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Abstract: The present research concerns the development of a new device and process intended for
the purification and treatment of sulfurous elements, and more particularly, of hydrogen sulfide
(H2S) from the biogas produced at the time of the anaerobic fermentation in the purification stations.
The controlled dumps or any other unit are likely to produce biogas with concentrations of H2S
harmful to the operation of the machines for the valorization of the produced biogas or deodorization.
This device uses new biochar from a mixture of dehydrated digested sludge from sewage treatment
plants and margins from traditional crushing units, followed by biological treatment in a liquid
medium at a controlled temperature. The liquid medium is based on a margin (nutrient) with culture
support (large granules of biochar) in suspension by the injection under the pressure of biogas coming
from the biochar filter. Physico-chemical characterization of the biochar and a test practiced on the
new device of raw biogas treatment were realized. The results showed that the newly synthesized
biochar has a low specific surface and a highly undeveloped porosity. The spectrum corresponding
to the images of the biochar reveals the presence of C, O, N, Al, Si, P, and Fe, as significant elements
with the following respective percentages: 37.62%, 35.78%, 1.87%, 4.26%, 7.33%, 8.56%, and 4.58%.
It is important to note that the C content of the biochar thus synthesized found by EDX is quite
comparable to that estimated from ATG. Biogas treatment test results on the prototype object of the
invention eliminated 97% of the H2S from the biogas produced.

Keywords: new device; purification; treatment of sulfurous; margin; biochar filter; treatment of
sulfurous

1. Introduction

Increasing concerns about climate change, air quality, energy import dependence, and
fossil fuel depletion are increasing the demand for renewable fuels. The production site of
these renewable fuels is multiple: landfills, sewage treatment plants, and industrial or food
waste treatment plants [1].

Biogas results from the anaerobic digestion of organic matter by a consortium of
microorganisms. It is a removable energy mainly composed of methane (CH4) and carbon

Water 2022, 14, 3319. https://doi.org/10.3390/w14203319 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w14203319
https://doi.org/10.3390/w14203319
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-5102-2379
https://orcid.org/0000-0002-4013-3516
https://orcid.org/0000-0002-6710-0458
https://orcid.org/0000-0002-2860-467X
https://doi.org/10.3390/w14203319
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w14203319?type=check_update&version=1


Water 2022, 14, 3319 2 of 12

dioxide (CO2). There are other gases such as nitrogen (N2), water vapor (H2O), ammonia
(NH3), hydrogen sulfide (H2S), siloxanes, and other sulfur compounds.

The biogas must be cleaned (removal of H2S and siloxanes) and upgraded (removal of
CO2) to be used as an energy source (biomethane) to produce heat and electricity [2]. H2S
in biogas is typically 50–5000 ppmv, but in some cases it can reach 20,000 ppmv (2% v/v). It
is a colorless, flammable, and foul-smelling toxic gas.

This contaminant is known for its undesirable odor and is transformed into sulfur
dioxide (SO2) and sulfuric acid (H2SO4), which are highly corrosive and dangerous for
health and the environment. Its elimination is essential for any possible use of biogas [3–5].

According to several authors, sewage sludge is a problematic waste and a valuable
raw material for producing biogas and biochar by thermal conversion which is an environ-
mentally friendly alternative [6–8].

Nevertheless, the biogas produced contains impurities that make its direct use in
machines of valorization, either thermal or electric energy. Almost impossible or comes
back to too expensive maintenance costs were to the necessity to purify the produced biogas
of the sulfurous elements in general and the hydrogen sulfide H2S, especially before its use.
The operating costs and/or unpredictably high H2S efficiencies [9–11].

The present article refers to the treatment and purification of anaerobic digestion gases.
More particularly for a device, this is a process for purification and treatment of sulfurous
elements in the biogas produced by anaerobic digestion, especially hydrogen sulfide H2S.

