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Abstract: Depicting the spatiotemporal dynamics of vegetation cover in the Yellow River Basin
(YRB) and delineating the influences of climate change and human activities on the dynamics have
been of significant importance for understanding the surface earth systems in general and also
for formulating ecological protection plans of the YRB in particular. This study uses the GIMMS
NDVI dataset from 1982 to 2015 and the MOD13A1 NDVI dataset from 2000 to 2021 to explore
the spatial and temporal characteristics of vegetation cover in the YRB for the period from 1982
to 2021 with an attempt to reveal the influencing factors. The spatial distribution and temporal
variation characteristics of vegetation cover are analyzed by maximum value composite, Theil-Sen
median trend analysis, and Mann–Kendall test. Combined with the mean annual temperature and
annual precipitation in the same period, influencing factors of vegetation cover in the YRB are
discussed by using binary linear regression analysis and residual analysis. Results show that: (1) the
multi-year average NDVI values increase from the northwest to the southeast and that the annual
mean values of the vegetation covers fluctuate relatively greatly along an increasing trend with a
growth rate of 0.019/(10a). Understandably, the monthly mean NDVI values show a single-peak
distribution pattern, with August being the peak time (0.4936). (2) 77.35% of the studied areas are
characterized by exhibiting an increasing trend of vegetation cover during the study period (i.e.,
1982–2021). (3) Vegetation cover of the YRB is affected by the combined effects of climate change
and human activities, with human activities being more significant in the observed amelioration of
vegetation cover.

Keywords: vegetation cover; GIMMS NDVI; MOD13A3; residual analysis; Yellow River Basin (YRB)

1. Introduction

Vegetation is a crucial component of terrestrial ecosystems and plays an important
role in terrestrial carbon balance and climate regulation [1–4]. The study on the dynamic
change [5–7], driving mechanism [8,9], and regulation of vegetation ecosystem [10,11]
under changing environment is one of the core contents of global change research. Moni-
toring the vegetation dynamics and quantifying the impact of climate change and human
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activities on vegetation dynamics have important practical value for determining ecolog-
ical engineering layout and management countermeasures and have become a research
hotspot of sustainable management of vegetation ecosystems under the changing environ-
ment [4,7,12,13].

Normalized difference vegetation index (NDVI) is a commonly used remote sensing
index to reflect vegetation dynamics [14–16]. With the rapid development of geographic
information technology, a large number of NDVI products have been produced. AVHRR
NDVI [17,18], SPOT VGT NDVI [19], and MODIS NDVI [3,20] are widely used global NDVI
products. GIMMS NDVI 3 g dataset is based on the AVHRR sensor. The product covers
the period from January 1982 to December 2015, with a spatial resolution of 8 km and a
time resolution of 15 days [18,21,22]. It is the NDVI product with the longest time series
so far. SPOT VGT NDVI product covers the period from April 1998 to the present, with a
temporal resolution of 10 days and a spatial resolution of 1 km [19]. MODIS NDVI includes
four NDVI products, namely, MOD13Q1, MOD13A1, MOD13A2, and MOD13A3. Their
spatial resolutions are 250 m, 500 m, and 1 km, respectively, and their temporal resolutions
are all 16 days [23–26]. The time series and spatial resolution of different products are also
different, which can describe the spatiotemporal characteristics of vegetation coverage at
different scales in different time periods [18,19,23].

