation in the study area
in August 2015 is detailed in Figure 2.

2.4. SST Datasets

Since the 1980s, the increasing number of satellite remote sensing SST data sources
has greatly contributed to the development of specific algorithms for SST products, and a
wide range of SST products have been developed by research institutes and operational
departments around the world. Because the purposes of research can vary, the data sources
selected for fusion production of each product vary from country to country, as do the
fusion techniques used and the spatial and temporal resolution of the products.

https://podaac.jpl.nasa.gov/dataset/MODIS_AQUA_L3_SST_THERMAL_DAILY_4KM_Daytime_V2019.0
https://podaac.jpl.nasa.gov/dataset/MODIS_AQUA_L3_SST_THERMAL_DAILY_4KM_Daytime_V2019.0
https://podaac.jpl.nasa.gov/dataset/AMSR2-REMSS-L3U-v8a
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Figure 2. Typhoon track map for August in the study area (wind speed, colored shading; m/s).
The circle represents Typhoon Soudelor (1–8 August, max radius of over 24 m/s winds 180 km),
the square represents Goni (15–26 August, max radius of over 24 m/s winds 220 km), the triangle
represents Atsani (16–26 August, max radius of over 24 m/s winds 240 km).

It is difficult to say with certainty that a particular fusion product produces the best
effect. We can only choose the appropriate SST fusion product by combining it with
actual demand.

The data sources of the SST analysis data used for comparison in this paper are three
fusion data of the Advanced Very High Resolution Radiometer (AVHRR) NOAA OISST [13],
Microwave + Infrared optimally interpolated SST (MISST) and Operational SST and sea ice
analysis (OSTIA) [12].

The OISST data is a day-by-day SST product produced by Reynolds’ team [24], includ-
ing two fusion data, NOAA OISST and NOAA + AMSR OISST, with a spatial resolution of
0.25◦ [25]. Due to the failure of the AMSR-E satellite antenna, the NOAA + AMSR OISST
product was discontinued on 5 October 2011. Here, the NOAA OISST, a Global Level 4 SST
analysis data of the High Resolution Sea Surface Temperature Team (GHRSST), is selected
to use only AVHRR infrared data and measured data. It first corrects the large-scale bias
generated by daytime remote sensing data using measured data, and then, using the OI, a
smoothed complete field is obtained by interpolating and extrapolating SST observations
from different sources. The fusion data is computationally generated.

The MISST data is the global daily grid SST value produced by RSS (Remote Sensing
Systems), with a spatial resolution of 0.09◦. MISST is based on the OI algorithm and
incorporates microwave data that can penetrate clouds and infrared data with high spatial
resolution. The data, using both microwave (MW) sensors including the Global Precip-
itation Measurement (GPM) Microwave Imager (GMI), the Tropical Rainfall Measuring
Mission (TRMM) Microwave Imager (TMI), the NASA Advanced Microwave Scanning
Radiometer-EOS (AMSRE), the Advanced Microwave Scanning Radiometer 2 (AMSR2),
and WindSat, operates on the Coriolis satellite, and infrared (IR) sensors such as the MODIS
on the NASA Aqua and Terra platform and the Visible Infrared Imaging Radiometer
Suite (VIIRS).
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OSTIA is produced and published daily by the Met Office of the UK Meteorolog-
ical Office using the Optimal Interpolation Algorithm (OI) based on data provided by
GHRSST-PP. OSTIA includes the use of satellite data from sensors that the AVHRR, the
Advanced Along Track Scanning Radiometer (AATSR), the Spinning Enhanced Visible and
Infrared Imager (SEVIRI), the Advanced Microwave Scanning Radiometer-EOS (AMSRE),
the Tropical Rainfall Measuring Mission Microwave Imager (TMI), and in situ data from
drifting and moored buoys. Its spatial resolution is 0.054◦ [1].

3. Methods
3.1. Fusion Method

The OI algorithm is one of the more practical and easily operationalized fusion algo-
rithms for SST data fusion. Among the many SST products available today, the OI method
is used in many mainstream SST fusion data [13,24], which shows the feasibility of the
algorithm in marine research.