“Biochar” is a recently coined term emerging in conjunction with renewable fuel and
carbon sequestration. It is another carbon-based material that is produced by a combination
of pyrolysis (limited amount of oxygen) and thermal degradation of organic material at
temperatures between 100–700 ◦C [12–14]. Several recent types of research have worked on
directly adding biochar to anaerobic digestion systems. Unfortunately, they have focused
on improving CH4 production but have not addressed the effect of biochar addition on
H2S production [15–17].

Shen et al. (2015) added corn stover-based biochar directly to an anaerobic digester
treating municipal wastewater, resulting in biogas production with over 90% CH4 and less
than five parts per billion H2S [18]. Another study used pine and white oak biochar in
digesters to increase the percentage of CH4 in the biogas stream [17].

Studies have been carried out on the development of a multifunctional, efficient, and
durable membrane for long-term use in the treatment of complex oily wastewater [19,20].
To our knowledge, there is no study on using biochar formed from wastewater treatment
plant sludge and margins for H2S reduction.

The origin of this work concerns the development of a new device and process de-
signed for the purification and treatment of sulfurous elements in biogas using sludge from
the wastewater treatment plant and the margins as a source of biochar production.

The main objectives of this work involve:

i. Valorizing sludge from sewage treatment plants and margins (source of pollution).
ii. Reduction in the costs of consumables by using the mixture of sludge and margins as

raw material to produce biochar as adsorbent.

2. Materials and Methods
2.1. Biochar Production

The slow pyrolysis produces the biochar in the absence of oxygen at a temperature
between 400 and 500 ◦C for a minimum of 4 h, using a dried mixture of digested and
dehydrated sewage plant sludge (80% dryness) with raw margins from the crushing of
olive oil. After mixing the sludge and the margin, a second natural drying is carried out to
bring the dryness of the mixture back to 80% before starting the pyrolysis to produce the
biochar (final product, as shown in Figure 1) [21–23].
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Figure 1. Image of biochar obtained by pyrolysis of a sludge–margin mixture at 500 ◦C.

2.2. Physicochemical Characterization of Biochar

Infrared (IR) spectroscopy was used to characterize the biochar. The IR spectra illus-
trate the bond stretches in the organic functional groups on the biochar surface [24].

The thermal stability of this material was identified by ATG thermogravimetric analy-
sis with a heating rate of 10 ◦C/min up to a temperature of 800 ◦C under gas (nitrogen)
sweep [25].

The pore size distribution and surface characteristics of the prepared biochar were
measured by N2 gas adsorption–desorption at the temperature of liquid N2 (−195.85 ◦C).
The Brunauer determined the specific surface areas—Emmett–Teller (BET) method. In-
ductively coupled plasma spectrometry was used for the characterization of inorganic
constituents of the biochar sample. The analysis was used to identify the metals in the
samples (Mg, Al, Si, P, Ca, Mn, Fe, Ni, Cu, Zn, Na, B, Co, Pb, and Cd) and to measure the
content of these elements [26,27].

The surface morphology and distribution of the chemical elements of biochar were
studied by scanning electron microscopy (SEM). SEM images of biochars were obtained us-
ing a Gemini SEM 500-8203017153 scanning electron microscope (SEM) with an accelerating
voltage of 3.00 kV [28].

2.3. Description of the Pilot

Several pilots were set up during this experiment to test the H2S adsorption capacities
of the materials studied.

The whole device of desulfurization of the anaerobic digestion biogas by biochar filter
and drowned reactor based on margin with suspension culture is formed of (Figure 2):
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and margin used as an adsorbent for the pre-filtration of sulfur compounds in biogas
and, more particularly, hydrogen sulfide (H2S).
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Hydraulic guard (5) to ensure minimum hydraulic pressure through the biochar filter
and can serve as an additional biological treatment reactor.

