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Abstract: The main objective of this study was to assess the quality and quantity of roof-harvested
rainwater to overcome the water shortage problem in the study area. We also aimed to find health
hazards associated with rainwater in the study area. For this purpose, rainwater samples were
collected from five sites in the study area. The samples were analyzed using standard methods of
the World Health Organization and the American Public Health Association in a laboratory. The
analysis showed that all the physicochemical parameters were within the permissible limits of the
WHO’s guidelines except pH, turbidity, and some trace metals such as iron (Fe) and lead (Pb). The
mean values of pH range from 5.18 to 6.26, indicating slight acidity, while the highest mean turbidity
was found at 5.77 NTU. Similarly, the highest mean concentrations of Fe and Pb were 0.95 mg/L
and 0.056 mg/L, respectively, which was above the permissible limit of the WHO’s guidelines for
drinking water. The annual rainwater-harvesting potential was assessed using the formula annual
rainfall × roof area× runoff coefficient. The annual rainwater-harvesting potential of the study area
was 56.803 L per household. At the same time, the average monthly rainwater-harvesting potential
was 4733 L in the study area. This shows the potential for roof-harvested rainwater in the study
area. A risk assessment of heavy metals showed that the rainwater of the study area is safe and does
not pose any risk. This study concludes that rainwater is suitable for drinking and other domestic
consumption if proper care is taken to clean the roof area and storage system and divert the first flush
from the storage system.

Keywords: roof-harvested rainwater; risk assessment; quality; quantity; rainwater-harvesting potential

1. Introduction

Rainwater harvesting (RWH) is an old water provision technique that plays an im-
portant role in meeting the increasing water demand and also plays an important role in
controlling climate change and irregularity. Rainwater harvesting is a technique of storing,
collecting, and conserving surface runoff for subsequent use. RWH is defined as a method
of persuading, collecting, storing, and conserving local surface runoff for successive use.
Rainwater from surfaces such as road surfaces, rooftop terraces, and land surfaces is stored
in underground or surface storage tanks for subsequent use [1–3]. Rainwater harvesting is
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not a modern practice; human beings have used rainwater for drinking and other domestic
purposes for 4000 years [4]. Ancient civilizations also developed different methods for
storing rainwater, such as the construction of dams and reservoirs in urban areas [5]. RWH
systems consist of many components and procedures, including the collecting surface,
storage system, gutter, and filtration system before storage [6,7].

Filtration is carried out before storage to stop the inflow of leaves, debris, and sediment
into the storage system. A first-flush diverter may also divert the initial portion of rainwater
from a storage system so the quality of rainwater can be improved [8]. Rainwater is a
renewable resource for rural areas population [9,10]. It is a significant water resource used
to eradicate the problem of water deficiency [11]. Rainwater is also considered as a cleaner
of atmospheric pollutants. At the same time, it also contaminates water; one of the most
important areas to be considered regarding rainwater is its quality. The quality of rainwater
is affected by several features, such as environmental contamination, roofing material, the
existence of dirt and birds or rodent feces on the rooftop, and the condition of the storage
system for collecting rainwater [10,12,13].

The quality of roof-collected rainwater is often determined by the environment in
which a given rainwater system is situated and the materials used to build said system [14].
The contaminants that exist in the atmosphere contaminate rainwater. Airborne particulate
matter and gaseous pollutants are often cleaned by rainwater. This cleaning process affects
rainwater’s chemical nature and pH [15]. Heavy metals are responsible for the biggest
problems we currently face because their levels increase in rainwater storage tanks above
the permissible limit, making rainwater unsuitable for human use [16–19]. Construction
materials, such as lead paint or lead fittings, can increase the concentrations of lead, zinc,
and copper in roof-harvested rainwater [20]. The contamination of rainwater storage tanks
and supply systems can occur when animal feces enter the rainwater storage system, but
may also arise during the washing and mending of storage tanks. The atmospheric pollu-
tion and local climate are the two features that affect roof-collected rainwater’s quality [14].
Rainwater quality can be improved by considering these three designs such as storage
material, treatment, and catchment material [21].

Many studies show that the microbiological and physicochemical qualities of roof-
collected rainwater are affected by the storage tank material. Contaminants found in
rainwater comprise metals, such as copper (Cu), lead (Pb), iron (Fe), zinc (Zn), and man-
ganese (Mn), and microbial pathogens, such as E. coli cryptosporidium, Giardia, total
coliform, and fecal coliform. The chemical contamination of roof-collected rainwater can oc-
cur in two ways: those which occur from off-site sources such as vehicular emission, spray
drift, and industrial emission and occur from on-site sources, which include tank materials,
gutters, roof materials, and emission from domestic wood burners [22]. A suitable scheme
should be implemented to remove the initial runoff from the storage tank to improve
rainwater quality. At the same time, this process also reduces the quantity of roof-collected
rainwater [23,24]. Many machine learning techniques are used to assess water [25–30]. The
quantity of roof-collected rainwater can be determined using a technique used for very
slight urban catchments. This method depends on the roof area, the runoff coefficient, and
the amount of rainfall.