In order to get a better fusion effect, the selected SS data coverage should be as high
as possible, since the data of one day alone often cannot reach the requirements. The
MISST product determines the SST for one day in the middle of three consecutive days of
remotely sensed observations by time smoothing. All daytime observations are adjusted
and corrected by the wind speed at local time [1]. In this study, for MODIS and AMSR2
data to be fused, the SST data of three consecutive days are averaged to represent the SST
of its second day, referring to the practice of MISST [1].

Since the spatial resolution of MODIS and AMSR-2 SST data are not the same, the
fusion work cannot be performed directly. The two sets of data need to be geometrically
transformed in the same coordinate system before fusing. In this thesis, a bilinear inter-
polation method is used to transform the data geometrically, and both sets of data are
interpolated into a grid with a resolution of 9 km, i.e., the size of the grid points in the
study area is 455 × 341. Then the optimal interpolation method is applied to them.

The optimal interpolation [8] is an objective analysis method in which the background,
observed and analyzed values are set as unbiased estimates, and the observed and analyzed
values are expressed in the form of increments relative to the background values. Then
the mean squared deviation is minimized by calculation, which is a linear interpolation
method. In calculating the optimal interpolation, the deviation of the measured data from
the background field is weighted and averaged to obtain the values of the spatial grid
points. The flow of satellite SST data fusion is shown in Figure 3.
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In order to improve the accuracy of the SST fusion product, only those parts of the
MODIS satellite data with better quality markers are fused. The data analysis shows that
the quality of MODIS data is affected by cloud occlusion, land, cloud edge, and solar flare.
The IR radiometer can obtain high accuracy and reliable SST measurements in the area free
of these effects. The quality marker distribution of MODIS data in the study area of this
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paper, where only the grid points with flag = 0 are not disturbed, are valid data. The rest of
the grid point data are regarded as invalid data.

3.2. Fusion SST Image Quality Analysis

The image is subjectively evaluated by comparing its visual effect, whereas objective
evaluation calculates its statistical parameters [26,27]. The results of subjective evaluation
depend on humans’ visual observation, whereas the results of the objective evaluation are
more impartial.

In this paper, to reflect the spatially detailed characteristics of the OI algorithm fusing
SST data, three statistical parameters of the images are selected for comparing the fused
SST image with the original satellite data (MODIS and AMSR-2). In the following, the
definition of the image parameters are given.

The mean value (µ) can reflect the average brightness of the image to the human eye,
which, if it is moderate, can make an image visually compelling. The variance (δ2) size
is related to the amount of information contained in the image: the larger the variance,
the more spread out the image element values are, the more SST values appear in the
image, and the more information the data contains. Information entropy (S) quantitatively
describes an image’s information richness: the larger the information entropy, the richer
the information. The equations for these three variables are:

µ =
1
n ∑n

i=1 xi (1)

δ2 =
1

n− 1 ∑n
i=1 (xi − µ)2 (2)

S = −c ∑L−1
i=0 Pi ln Pi (3)

In the above equation, n is the total number of samples, xi is the ith sample value; c
is a constant related to the base of the logarithm, c = 1/ loga 2, c = 1 when a = 2, c = 1/ln2
when a = e, and, in this paper, we use the latter, that is, c = 1/ln2. For an individual SST
image, it can be considered that the SSTs of its elements are independent of other samples.
Then, the SST distribution of this image is P = {p0, p1, · · · pn−1}, where pi is the ratio of
the SST data with an SST value equal to pi to the total SST data of the image.

3.3. Comparison Data Processing
3.3.1. Typhoon Data Processing

A total of four typhoons passed through the study area in August 2015, and the
typhoons considered in this paper had wind speeds ≥ 24 m/s The dates on which the
daily recorded wind speeds exceeded 24 m/s were considered as affected by typhoons in
this paper. Accordingly, the typhoons selected for the study were Typhoon 13 Soudelor
(1–8 August, max radius of over 24 m/s winds 180 km), Typhoon 15 Goni (15–26 August,
max radius of over 24 m/s winds 220 km), and Typhoon 16 Atsani (16–26 August, max
radius of over 24 m/s winds 240 km) (see Figure 2 for detailed paths). In summary, the
study area was affected by typhoons for a total of 20 days in August.