In recent years, a large number of scholars have carried out spatiotemporal variation
and influence factors of vegetation cover based on the products mentioned above in differ-
ent research areas [27–30]. Gu et al. explored the vegetation changes and influencing factors
in the Red River basin from 2000 to 2014 based on MOD13Q1 NDVI data [31]. The results
show that both precipitation and temperature have time lag effects on vegetation change,
precipitation has a greater impact on vegetation change than temperature, and the Grain
for Green Project affects the temporal and spatial patterns of vegetation coverage. Gao et al.
found that the annual and interannual NDVI changes in Mu Us sandy land are dominated
by temperature and precipitation, respectively, and the impact of human activities on vege-
tation improvement in Mu Us sandy land is greater than in climate change [32]. Taking the
North China Plain as a study area, Duo et al. have carried out relevant studies and found
that the effect of human activities in the vegetation degradation region is higher than that
in the improvement region. However, after the climate abruptly changes, the conclusion is
just the opposite [1]. Zhang et al. found that vegetation improvement is mainly driven by
climate change, and human activities have an inhibitory effect on vegetation growth in the
Three-River headwaters region [33]. In general, the characteristics and influence factors of
vegetation cover change in different regions are quite different [19,31,33].

The Yellow River, the second longest river in China and often named “the mother river
of the Chinese nation”, plays an important role in China’s economic and social development
and ecological security [34,35]. Due to the combined action of precipitation, evaporation,
topography, and human activities, the ecological environment of the Yellow River Basin
(YRB) is fragile; meanwhile, water and soil loss is serious [36]. The YRB is the most
important region of water and soil loss in China and even in the world, and the area of soil
and water loss region accounts for 62% of the total area of the YRB [35,36]. The ecological
protection and high-quality development of the YRB have become a major national strategy
in China [37]. Understanding the vegetation dynamics and its response to climate change
and human activities in the YRB is of great application value for formulating reasonable
ecological protection schemes. However, previous studies have often selected local regions
of the YRB (such as the source region of the Yellow River, the Loess Plateau, and the Yellow
River Delta, etc.), and the time span is mostly before 2015 at the scale of 8 km [5,11,16].

Based on the above background, this study takes the whole YRB as the study area and
researches the vegetation variation and its influence factors. The aims of this study are to
(1) assess the spatial pattern and interannual variation of vegetation cover in the YRB over
the period of 1982–2021 and (2) examine the influence factors of vegetation cover change in
the YRB.
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2. Study Area and Datasets
2.1. Study Area

The YRB (95◦53′–119◦12′ E, 32◦9′–41◦50′ N) includes parts of nine provinces, as
Figure 1 shows, and its total area is approximately 790,000 km2 [38]. Qinghai province, the
birthplace of the Yellow River, has the largest area in the YRB, accounting for 19% of the
total area of the YRB. Shandong Province, the estuary of the Yellow River, has the smallest
area in the basin, accounting for only 1.72%. The terrain of the YRB is high in the west and
low in the east [39,40]. The western region is composed of a large number of high-altitude
mountains (such as the Bayan Har Mountains and Qilian Mountains) with an average
elevation of higher than 4000 m, and its vegetation types are mainly forest and grassland [3].
The central region (altitude between 1000 and 2000 m) belongs to the Loess Plateau with
serious water and soil loss, and its vegetation types are mainly woodland, grassland, and
farmland. It should be emphasized that since 1999, the Chinese government has carried
out a series of ecological restoration projects in this region, including the Grain for Green
Program and the Natural Forest Conservation Program, which has significantly improved
the region’s ecological environment [41,42]. The eastern region is mainly composed of the
alluvial plain of the Yellow River, and its elevation is less than 100 m. Most areas of the
YRB belong to arid and semi-arid climates, and water resources are in congenital shortage
with an average annual precipitation of 470 mm [39]. The annual precipitation in the YRB
increases in a fluctuating manner with change rates of 1.662 mm/decade from 1982 to 2015
and the average annual temperature range between 4.3 and 14.3 ◦C.
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Figure 1. Digital elevation model, meteorological stations, and administrative divisions of the YRB.