2.4. Statistical Analysis

To confirm our outcome reliability and reproducibility, we compared the mean values
of each parameter (H2S and CH4) upstream and downstream for our anaerobic digestion
biogas desulfurization system by biochar filter, using the two-sample t-test at p < 0.05 with
Minitab19.1.
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Figure 2. Overall drawing of the anaerobic digestion biogas desulfurization system by biochar filter
and liquid margin suspension culture reactor: 1: raw biogas inlet; 2: biochar filter; 3: biogas injection
system under pressure; 4: pressurized biogas diffusers; 5: Hydraulic guard; 6: cleaned biogas outlet
to use; 7: oxygen injection system; 8: oxygen control valves in the biogas; 9: heat exchanger; S: oxygen
control probes; D: nutrient injection point (margin or others; V: Purge or drain valve.).

3. Results and Discussion
Physicochemical Characterization of Biochar

The type of functional groups present on the surface of the biochar is crucial because
they generally improve its adsorption abilities. Indeed, the presence of specific functional
groups such as hydroxyl groups or the presence of water in the biochar favors the formation
of an aqueous film on the surface of the biochar allowing the dissociation of hydrogen
sulfide into HS. The IR spectrum of the biochar is shown in Figure 3. Several bands
characteristic of different groups can be distinguished (Figure 3a).
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(b) infrared spectrum of biochar synthesized in the region of wave numbers between 4000 and 2000 cm−1.

A band located at 3365 cm−1, characteristic of the elongation of O-H bonds, can be
observed on the infrared spectrum (Figure 3b). This band of weak intensity informs the
number of hydroxyl groups on the surface. It has been previously found that many free
hydroxyl groups and structural hydroxyl groups (-COOH and -COH) decompose during
the pyrolysis of the sludge [29]. Indeed, the mass loss found in a temperature range below
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200 ◦C was only 3%, indicating the low water content of the material. The band observed at
2923 cm−1 is characteristic of elongations of aliphatic C-H bonds, while the band observed
at 1794 cm−1 indicates the presence of carbonyl groups on the biochar surface. The intense
band observed at 1427 can be attributed to C-H bond deformations. It is well established
that the region between 400 cm−1 and 1500 cm−1 in an IR spectrum is known as the
fingerprint region. It usually contains many peaks, making it difficult to identify individual
peaks. However, the fingerprint region of a given compound is unique and, therefore, can
be used to distinguish between compounds.

From the ICP results, we found that the material is composed of several elements
such as Ca, P, Al, and Si, at a level greater than 20%. These elements are likely to form
stable mineral phases at high temperatures, so an exact assignment of the different peaks
observed on the infrared spectrum in the fingerprint region becomes difficult due to the
complex composition of the biochar.

Thermogravimetric analysis was used to evaluate the thermal stability of the synthe-
sized biochar. The thermogravimetric analysis was performed under air by heating the
biochar at 10 ◦C/min to 800 ◦C. Figure 4 shows a mass loss of about 3% at a tempera-
ture of about 200 ◦C. This first mass loss corresponds to the dehydration of the biochar
or decomposition of the oxygenated groups present on the material’s surface. The mass
loss observed after 200 ◦C, of 29%, corresponds to the decomposition and degradation of
impurities, volatile matter, and carbon, mainly into CO and CO2. The total mass loss found
for the biochar is in the order of 33%, indicating that the carbon content of the material is
relatively low. Therefore, the residue of 67% remaining at 800 ◦C indicates the presence of
mineral phases that form under air at 800 ◦C. The results concerning the thermal stability
of biochar, obtained by pyrolysis of a mixture of sludge and margin, are comparable to that
of biochar obtained by pyrolysis of pigeon pea stems at 600 ◦C [30].
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Figure 4. ATG curve of biochar synthesized by pyrolysis of a mixture of sludge and margins.

In order to identify the composition of the biochar and the different mineral phases
likely to have been formed after the thermogravimetric analysis at 800 ◦C, we used ICP.
Table 1 shows all biochar’s metallic and non-metallic elements and their concentrations.
This table also compares the attention of the features in the biochar to the allowable levels of
contaminants in biochar as defined by the International Biochar Initiative (IBI), the British
Biochar Foundation (BQM), and the European Biochar Foundation (EBC) [31].
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Table 1. Permissible content of contaminants in biochar, based on the existing quality standard (IBI:
International Biochar Initiative; BQM: British Biochar Foundation; EBC: European Biochar Foundation.