3.3.2. Generation of Matching Datasets

The matched datasets for validation must theoretically be synchronized or essentially
identical on spatio-temporal scales, but this is in fact difficult to achieve. The four fused
remote sensing SST products used in this chapter are all cloud-free, day-by-day data
covering the whole sea area, but the spatial resolution of these products varies. In order
to facilitate the intercomparison among the fused SST products, this chapter takes the
MISST (9 km) with moderate resolution as the standard, and the spatial resolution of other
fused SST products is also processed to 9 km by the linear interpolation method. The SST
measured by Argo is a single point of data at a certain time. Because the position of an Argo
buoy is not fixed, we first take the position of all Argo data in August 2015, and record
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the time of the position in days, and then use the date of Argo data as the basis to find
the SST fusion product of that time; in space, the coordinates of Argo measurement points
were used as the basis, and the fusion products took the average SST values of grid points
within a radius of 0.09◦ from them. A total of 524 OI matches, 522 NOAA OISST matches,
525 MISST sets, and 524 OSTIA matches were finally obtained. The location distribution of
each matched data set is shown in Figure 1.

4. Results
4.1. Fusion SST Image Quality Analysis

Currently available SST fusion products primarily employ the OI method. In this
approach, fusion error is mainly influenced by the inversion accuracy of the satellite data,
the weighting coefficients in the fusion algorithm, and atmospheric conditions. This paper
selected MODIS data and AMSR-2 data from the Kuroshio region of the East China Sea for
OI fusion, using the OSTIA analysis product as the background field. The fusion process
entailed the following steps: (1) vacant SST data of AMSR-2 (shown in Figure 4) after three-
day average disposal were provided by the data of the initial background field OSTIA,
and (2) the new background field formed by the interpolation of AMSR-2 and OSTIA in
turn completed the vacant SST data for MODIS. The daily average results with a spatial
resolution of 9 km, which were obtained by fusing SST data from MODIS and AMSR-2 for
15 and 20 August 2015, respectively, using the OI method can be found in Section 4.2.1.
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To objectively evaluate the quality of the fused SST image using the OI method, this
paper compares MODIS SST data, AMSR-2 SST data, and data fused using the OI method
based on mean (µ), variance (δ2) and information entropy of images (S).

Table 1 compares the quality parameters of the three image of MODIS SST, AMSR-2
SST, and SST after OI fusion for 2 January 2015 (as shown in Figure 5). The mean value of
the data fused by OI is in the middle, signifying that the visual effect of the fused image
is better than that of the single-sensor image. The variance of the three groups of data is
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close, indicating that the deviation of the data fused is consistent with that of the original
data and that the value of the original data is not changed. The information entropy of
the images [28] is a measure of the richness of image information from the information
theory perspective, a variable for the objective evaluation of images. The magnitude of
information entropy reflects the amount of information carried by the image. The image
information entropy of the data fused by OI is the largest, showing that its SST data carries
the most information.

Table 1. Comparison of MODIS, AMSR-2. and OI Fusion SST Data Quality Parameters.

Product Average (◦C) Variance Entropy

MODIS 19.970 8.513 9.639
AMSR-2 20.094 6.857 11.105
SST-OI 19.535 7.334 11.505
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4.2. Analysis of Comparative Results
4.2.1. Fusion SST Products Data Distribution

In this paper, the OI algorithm is used to fuse two types of SST data, and the results
show that fusion outperforms single sensors. In the future, correcting and improving this
algorithm will be of great help to the development of SST fusion products. The following is
a comparison of the selected fusion SST products with different SST data, all of which use
the OI algorithm.

Figure 6 shows the SST distributions of the four fusion products on 15 August (with
typhoon influence) and 20 August (without typhoon influence) 2015, respectively. Qualita-
tive comparison of the single-day SST distributions of each SST fusion product shows that
all four fusion products can clearly reflect the single-day SST trends in the Kuroshio region
of the East China Sea and are relatively consistent, and the differences in temperature
products in the study area are more obvious in the presence of typhoon than in the absence
of typhoon influence.
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product respectively.
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4.2.2. Comparison of SST Fusion Results with Argo Data

Table 2 shows the results of the statistical analysis of the SST at the matching points of
each of the four fusion products with the Argo buoy, including the number of matching
points, mean deviation (Bias), absolute deviation (Abs_Bias), standard deviation (STD),
and root mean square error (RMSE). NOAA OISST has a negative deviation of −0.03 ◦C
from the Argo buoy, MISST has a negative deviation of −0.04 ◦C from the Argo buoy, and
OSTIA has a positive deviation of 0.04 ◦C from the Argo buoy. The deviation of MISST is
the smallest. An absolute bias of 0.52 ◦C, 0.49 ◦C, 0.45 ◦C, and 0.44 ◦C for OI, NOAA OISST,
MISST, OSTIA, and Argo buoys, respectively; standard deviations of 0.87 ◦C, 0.76 ◦C,
0.69 ◦C and 0.71 ◦C for OI, NOAA OISST, MISST, OSTIA, and Argo buoys, respectively.
The root mean square errors of OI, NOAA OISST, MISST, OSTIA, and Argo buoys were
0.94 ◦C, 0.76 ◦C, 0.69 ◦C, and 0.71 ◦C, respectively.