2.2. Datasets

The datasets used in this study mainly include the GIMMS NDVI 3 g, MOD13A3
NDVI, and meteorological dataset. The GIMMS NDVI 3 g dataset, released by the Global
Monitoring and Modeling Research Group (GIMMS) of the National Oceanic and Atmo-
spheric Administration (NOAA), is a global NDVI vegetation index product with a spatial
resolution of 8 km and a 15-day temporal resolution [18]. Compared with other commonly
used global NDVI vegetation index products, The GIMMS NDVI 3 g dataset has the longest
time series despite its low spatial resolution, so it can better reflect the long-term temporal
characteristics of vegetation cover changes. The MOD13A3 NDVI dataset is a 1 km res-
olution vegetation index product with 16-day temporal resolution from MODIS remote
sensing image [43].
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The meteorological dataset, including daily temperature and precipitation data of
126 meteorological stations in the YRB and its surrounding areas, is acquired from the
National Meteorological Science Data Center of China (https://data.cma.cn/ (accessed on
13 April 2021)).

3. Methodology

Figure 2 shows the flowchart of this study, which mainly consists of the following
four steps: (1) dataset preprocessing, including the NDVI dataset and the meteorological
dataset; (2) data fusion, establishing a unary linear regression model and producing 8 km
spatial resolution NDVI dataset of the YRB from 1982 to 2021; (3) spatiotemporal dynamic
analysis, analyzing the spatial pattern and temporal change characteristics of vegetation
cover in the YRB; (3) influence factors analysis, exploring the key driving forces affecting
vegetation cover change.
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3.1. Dataset Preprocessing

A series of preprocessing is performed on the GIMMS NDVI dataset and MOD13A3
NDVI dataset in this study, including projection transformation, format conversion, maxi-
mum value composite (MVC), and average calculation. This projection of the datasets is
first defined as WGS84_Albers with the main parameters set as follows: central meridian is
set to 115.0, and two standard parallels are set to 25.0 and 47.0, respectively. Then, monthly
NDVI datasets are obtained using the MVC method to eliminate the influences of clouds,

https://data.cma.cn/
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atmosphere, and solar altitude angle. Finally, the annual NDVI datasets are obtained by
average calculation of monthly NDVI datasets of the growing season (April–October).

The meteorological datasets are also carried out through a series of preprocessing in
this study. The cumulative precipitation and average temperature of each meteorological
station from March to October are firstly calculated. Previous studies [19] have indicated
that precipitation and temperature have hysteresis effects on vegetation change; thus,
cumulative precipitation and average temperature from March to October are calculated
in this study to analyze the response of vegetation cover to climate change and human
activities. The ordinary Kriging interpolation method is then used to obtain the spatially
interpolated raster data of the cumulative precipitation and average temperature year by
year with a grid size of 8 km. The first and second rows in Figure 3 show the spatially
interpolated raster data and the accuracy of the cumulative precipitation and average
temperature in 2015, and the squared correlation coefficients between the measured and
interpolated values of these two raster data are 0.675 and 0.640, respectively, which is
calculated by the cross-validation method.
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Figure 3. The spatially interpolated raster data and accuracy of cumulative precipitation and average
temperature in 2015. (a,b) are the spatially interpolated raster data and accuracy of cumulative
precipitation, respectively. (c,d) are the spatially interpolated raster data and accuracy of average
temperature, respectively.

3.2. Data Fusion

This study focus on exploring the spatiotemporal variation characteristics of vegetation
cover in the YRB at the 8 km scale. Therefore, the GIMMS NDVI dataset and MOD13A3
NDVI dataset are fused to generate an 8 km scale vegetation cover dataset in the YRB from
1982 to 2021. Specific methods and procedures are as follows:

(1) Resampling MOD13A3 NDVI. The bilinear interpolation method is used to resample
MOD13A3 NDVI in the YRB from 2000 to 2021 to 8 km;

(2) Establishing a consistency correction model. The spectral resolution of different sen-
sors is different. In order to maintain the consistency of the NDVI dataset generated
by data fusion [19], the resampled MOD13A3 NDVI should be corrected. Previous
studies have shown that NDVI from different sensors has a certain linear correla-
tion [19]. Therefore, this study intends to establish a unary linear regression model
pixel by pixel to correct the resampled MOD13A3 NDVI based on the resampled
MOD13A3 NDVI and GIMMS NDVI from 2000 to 2015. The model is as follows:

NDVIMC(i,d) = k× NDVIM(i,d) + b (1)

where NDVIMC(i,d) and NDVIM(i,d) represent the NDVI values with pixel i year d of the
corrected MOD13A3 NDVI resampling data and resampled MOD13A3 data, respectively.