The runoff coefficient denotes diminution due to evaporation and seepage [24]. The
annual rainwater-harvesting potential (in L/year) of a roof area can be calculated based on
the average annual rainfall, the catchment area, and the runoff coefficient, as denoted by the
equation RWH potential = R × A × RC. This equation takes an idea from the method used
to determine the runoff rate of any watershed area [31–35]. The runoff coefficient represents
the losses due to the catchment surface’s evaporation, leakage, spillage, and wetting. The
RC value represents the portion of rainfall that becomes runoff. The procedure of rainwater
harvesting is of huge importance for Pakistan, as the country faces a severe water scarcity
problem. Pakistan is a water-scarce state in South Asia. Therefore, rainwater could be
considered the best alternative source of drinking water for this area [35,36]. Additionally,
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it is tough to ensure access to water because many of the total population live in rural and
hilly areas. Ensuring water supply to hilly areas is time-consuming and expensive [37].

Briscoe et al. [38] pronounce rainwater harvesting as the most appropriate and feasible
tactic for the hilly and rural areas of Pakistan. In the study area, people use rainwater
stored in tanks without knowing its quality and effects on health. There is a possibility
of waterborne diseases arising from physical, chemical, and microbial contamination.
Moreover, there is a water shortage in the study area; rainwater harvesting is a good option
to overcome this problem. Therefore, this study carried out qualitative and quantitative
assessments of roof-harvested rainwater in the study area. Therefore, this study was
conducted: (i) to assess the quality of roof-harvested rainwater in the study area; (ii) to
determine the rainwater-harvesting potential in the study area; and (iii) to assess the health
risk associated with rainwater.

2. Materials and Methods
2.1. Study Area

The Lower Dir District is situated in the Khyber Pakhtunkhwa province of Pakistan.
In 1969, Dir became a part of Pakistan; beforehand, it was an independent state. Then, in
1996, it was divided into two districts, namely Lower Dir and UpperDir. Malakand District
lies in the south, Upper Dir in the north, Swat District the east, and Bajaur Agency the
west. It is placed in the Hindukush range 71◦50′ to 71◦83′ E in longitude and 35◦10′ to
35◦16′ N in latitude, as presented in Figure 1. The total land area of the Lower Dir District
is 1582 km2 (611 sq mi). Snowfall begins in December and remains up until June and July
on high mountains, increasing the area’s beauty [39]. Most people work in agriculture in
some capacity, and the main source of drinking water is wells and springs. The closest
meteorological station is located in Upper Dir. The climatic data from the station illustrate
that July is the hottest month, at 15 ◦C to 32 ◦C, while January and February are the coldest
months, and the temperature is 11 ◦C to −2 ◦C. The highest rainfall in the study area
occurred in March at 242 mm and the lowest in July, October, and November [40].
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2.2. Sample Collection

The samples were collected from rainwater storage tanks in the study area. The
samples were obtained randomly where the rainwater storage tanks were found in the
study area. A total of 35 samples were collected from different storage tanks. The samples
were obtained in polyethylene (PE) bottles and cleaned with nitric acid and deionized
water before use. The sample bottles were enclosed and saved in a dim place at a constant
temperature range of 4–10 ◦C to prevent any infection and effects of light and temperature.
The sampling was conducted by following the standard methods [41]. The samples were
transported in a box filled with ice, brought to the laboratory, and kept in the freezer at 4 ◦C
until further analysis. In the laboratory, samples were analyzed using standard methods
for water quality analysis.

2.3. Physicochemical Analysis

The physical and chemical parameters of roof-harvested rainwater were assessed by
applying the American public health association stock method. The parameters, such as taste
and odor, were determined using the senses of taste and flavor. For the determination of
color, the given rainwater sample was categorized into two classes depending on whether it
had color or was colorless. The color of the given rainwater samples was assessed through
naked-eye observations. The pH of the given rainwater samples was set using a pH meter
(model HANNA). Electrical conductivity and total dissolved solids were determined using
the conductivity meter, while TDS was assessed by changing the mode from conductivity to
TDS (model HANNA). Turbidity was determined by using a turbidity meter (model). For
the determination of fluoride in the given rainwater samples, a fluoride meter was used
(model). The chloride and sulfate values were determined using a titrimetric method and a
spectrophotometric method, respectively [42]. Heavy metal analysis was performed using an
atomic absorption spectrophotometer (Perkinelmer) following the APHA standard method.