Element Concentration Found for Synthesized
Biochar (mg/kg)

Limit Value According to the Standard

IBI BQM EBC

B 42 - - -
Na 890 - - -
Mg 16.506 - - -
Al 21.345 - - -
Si 658 - - -
P 21.408 - - -

Ca 144.651 - - -
Mn 346 - - -
Fe 16.464 - - -
Co 5 - - -
Ni 33 47–420 10 30
Cu 727 143–6000 40 100
Zn 1315 416–7400 150 400
As 0 13–100 10 13
Cd 4.9 1.4–39 3 1
Pb 117 121–300 60 120

The results obtained from the ICP analysis show that the biochar contains high con-
centrations of Ca, Mg, Al, P, and Fe. The majority of elements comprising the biochar are
calcium, with 14%, followed by phosphorus and aluminum, with percentages of about
2.14% and 2.13%, respectively. The biochar being rich in mineral elements and heteroatoms
such as P and B explains the subsistence of a residue of about 67% after calcination under
air at 800 ◦C. The high Ca content of the biochar can be explained by the liming of the
sludge generally carried out to stabilize it.

The synthesized biochar has a dense structure, and no porosity can be appreciated
at different magnifications (Figure 5a–c). By grinding the biochar, particles of the order
of 17 µm in size were obtained (Figure 5b). Furthermore, at magnifications on the order
of ×11,500, the material appears to possess a rough structure, probably due to mineral
phase aggregates. The composition of the material was determined by energy dispersive
X-ray spectroscopy (EDS). In Figure 5k, the spectrum corresponding to the biochar images
reveals the presence of C, O, N, Al, Si, P, and Fe, as the majority elements with the following
respective percentages: 37.62%, 35.78%, 1.87%, 4.26%, 7.33%, 8.56%, and 4.58%. It is
important to note that the C content of the synthesized biochar found by EDX is quite
comparable to that estimated from GTA. The SEM-EDS images of the biochar (Figure 5d–j)
reveal the homogeneous distribution of the different elements on the biochar surface.

The exact composition of sludge varies according to the origin of the wastewater,
the time of year, and the type of treatment and conditioning practiced in the treatment
plant. The waste sludge represents, above all, a raw material composed of different
elements (organic matter, fertilizing elements (N and P), metallic trace elements, organic
trace elements, and pathogens) [32].

The concentration of organic matter can vary from 30 to 80%. The organic matter of
the sludge is constituted by particles that have been eliminated by gravity. Lipids represent
6 to 19% of the organic matter, polysaccharides, proteins, and amino acids represent up
to 33% of the organic matter. Thus, we find the products of metabolization and microbial
bodies resulting from biological treatments (digestion, stabilization) [31].
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The nature and concentration of organic and inorganic pollutants in wastewater
depend on the activities connected to the network [33]. Most of the chemical contamination
comes from industrial discharges and, to a lesser extent, from domestic discharges (use
of solvents, do-it-yourself waste, detergent) [34]. Due to the settling during treatment,
these chemical contaminants are found in the sludge in very high concentrations compared
to wastewater.

The knowledge of the specific surface, the pore volume, and the pore size define the
biochar structure. The ability of these properties is of great importance because they help
to explain the accessibility of the surface to adsorbates related to the shape and size of the
pores and, consequently, its adsorption ability. The nitrogen adsorption isotherm is plotted
by plotting the amount adsorbed per gram of adsorbent against relative pressure. The
nitrogen adsorption curve for biochar is shown in Figure 6. From the figure, it can be seen
that the isotherm obtained for the biochar is type II. Type II isotherms are typically received
on non-porous or macroporous materials, where monolayers and multilayers form on the
surface [35].
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The result obtained is in perfect agreement with the scanning electron microscopy.
Indeed, in the SEM pictures, we noticed that the material does not present any porosity and
that the observed structure is relatively dense. The synthesized biochar has a low specific
surface and a highly undeveloped porosity explaining the obtaining of a type II isotherm
characteristic of materials with no porosity.