Water 2022, 14, 3274 6 of 15

k and b represent the slope and intercept of the model, respectively, which are estimated
using GIMMS NDVI and resampled MOD13A3 NDVI from 2000 to 2015.

Figure 4 shows the correlation between measured (GIMMS NDVI) and predicted
(corrected MOD13A3 NDVI resampling data, NDVIMC(i,d)) values, which are made using
2242 randomly selected sample points from 2000 to 2015. It is not difficult to find that the
NDVI data (i.e., predicted NDVI) corrected by the linear regression model and GIMMS
NDVI data (i.e., measured NDVI) have suitable consistency (R2 = 0.987).
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Figure 4. Correlation between measured (GIMMS NDVI) and predicted (corrected MOD13A3 NDVI
resampling data) values.

(3) Establishing an 8 km scale NDVI dataset for the YRB from 1982 to 2021. The above
model is used to correct the resampling MOD13A3 NDVI data from 2016 to 2021 and
then combined with GIMMS NDVI data from 1982 to 2015 to generate an 8 km scale
NDVI dataset of the YRB from 1982 to 2021.

3.3. Spatiotemporal Dynamic Analysis

In this study, the Theil-Sen median trend analysis method (TSM) is used to analyze the
change trend of vegetation cover in the YRB during 1982–2015, and the Mann–Kendall test
method (MK) is used to test the significance of the change trend. The TSM is a robust non-
parametric statistical trend analysis method, which can effectively reduce the interference
of abnormal values [3,44,45]. It is calculated by:

SNDVI = median(
NDVIj − NDVIi

j− i
), 1982 ≤ i < j ≤ 2015 (2)

where NDVIj and NDVIi represent the NDVI values with years i and year j, respectively.
SNDVI is the median of n (n− 1)/2 combinations and reflects the change trend of vegetation
cover. When SNDVI > 0, the vegetation cover shows an increasing trend and vice versa.

The MK is a non-parametric statistical test method used to test whether the trend of
change is significant. The MK has the advantage that samples do not need to obey certain
distributions and has a strong ability to resist outliers [3,44]. The calculation formula is
as follows:

Z =


S−1√
var(S)

S > 0

0 S = 0
S+1√
var(S)

S < 0

(3)
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where

S =
n−1

∑
i

n

∑
j=i+1

sign(NDVIj − NDVIi) (4)

sign(NDVIj − NDVIi) =


1 NDVIj − NDVIi > 0
0 NDVIj − NDVIi = 0
−1 NDVIj − NDVIi < 0

(5)

var(s) =
n× (n− 1)(2n + 5)

18
(6)

where n represents the number of years in the study period, and it is equal to 34 in this
study. sign() is a symbol function. Z represents a statistic from a standardized normal
distribution with a range of (−∞,+∞). For a given significance level α, |Z| > µ1−α/2
represents the change trend is significant in the level α. Confidence levels of 95% and 99%
are used. According to the SNDVI and |Z|, the change trend of vegetation cover is divided
into five categories, as shown in Table 1.

Table 1. Classification of vegetation cover change trend in the YRB.