2.4. Quantity Assessment

The quantity of roof-harvested rainwater was estimated using the formula: Harvested
rainwater = Average annual rainfall × Average roof area× runoff coefficient. These three
are the key parameters for calculating the quantity of roof-harvested rainwater [43]. The
rainfall data of the study area were obtained from the Peshawar meteorological station.
Data covering five years were obtained. Then, the average annual rainfall from these was
determined. The total roof area was determined by taking a representative sample of
rooftop areas and extrapolating it to the total area [44]. In this way, an estimated rooftop
area was obtained. The runoff coefficient represents loss due to evaporation and leakage.
Mostly, the runoff coefficient value ranges from 0.5 to 0.9 for different roofing materials.
However, typically, for iron and a concrete roof, it is 0.8 [45].

2.5. Health Risk

For the determination of health risks associated with the consumption of heavy metals
in roof-harvested rainwater, a questionnaire was prepared and distributed among different
respondents in the study area that uses rainwater for drinking purposes. The questions were
about body weight, age, daily consumption of rainwater for drinking, cooking, and different
waterborne diseases. The questionnaires were filled with responses with great care and clarity.
After this, the MDI of water and HRI were determined using Equations (1) and (2) [46].

MDI = C × DI/BW (1)

where C denotes the number of heavy metals, BW represents the average body weight
(70 kg), and DI means daily water intake (2 L/day).

HRI = MDI/RfD (2)
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MDI represents the maximum daily intake, and RfD represents a reference dose, which
shows the acceptable daily intake. RfD values are 3.6 × 10−1, 3.7 × 10−1, 7.0 × 10−1 and
3.0 × 10−1 for Pb, Cu, Fe and Zn [47].

3. Results

This study highlights the qualitative and quantitative aspects of roof-harvested rain-
water in reference to the WHO’s water standards. The results are presented as graphs and
tables for both qualitative and quantitative assessments.

3.1. Qualitative Assessment

The qualitative assessment included both physical and chemical parameters. The
physical parameters, such as taste, odor, and color, were normal, and nothing was con-
sidered unpleasant. The maximum, minimum, and mean values of different parameters
of roof-harvested rainwater are shown in Table 1 and compared with the WHO drinking
water standards. Figure 2 shows the physicochemical parameters of roof-harvested rain-
water. The mean turbidity values in all five study area sites were 1.05, 5.77, 5.45, 4.27, and
4.29 NTU. The highest mean value of turbidity was 5.77 NTU in site HA and 5.45 NTU in
site LA, while the lowest mean value of turbidity was 1.05 NTU in site SI. The results show
that the turbidity values were within the safe limit of the WHO’s guidelines (5 NTU), except
for site HA and LA. A higher turbidity value in water is related to the greater presence
of a pathogenic microbe, including bacteria and other parasites studied; as reported [48],
turbidity is not necessarily dangerous for humans but can affect the degree of acceptability
due to visible cloudiness. The turbidity values seemed acceptable when compared to those
of the study conducted by Mendez et al., 2011 [49].

Table 1. Physicochemical parameters of roof-harvested rainwater.

Statistic PH Turbidity NTU EC µS/cm TDS mg/L Cl mg/L SO4 mg/L F mg/L

Locations WHO 6.5–8.5 5 400 1000 250 250 1.5

Site SI Mean 5.18 1.05 2.62 1.28 2.12 1.04 0.3
SD 1.27 6.17 2.66 1.26 8.58 0.12 0.14

Site HA Mean 5.82 5.77 1.82 9.62 2.01 1.07 0.39
SD 0.91 5.76 1.01 4.93 6.35 0.19 0.13

Site LA Mean 6.05 5.45 1.52 7.45 1.92 0.84 0.29
SD 0.88 6.95 1.23 5.78 1.01 0.16 0.13

Site SA Mean 6.22 4.27 1.25 6.26 2.18 0.91 0.3
SD 0.73 5.96 1.04 5.16 9.09 0.21 0.15

Site KO Mean 6.26 4.29 1.32 6.61 2.2 0.99 0.21
SD 0.39 4.68 2.11 8.32 4.72 0.19 0.12