Table 2. Statistical analysis of the matching points among four kinds of SST products.

Time Product The Number of
Matching Points Bias/◦C Abs_Bias/◦C STD/◦C RMSE/◦C

Full month of August 2015

OI 524 0.370 0.525 0.871 0.946
NOAA OISST 522 −0.028 0.490 0.831 0.831

MISST 525 −0.040 0.375 0.749 0.749
OSTIA 524 0.374 0.528 0.932 1.003

With typhoon impact

OI 331 0.364 0.528 0.977 1.041
NOAA OISST 329 −0.025 0.526 0.944 0.943

MISST 332 −0.068 0.418 0.880 0.880
OSTIA 331 0.429 0.566 1.079 1.159

No typhoon impact

OI 193 0.380 0.521 0.652 0.754
NOAA OISST 193 −0.034 0.428 0.592 0.591

MISST 193 −0.004 0.303 0.440 0.439
OSTIA 193 0.279 0.463 0.593 0.654

The day-by-day evolution of the standard deviation in Figure 7 shows that MISST has
the least dispersion from Argo and the greatest dispersion from SST-OI and OSTIA; that is,
MISST is closer to the actual SST, while the SST-OI and OSTIA products are more different
from the actual SST in the case study, especially in the presence of typhoons. Comparing
Figure 7 with Table 2, it is found that the fusion results are closer to the Argo SST data on
the dates without typhoon influence, and the quality of the OSTIA data is less affected by
typhoons, while MISST is more affected by typhoons.
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Figure 7. Day-by-day evolution of the statistical analysis of fusion products and Argo buoy SST
match points. (a) Average of the mean deviation between the four products at the matching point and
the buoy value, (b), (c) and (d) as in (a), but is the mean for absolute deviation, standard deviation,
root mean square error respectively. The red vertical line indicates the date when the typhoon started
to affect, and the black line indicates the date when the effect ended.
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5. Discussion

This investigation applied the OI method to fuse MODIS infrared SST data and AMSR-
2 microwave SST data. In addition to combining two data sources in this case, we tested
how remote sensing data from other sensors could be merged to meet various needs,
with the characteristics of multiple sensor observations combined to obtain an SST fusion
product with high spatial and temporal resolution.

We also sought to further improve the accuracy of the fusion results by comparing
them with in situ observation data to establish a model, in which in situ data were used
to validate the SST data with the measured SST data using the OI method. This approach
could also facilitate correcting the SST values by incorporating other factors, such as sea
surface wind speed and salinity data. Fusion accuracy could be further improved by adding
a vertical correlation model to the OI method.

This paper presented a comparative analysis of the response of the time series fusion
products to the typhoon impact in order to evaluate the advantages and disadvantages
of the multi-source fusion products before and after the typhoon impact. In addition, the
spatial distribution and differences in the analysis results were examined in the Kuroshio
region of the ECS.

5.1. Analysis of Fusion Error Sources

Infrared sensors measure the SST depth to the micron, whereas the microwave sensors
measure only to the millimeter depth, so that the same area of the SST does not correspond
to the same depth. Furthermore, same-depth SST with solar radiation changes daily and
the transit times of different sensors are also different, so the data obtained may also
be different.

Usually, the OI method performs the calculation and analysis only near the selected
points. This approach reduces the computational effort required but can result in a situation
in which the analysis results are not optimal for the whole field and can make the fusion
results spatially incoherent. Usually, the OI method analyzes only a single variable, which
can lead to inconsistency in the physical quantities of the fusion results. In addition, the
interpolation calculation itself introduces some noise, which can impact the accuracy of the
fused data.