Classification Criterion Vegetation Cover Change Trend

SNDVI > 0 and |Z| ≥ 2.58 Significant improvement
SNDVI > 0 and 1.96 ≤ |Z| < 2.58 Slight improvement

|Z| < 1.96 No significant change
SNDVI ≤ 0 and 1.96 ≤ |Z| < 2.58 Slight degradation

SNDVI ≤ 0 and |Z| ≥ 2.58 Significant degradation

3.4. Influence Factors Analysis

Residual analysis is a widely used method to analyze the influence factors of vegetation
cover change [16,46]. The difficulty of the method is to accurately predict NDVI value only
affected by climate change. Since 2000, a series of ecological restoration programs (such as
the afforestation project and the Grain for Green Program, etc.) have been implemented,
and vegetation cover is significantly improved in the YRB. Compared with the study period
after 2000, the impact of human activities on vegetation cover change during 1982–2000
is weak. Therefore, this study assumed that vegetation cover change during 1982–2000
is only determined by climate change. Based on the assumptions, this study uses annual
NDVI as the dependent variable and average temperature and cumulative precipitation
from March to October as independent variables to construct a bivariate linear regression
model per pixel to predict the NDVI value only affected by climate change and explore the
key driving forces affecting vegetation cover change. Specific steps are as follows.

(1) Building the bivariate linear regression model per pixel and predicting NDVI value
(NDVICC) only affected by climate change.

NDVICC = a× Tem + b× Pre + c (7)

where Tem and Pre represent the average temperature and cumulative precipitation pre
pixels from March to October, respectively. a, b, and c represent the model parameters,
which are obtained by least square fitting using data from 1982 to 2000.

(2) Predicting NDVI value (NDVIHA) affected by human activities.

NDVIHA = NDVI − NDVICC (8)

where NDVI indicates the annual NDVI value of each pixel.

(3) Exploring the influencing factors of vegetation cover change.
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Firstly, the unary linear regression analysis method is used to calculate the slope of
the trend line of the interannual variation of NDVI, NDVICC, and NDVIHA pixel by pixel.
The calculation model is as follows:

slopeA =

n×
n
∑

i=1
(i× Ai)−

n
∑

i=1
i×

n
∑

i=1
Ai

n×
n
∑
i

i2 − (
n
∑
i

i)
2 (9)

where slopeA represents the slope of the trend line of data series A. When A is NDVI,
NDVICC, and NDVIHA data series, the slope of the trend line is slopeNDVI , slopeNDVICC and
slopeNDVIHA , respectively. N represents the annual span in the study period, and this study
analyzes the influencing factors of vegetation cover change from 2000 to 2021, so n is set
to 22. According to slopeNDVI , slopeNDVICC , and slopeNDVIHA , the influencing factors of
vegetation cover change in the YRB are divided into six categories, as shown in Table 2.

Table 2. Identification criterion of the drivers of NDVI change.

slopeNDVI
Identification Criterion [16]

Influence Factors
slopeNDVICC slopeNDVIHA

>0 >0 Synergy boost
>0 >0 <0 Climate change boost

<0 >0 Human activities boost
<0 <0 Synergy inhibition

<0 <0 >0 Climate change inhibition
>0 <0 Human activities inhibition

Note: CC and HA stand for climate change and human activity, respectively.

4. Results
4.1. Spatial Pattern of Vegetation Cover in the YRB

According to multi-year average NDVI, vegetation cover types in the YRB have five
categories, LVC [0.0–0.2), RLVC [0.2–0.4), MVC [0.4–0.6), RHVC [0.6–0.8), and HVC [0.8–1.0).
Figure 5 shows the spatial pattern of vegetation cover in the YRB, and Table 3 shows the
statistical results of the area occupied by different vegetation cover types in the hydrological
units (SRYRB, URYRB, MAYRB, and DRYRB represent the source region, the upper, middle
and downstream regions of the Yellow River, respectively). It is not difficult to find that:
(1) vegetation cover in the YRB is obvious spatial heterogeneity, showing an increasing
spatial pattern from northwest to southeast. (2) LVC and RLVC mainly distribute in the
URYRB, the SRYRB, and the northwest of MAYRB, accounting for 49.29% of the YRB.
(3) RLVC and MVC are the main vegetation cover types in the YRB, accounting for 71.32%
of the YRB, mainly distributed in the URYRB and MAYRB. (4) HVC distribute in patches in
the southeast of the SRYRB, the southeast of the MAYRB, and the southwest of the DRYRB,
accounting for 14.85% of the total basin.