From the results of monitoring the biogas treatment in a device, it is found that the
concentration of hydrogen sulfide in the raw biogas is 5000 ppm upstream. Moreover, this
biogas downstream of the treatment device is about 131 ppm after 38 days of treatment
(Figure 7).
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A study was carried out on H2S adsorption with non-hazardous waste incineration
bottom ash and was mainly studied with natural biogas. The reactors were more significant
than those used for biochars, and the experiments lasted longer. Adsorption capacities
ranged from 3 to 298 mgH2S/g material. The lowest value was obtained with dry biogas,
and 15% moistened MIDND.

The flow rate necessary for the sizing of the biochar filter, and in order to have the
targeted results (minimum abatement of 90%) for a raw biogas concentration of 5000 ppm
of hydrogen sulfide, is 0.5 m3/h of biogas for a biochar volume of 30 L and a volume of
20 L for the biological reactor for the same flow rate.

The results shown in Figure 8 represent the comparison between the average values
of each parameter of H2S and CH4 in the anaerobic digestion biogas desulphurization
system upstream and downstream by the BIOCHAR filter. The (Figure 8A) shows a crucial
decrease in the amount of H2S between the front and back of our system (p < 0.05). While
the amount of CH4 shows no difference between upstream and downstream (Figure 8B).
This difference allows us to confirm the efficiency of our prototype in reducing the hydrogen
sulfide generated during the anaerobic wastewater treatment.

Water 2022, 14, x FOR PEER REVIEW 9 of 12 
 

 

A study was carried out on H2S adsorption with non-hazardous waste incineration 

bottom ash and was mainly studied with natural biogas. The reactors were more signifi-

cant than those used for biochars, and the experiments lasted longer. Adsorption capaci-

ties ranged from 3 to 298 mgH2S/g material. The lowest value was obtained with dry bio-

gas, and 15% moistened MIDND. 

The flow rate necessary for the sizing of the biochar filter, and in order to have the 

targeted results (minimum abatement of 90%) for a raw biogas concentration of 5000 ppm 

of hydrogen sulfide, is 0.5 m3/h of biogas for a biochar volume of 30 L and a volume of 20 L 

for the biological reactor for the same flow rate. 

The results shown in Figure 8 represent the comparison between the average values 

of each parameter of H2S and CH4 in the anaerobic digestion biogas desulphurization sys-

tem upstream and downstream by the BIOCHAR filter. The (Figure 8A) shows a crucial 

decrease in the amount of H2S between the front and back of our system (p < 0.05). While 

the amount of CH4 shows no difference between upstream and downstream (Figure 8B). 

This difference allows us to confirm the efficiency of our prototype in reducing the hydro-

gen sulfide generated during the anaerobic wastewater treatment. 

  

Figure 8. Graphic presentation of the comparison between the mean values of each parameter: (A) 

H2S, (B) CH4 (upstream and downstream). * The two means in the same graph are significantly 

different (t-test, p < 0.05). 

The particularity of this device and process is that it allows treating a wide range of 

biogas produced in anaerobic digestion systems while ensuring highly efficient yields 

with short residence times, valorizing the harmful by-products coming from the sewage 

treatment plants (sludge) and the crushing of olives (margin), posing problems for the 

sewage treatment plants and for the natural environment. This allows the minimizing of 

the expenses on the consumables used in the prior art processes, activated carbons, min-

erals, and nutrients for the biomass with easy exploitation for maximum safety. 

Biochar used in this study was rich in mineral elements. It is likely that the minerals 

in the biochar contribute to H2S removal. Mineral content (from EDS analysis) and speci-

ation (from ICP-OES analysis) are essential factors to consider, as metal oxides such as Ca, 

Mg, Al, and Fe and other elements such as P can act as H2S adsorption sites and catalytic 

oxidation to convert H2S to elemental sulfur and sulfates. This mainly explains the ob-

served abatement rates and H2S removal ability by the biochar used [36]. Indeed, studies 

on biochar substrates prepared from anaerobically digested sewage sludge and fiber have 

highlighted the importance of surface alkalinity in H2S removal, as the alkaline nature was 

suspected to facilitate H2S dissociation [37]. 