In addition, the reason for the error about the fusion products in this paper may be
that better quality control of satellite data is not adopted, for example, the effect of wind
speed on SST is not considered, and the SST can be corrected by analyzing the sea surface
wind speed and salinity data; it may also be because it is not combined and corrected with
the field observation data, and a model can be considered to introduce the measured SST
data for correction after OI fusion.

5.2. Analysis of Differences between SST Data and ARGO Buoys

Compared with Argo, the previous study of these L4 products show that OSTIA has
the best accuracy among these fusion products, with a standard deviation of its products
of less than 0.5 ◦C [29]. The comparison results of SST data fusion products using the OI
algorithm compared in this paper are shown in Table 2 and Figure 6.

Since the SST data of the fusion products are all fully covered, the number of matching
points between the four fusion products and the Argo buoy, as well as the number of
matching points between the fusion products, is basically the same, and the difference
in the coverage of the data itself causes the difference in the number of matching points
between each fusion product.

These differences in the comparison of remote sensing fusion SST and buoy SST are
related to the mismatch of their observation depths and observation times. The temperature
measured by remote sensing SST is generally at the micrometer-mm level at the sea surface,
while the buoy SST measures the temperature at a depth of about 1 m. The fused SST
calculates the daily average temperature, while the buoy measures the instantaneous kinetic
temperature, and these factors make some deviations when comparing the two.
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5.3. Analysis of Different SST Data

It has been shown that disregarding the daily warming effect leads to a more significant
bias in the fused SST by Martin et al. [30]. The MISST provided by RSS uses the empirical
algorithm proposed by Ref. [1] to remove the daily warming effect from the data source
in order to reduce the effect of daily variation in SST; the OSTIA has strictly controlled
the quality of the daytime SSTs involved in the fusion based on the criterion that the daily
warming effect of daytime SSTs is most significant when the wind speed is <6 m/s [31],
and the initial field of the SSTs used has eliminated the effect of daily warming.

Figure 5 shows a close distribution of the four SST results in the absence of a typhoon;
in the presence of a typhoon, it can be seen that the OSTIA SST is high, especially in the
125–135◦ E, 18–20◦ N region, and the rest of the products appear to be significantly colder
regions. The reason may be that the response to the typhoon impact is different, and the
OSTIA products treat the elimination of daily sea surface warming differently in the data
fusion process. It is worth mentioning that MISST does not correct for the base temperature,
unlike the two SST fusion products, NOAA OISST and OSTIA, which directly use measured
data. However, the AMSR and TMI data have been corrected and validated by buoy data,
and the large scale MODIS data bias has been adjusted and corrected by AMSR data.

The results of the statistical analysis in this chapter are in general agreement with
the analysis of Martin et al., but the results of the study area fusion data comparison
analysis are slightly worse than the global data [30]. The absolute deviation, standard
deviation, and root mean square error results show that MISST is slightly better than NOAA
OISST and OSTIA, indicating that microwave data provided by microwave sensors can
effectively improve the product quality of SST fusion data. Compared with the results of
Xi et al. [32,33], we found that the statistical analysis results of the fusion product with Argo
are between the statistical analysis results of the two sensors for inversion of SST—better
than microwave radiometer and slightly worse than infrared radiometer. This indicates
that the fusion product effectively improves the coverage rate through the input of multi-
source data and the spatio-temporal smoothing process of the fusion algorithm, which
does not reduce the accuracy of the product but also does not significantly improve the
product quality.

The statistical analysis results of the matching points of the four fusion products
and Argo buoys evolve month-by-month as shown in Figure 6, the change curves are
essentially the same, and the data quality is relatively stable. The positive deviation of
SST-OI, OSTIA, and Argo buoys is more obvious; the average deviation of MISST is closer
to the Argo observation results, and it is observed that the SST-OI product and Argo buoys
have obvious positive deviation and fluctuation This indicates that the product lacks actual
measurement data, so it cannot correct for the large scale deviation of remote sensing data
and there is a large systematic error, indicating the important role of actual measurement
data as input data in the fusion product.

Compared with the Argo buoy, the SST of the four fusion products were all signifi-
cantly affected by the typhoon, and the average deviation was worse than normal with
typhoon effects. The results of the absolute deviation showed that the size of the difference
between the four products and Argo was related to the size of the typhoon wind speed and
the area affected by the typhoon. The standard deviation and root mean square error evolve
month-by-month, showing that in August MISST is slightly better than NOAA OISST and
OSTIA, especially in the presence of typhoons. This is due to the fact that in the typhoon
region infrared data are missing a lot and MISST with microwave data can improve the
quality of the fusion product, further indicating that the quality of the single-sensor NOAA
OISST fusion product is significantly affected by changes in cloud coverage. Therefore,
SST data from microwave sensors are important when infrared sensors do not provide
valid data.