Table 3. Statistics of area occupied by different vegetation cover types in the YRB.

Occupies the Area of Total YRB LVC RLVC MVC RHVC HVC

YRB 100% 13.44% 35.85% 35.47% 14.85% 0.38%
SRYRB 16.14% 5.35% 30.91% 46.09% 17.65% 0.00%
URYRB 38.04% 32.39% 42.14% 20.78% 4.69% 0.00%
MAYRB 42.96% 0.60% 36.01% 42.20% 20.53% 0.66%
DRYRB 2.86% 0.00% 0.30% 64.35% 35.35% 0.00%

Notes: YRB, SRYRB, URYRB, MAYRB, and DRYRB represent the Yellow River Basin, the source region, and
the upper, middle, and downstream regions of the Yellow River, respectively. LVC, RLVC, MVC, RHVC, and
HVC stand for low vegetation cover type, relatively low vegetation cover type, medium vegetation cover type,
relatively high vegetation cover type, and high vegetation cover type, respectively.
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Figure 5. Spatial pattern of vegetation cover in the YRB.

4.2. Temporal Variation Characteristics of Vegetation Cover in the YRB

Figure 6a shows the temporal variation characteristics of monthly NDVI in the YRB.
The monthly NDVI is obtained by averaging the corresponding monthly NDVI from 1982
to 2021. Figure 6b–f show the temporal variation characteristics and unary linear fitting
lines of NDVI in the YRB, the source region (SRYRB), the upper (URYRB), middle (MAYRB),
and downstream regions (DRYRB) of the YRB, respectively. It is not difficult to find that:
(1) the monthly mean NDVI value of vegetation cover in the YRB during 1982–2021 shows a
change process of first increasing and then decreasing, and the monthly mean NDVI value
in August is the largest (0.4936) (Figure 6a). (2) In the past 40 years, the vegetation cover in
the YRB has shown an annual increase with a growth rate of 0.019/10a (Figure 6b). (3) The
vegetation cover of the MAYRB has the fastest growth rate (0.030/10a), while the vegetation
cover in the SRYRB has a smaller growth range, with a growth rate of 0.006/10a. (4) On the
annual mean NDVI value, the vegetation cover in the LRYRB is the best, followed by the
MAYRB and the SRYRB, and the vegetation cover in the URYRB is the worst.
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Figure 6. Temporal variation characteristics of vegetation cover in the YRB and its subregions (SRYRB,
URYRB, MAYRB, and DRYRB represent the source region, the upper, middle, and downstream regions
of the Yellow River, respectively).

Figure 7 shows the spatial distribution characteristics of vegetation cover change trend
in the YRB. Table 4 shows the statistical results of the area occupied by vegetation cover
change trend in the YRB and different water resources zones. It shows that: (1) vegetation
cover in most regions of the YRB shows a significant improvement trend in the past 40 years,
and the area of significant improvement trend accounts for 62.33% of the total basin. The
vegetation cover degradation area and no significant change area are mainly distributed
in the SRYRB, the urban concentrated development area of the northwest of the URYRB,
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and the west of the MAYRB, accounting for 22.65% of the total area. (2) The vegetation
cover change types in the SRYRB are complex and diverse. Except for urban concentrated
development areas (e.g., The Guanzhong Plains Urban Agglomeration and Central Plains
Urban Agglomeration), the vegetation cover in most of the MAYRB shows a significant
improvement trend, which may be related to the positive effects of China’s projects (e.g.,
the conversion of farmland to forest (grassland)) and the implementation of ecological
management policies.
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Figure 7. Spatial distribution characteristics of vegetation cover change trends in the YRB.