Several studies have been carried out on H2S absorption using processes for remov-

ing hydrogen sulfide species from biogas by a carbon absorption material produced from 

dewatered and dried sewage sludge by adding mineral oil before pyrolysis. Adding min-

eral oil is an extra step compared to the biochar production process and an additional charge 

upstream downstream
0

2000

4000

6000

H
2
S

 (
p

p
m

)

*
(A)

 

upstream downstream
0

20

40

60

80

C
H

4
 %

*
(B)

Figure 8. Graphic presentation of the comparison between the mean values of each parameter:
(A) H2S, (B) CH4 (upstream and downstream). * The two means in the same graph are significantly
different (t-test, p < 0.05).

The particularity of this device and process is that it allows treating a wide range
of biogas produced in anaerobic digestion systems while ensuring highly efficient yields
with short residence times, valorizing the harmful by-products coming from the sewage
treatment plants (sludge) and the crushing of olives (margin), posing problems for the
sewage treatment plants and for the natural environment. This allows the minimizing
of the expenses on the consumables used in the prior art processes, activated carbons,
minerals, and nutrients for the biomass with easy exploitation for maximum safety.

Biochar used in this study was rich in mineral elements. It is likely that the minerals in
the biochar contribute to H2S removal. Mineral content (from EDS analysis) and speciation
(from ICP-OES analysis) are essential factors to consider, as metal oxides such as Ca,
Mg, Al, and Fe and other elements such as P can act as H2S adsorption sites and catalytic
oxidation to convert H2S to elemental sulfur and sulfates. This mainly explains the observed
abatement rates and H2S removal ability by the biochar used [36]. Indeed, studies on
biochar substrates prepared from anaerobically digested sewage sludge and fiber have
highlighted the importance of surface alkalinity in H2S removal, as the alkaline nature was
suspected to facilitate H2S dissociation [37].

Several studies have been carried out on H2S absorption using processes for removing
hydrogen sulfide species from biogas by a carbon absorption material produced from
dewatered and dried sewage sludge by adding mineral oil before pyrolysis. Adding
mineral oil is an extra step compared to the biochar production process and an additional
charge that will increase the cost of the product with a lower abatement rate than that
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obtained by our device [38,39]. Even heat treatment alone is not sufficient for preparing a
carbon absorbent.

In our study, we succeeded in combining the filtration of biogas doped with 2 to 5%
oxygen on biochar support produced from a mixture of digested and dehydrated sewage
sludge and margins from a traditional crushing unit. Followed by biological treatment in
liquid medium at controlled temperature, the medium is based on margin (nutrient) with
culture support (large granule of biochar) in suspension by the injection under the biogas
pressure from the biochar filter.

The flooded reactor for the biological treatment of sulfur compounds in biogas is an
innovation; the reactor is a mixture of diluted margin and culture media for the purifying
biomass at adjustable temperature. The bubbling ensures the biomass’s suspension and the
medium’s agitation due to the biogas injected under pressure at the bottom of the flooded
biological reactor.

The bacterial flows in suspension fixed on the granules of biochar (suspension support)
ensure the elimination is ensured after that. The nutrition of this biomass is brought by the
margin, which is the base of the solution of the biological reactor (the use of conventional
nutrients is also possible); the final product is biogas in conformity with use.

4. Conclusions

A new adsorption process for hydrogen sulfide removal from biogas by margin-based
biochar was tested on a pilot scale. Results showed that this biochar is characterized by
a dense and mineral-rich structure. It is likely that these biochar minerals can act as H2S
adsorption and catalytic oxidation sites to convert up to 98% of the H2S to elemental sulfur
and sulfates.

The process has shown promise and further experimental work is underway to refine the
new treatment device, which will be investigated, and reported in a subsequent publication.
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