The mean deviation, standard deviation, and root mean square error of the four fusion
products on 26 August 2015 are significantly higher than those of other periods of the same
month, which may be explained by the fact that this is due to the end of the impact of
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typhoon Goni on that day. The impact of Atsani is also mainly not in the area where Argo
has data; the SST rises rapidly, the daily SST variation is more variable, and there is a time
difference between the products and the SST obtained by the observation. A comparative
analysis of the statistical results of the four fusion products with Argo buoys shows that
infrared data, microwave data, and real-world data all play an essential role in the fusion
products, so that the quality of MISST data, which uses these three types of data, is closer
to that of Argo data than that of the SST-OI, NOAA OISST, and OSTIA products.

In Figure 6b, there is an anomaly at 20◦ N, 129◦ E (a high SST in the cold vortex), but
in Figure 6d,f, there is no anomaly in the cold vortex in the sea, because the SST-OI does not
correct for the IR SST anomaly adopting a quality control approach, and the others avoid
the anomaly because they have microwave data as input data and different quality control
methods, or are corrected with actual measurement data.

The results of Xie et al. [34] demonstrated that in the East China Sea shelf waters
with a water depth less than 80 m, the deviation between products increases rapidly with
the decreasing water depth, and there are two inflection points with large slopes at water
depths of 40 m and 80 m. Therefore, the SST fusion products can be used independently
for waters greater than 80 m, but further correction is required near the shore. In this study,
because of the small number of Argo in the offshore region, it will not be discussed.

6. Conclusions

This paper investigated and assessed SST using a combination of infrared and mi-
crowave data. According to the study findings, the OI method of fusing MODIS and
AMSR-2 data in the ECS Kuroshio region on 2 January 2015 yielded more comprehensive
spatial coverage and results that were closer to the measured values than the inversion
results from single sensor data.

Two approaches are currently available to improve the accuracy of fusion results.
This investigation explored the possibility that environmental factors, such as wind speed,
might affect the accuracy of SST data. Similarly, the OI method could be used to consider
the effect of wind speed and salinity on SST. The other approach, which this study did not
investigate, would involve adding a vertical correlation model to the OI method to account
for the effect of seawater depth on temperature, which has the potential to significantly
increase the fusion effect.

The study applied a bilinear interpolation method to unify the size of the two sets of
satellite data when processing the data. However, the selected approach added noise to
the data, decreasing the accuracy of the fusion results. Accordingly, a more suitable spatial
interpolation method might improve the accuracy of the fusion data.

Our examination encompassed four fusion results that could reflect SST trends in the
northwest Pacific Ocean relatively consistently on a spatial scale. In all cases, the standard
deviations between the fused data and Argo buoy readings were less than 0.1 ◦C, and the
RMSE was less than 1.1 ◦C. In contrast, the mean deviation and RMSE of the difference
between the fused data and the buoy data were larger when typhoons passed through the
study area.

In addition to the OI results, the OSTIA and Argo data demonstrated a large bias
under the influence of typhoons, which differed from the conclusions of previous studies
that did not consider the influence of typhoons. Consequently, more consideration of the
use of OSTIA data in the presence of typhoons is needed. In order to reduce the influence of
daily sea surface warming on the fusion results, future applications of the fusion algorithm
should aim to eliminate different cases or seek to integrate empirical formulas and filter
wind speed data. What is also notable is that the Argo buoys used in this study were farther
from shore than those reported in previous studies, which might also have contributed to
the bias in the results.

The use of infrared data as part of the input in the data fusion procedure improved
the feature resolution and enriched the detailed features of the SST fusion results. Mean-
while, introducing microwave data improved the spatial coverage, compensating for the
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influence of clouds on infrared data and reducing the probability of anomalous values. The
measured Argo data were able to verify large-scale deviations in SST. Therefore, according
to this study’s findings, infrared, microwave, and insitu data are all essential elements in
producing high-resolution spatial and temporal data and high-precision SST fusion results.
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