Table 4. Statistic of area occupied by vegetation cover change trend in the YRB and different water
resources zones.

SID SLD NSC SLM SIM

YRB 2.51% 5.74% 14.40% 15.02% 62.33%
SRYRB 0.88% 2.51% 5.35% 4.17% 3.47%
URYRB 0.76% 2.43% 7.41% 8.32% 19.31%
MAYRB 0.83% 0.69% 1.48% 2.30% 37.19%
DRYRB 0.05% 0.12% 0.15% 0.23% 2.36%

Notes: SID, SLD, NSC, SLM, and SIM represent significant degradation, slight degradation, no significant change,
slight improvement, and significant improvement, respectively.

4.3. Influence Factors of Vegetation Cover Change in the YRB

Referring to the classification criteria [16] of influence factors of vegetation cover
change, this study first analyzes the impacts of climate change and human activities on
vegetation cover restoration one by one (Figure 8). According to Figure 8a and Table 5, the
areas with basically no impact of climate change on vegetation cover restoration are mainly
distributed in Gansu Province, Ningxia Hui Autonomous Region, and part of Shaanxi
Province, accounting for 27.41% of the total basin. The boost effect mainly concentrated in
the eastern of Qinghai Province, Henan Province, Shanxi Province, and Qilian Mountains,
accounting for 42.39%. The inhibition areas are mainly in the SRYRB, Ordos Plateau, Mu
Us sandy land, and central Shanxi Province, accounting for 30.19%. The areas of significant
inhibition and moderate inhibition are about 6.84%, which are mainly distributed in the
central region of Shanxi Province and part of the Inner Mongolia Autonomous Region.
The main reason may be that the precipitation in these regions is small (the cumulative
precipitation from March to October is less than 350 mm, Figure 2), and the temperature is
high, which results in large evaporation.
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Table 5. The impacts of climate change and human activities on vegetation restoration in the YRB.

Significant
Inhibition

Moderate
Inhibition

Slight
Inhibition

Basically No
Impact Slight Boost Moderate

Boost
Significant

Boost
<−2.0 −2.0~−1.0 −1.0~−0.2 −0.2~0.2 0.2~1.0 1.0~2.0 ≥2.0

Climate change(%) 0.93 5.91 23.35 27.43 35.51 5.09 1.78
Human activities(%) 2.57 7.49 3.15 13.09 21.19 15.31 37.19

According to Figure 8b and Table 5, the areas where human activities have little impact
on vegetation cover restoration are mainly distributed in the URYRB with 13.09%. The area
of its boost effect accounts for 73.69%, among which 52.50% are significant and moderate
boost effects, mainly concentrated in the MAYRB. The inhibitory effect is mainly distributed
in the SRYRB, Ningxia plain region, southern Shaanxi Province, and so on, accounting for
13.21%, and 10.06% of them have a significant and moderate inhibitory effect.

In the study period, the average impacts of climate change and human activities on
vegetation cover change in the YRB are −0.12 × 10−3 a−1 and 2.83 × 10−3 a−1, respectively,
indicating that the impact of human activities on vegetation cover change in the YRB is
mainly promoted.

Figure 9 shows the impacts of climate change and human activities on vegetation
cover change in the YRB. The results (Figure 9 and Table 6) show that about 36.65% of the
areas are affected by the synergy of climate change and human activities, which are mainly
distributed in the eastern Gansu Province, northern Shaanxi Province, Shanxi Province,
and DRYRB. About 2.19% of the areas affected only by climate change have a positive effect
on vegetation restoration, affected only by human activities, about 46.13%. About 7.32%
of vegetation restoration is inhibited by climate change and human activities, mainly in
the ARYRB. The area that is only affected by climate change and has an inhibitory effect
on vegetation restoration accounted for 2.53%, and human activities are 5.18%, mainly
distributed in the southern edge of the YRB.

Table 6. Statistics of the influence factors of vegetation cover changes in the YRB during 2001–2021.

Influence
Factors

Synergy
Boost CC Boost HA Boost Synergy

Inhibition
CC

Inhibition
HA

Inhibition

Ratio(%) 36.65 2.19 46.13 7.32 2.53 5.18
Note: CC and HA stand for climate change and human activity, respectively.
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Figure 9. Spatial distribution of the influence factors of vegetation cover changes in the YRB during
2001–2021.

5. Discussion

In this study, vegetation cover change characteristics over longer time periods are
analyzed by fusing the GIMMS NDVI dataset and MOD13A1 NDVI dataset. The results
show that (1) the temporal variation characteristic of vegetation cover in the YRB has
obvious spatial heterogeneity, and the overall trend is fluctuating upward. (2) Vegetation
cover increases gradually from northwest to southeast. These results are basically consistent
with the conclusions of previous studies [46,47]. Compared with the annual growth rate
of vegetation cover in different periods, the rate during 1982–2021 (0.019/10a) is slightly
higher than that during 1982–2015 (0.015/10a), indicating that the growth rate of vegetation
cover increase during 2016–2021.

Human activities have both positive and negative effects on vegetation cover restora-
tion [23,27]. For example, urban construction and reservoir storage lead to the change of
land use type from forest, grassland, and farmland to impervious surface or water. Over-
load herds cause large areas of grass to be eaten. All of these human activities have resulted
in the reduction in vegetation cover. In addition, ecological protection measures such as
afforestation and animal husbandry control have increased vegetation cover area. Vegeta-
tion cover has been significantly improved in the Loess Plateau with the implementation of
a series of ecological protection policies, such as afforestation and returning farmland to
forest. In general, this study concludes that the positive effects of human activities in the
YRB are greater than the negative effects, indicating that a series of ecological protection
policies in the YRB is effective.

This study analyzes the key driving forces affecting vegetation cover change, which
has important reference significance for formulating scientific and reasonable ecological and
environmental protection measures in the YRB. However, this study still has the following
two shortcomings: (1) lack of in-depth analysis of the influence mechanism of climate
change factors (precipitation and temperature) on vegetation cover change. (2) Lack of
detailed analysis of the impact of different human activities (such as population growth,
urbanization, agricultural development, and ecological protection policies) on vegetation
cover. Solving the above shortcomings will help to deeply understand the influencing
mechanism of vegetation cover change in the YRB, which is the follow-up content of
this study.
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6. Conclusions

Based on the GIMMS NDVI dataset, MOD13A1 NDVI dataset, and meteorological
dataset, this study analyzes the spatiotemporal variation and influencing factors of vegeta-
tion cover in the YRB from 1982 to 2021. The main conclusions are as follows:

(1) In terms of spatial distribution, the vegetation cover in the YRB shows obvious
spatial heterogeneity, which gradually increased from northwest to southeast, and the
vegetation cover in the upper reaches of the YRB is the worst. The monthly average
NDVI increases first and then decreases, and the NDVI in August is the largest
(0.4936), which may be mainly due to the high temperature and high precipitation
in the YRB in August. The interannual variation showed a fluctuating growth trend,
with an increase rate of 0.019/10a.

(2) The areas with significant improvement in vegetation cover account for 63% of the
total basin. However, 22.65% of the basin show vegetation cover degradation or no
significant change, which may be determined by the climatic characteristics of the
YRB. The vegetation cover of most areas in the middle reaches of the YRB shows a
significant improvement trend except for the urban concentrated development areas
(such as the Guanzhong Plain Urban Agglomeration and the Central Plains Urban
Agglomeration), which may be related to the positive effects of China’s ecological
management projects.

(3) The vegetation cover change in the YRB is influenced by both climate change and
human activities. The areas in which human activities and climate change boosted
vegetation cover restoration account for 46.13% and 2.19% of the total basin, respec-
tively, indicating that human activities play a greater role in boosting vegetation cover
restoration in the YRB.
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