Table 1 shows the mean pH values of each site (SI, HA, LA, SA, and KO). The highest
mean pH value was in site KO (6.26), while the low mean pH was 5.18 in site SI. This shows
that rainwater samples of the study area are not strongly acidic, so they will not cause
any harmful effects on consumer health. The acidity of rainwater mostly occurs due to
the reaction of rainwater with carbon dioxide, which leads to the formation of carbonic
acid [50]. The pH of rainwater usually ranges from 4.5 to 6.5, but increases slightly after
falling on the roof and during storage in tanks [51]. The pH value, when compared with the
results of previous studies, ranging from 5.5 to 8.5, looked acceptable [12,52]. The highest
mean conductivity value was in site SI, at 2.62 µS/cm, while the lowest mean value was
1.25 µS/cm in site SA. It is clear from Table 1 that all the mean values of EC were below the
permissible limit as outlined by the WHO, which is 2500 µS/cm. The overall quantity of
dissolved ions or salts in water can be deduced from conductivity. The values of EC were
mostly lower in the rainwater samples. A value of EC lower than 100 µS/cm highlights less
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minerals in rainwater [53]. The lower values of conductivity in the roof-collected rainwater
of the study area showed that there were no dissolved solids and other contaminants from
the roof, gutters, and pipes.
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In the same way, the highest mean value of TDS was found in site HA at 9.62 mg/L,
while the lowest mean value of TDS was 1.28 mg/L in site SI. However, overall, the mean
values of TDS were within the safe and permissible limit outlined by the WHO (1000 mg/L).
A TDS value below 600 mg/L is generally suitable for drinking water, while one above
1000 mg/L is usually unacceptable [30]. The highest mean fluoride concentration was
reported to be 0.39 mg/L in site HA. At the same time, the lowest mean concentration of
0.21 mg/L was found in site KO. All the values of the given rainwater samples were below
the acceptable limit of the WHO, that is, 1.5 mg/L. The highest mean chloride value was
2.18 mg/L in site SA.

On the other hand, the lowest mean was 1.92 mg/L in site LA. All the chloride values
were within the permissible limit of the WHO, which is 250 mg/L. Similarly, the mean
sulfate concentration was also found to be below the permissible limit of the WHO, which
is 250 mg/L. The highest mean value of sulfates was 1.07 mg/L in site HA, while the lowest
mean value was 0.84 mg/L.

3.2. Heavy Metals Analysis

Four heavy metals, Fe, Zn, copper (Cu), and Pb, were analyzed in the given rainwater
samples of the study area because these four heavy metals are mostly found in rainwater.
Table 2 and Figure 3 show the concentration of heavy metals in different sites of the study
area in roof-harvested rainwater. The mean concentrations of Fe in roof-harvested rainwater
were found to be 0.51, 0.15, 0.71, 0.95, and 0.95 mg/L in sites SI, HA, LA, SA, and KO,
respectively. The highest mean value of Fe was found to be 0.95 mg/L in sites SA and
KO, respectively, while the lowest mean value of Fe was found to be 0.15 mg/L in site
HA. It was clear from the results that the mean concentration of (Fe) in rainwater samples
was above the acceptable limit of the WHO, except for site HA. The acceptable limit of the
WHO for Fe is 0.3 mg/L. This high value of iron is related to the presence of old iron sheets
in the study area. The high quantity of Fe may cause hemorrhagic necrosis and affect the
stomach’s inner wall. The highest mean value of Zn (0.42 mg/L) was in site KO, while
the lowest mean value was in site SI, which is 0.17 mg/L. The results show that Zn was
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below the acceptable limit of the WHO, which is 5 mg/L. The mean Zn value of harvested
rainwater was 0.12 mg/L by [34], which is lower than the safe limits advised by the WHO.
Heavy metals become a concern as their values increase over the acceptable level, making
rainwater unfit for human use [21,22]. The long-term exposure and accretion of heavy
metals in the human body can cause different health effects, such as lung fibrosis, renal
dysfunction, cardiovascular diseases, neurological diseases, and several kinds of cancer. In
some cases, heavy metals accumulate in the human body, damaging mental and central
nervous functions [54,55].

Table 2. Descriptive statistic of heavy metals in roof-harvested rainwater.

Locations
Statistic Fe mg/L Zn mg/L Cu mg/L Pb mg/L

WHO 0.3 5 1.3 0.015

Site SI
Range 0.16–0.93 0.08–0.29 0.03–0.01 0.01–0.10

Mean ± SD 0.51 ± 0.27 0.17 ± 0.074 0.07 ± 0.021 0.05 ± 0.035

Site HA
Range 0.05–0.40 0.16–0.44 0.01–0.05 0.003–0.04

Mean ± SD 0.15 ± 0.11 0.31 ± 0.098 0.03 ± 0.014 0.02 ± 0.014

Site LA
Range 0.49–1.20 0.12–0.40 0.01–0.05 0.01–0.08

Mean ± SD 0.71 ± 0.23 0.24 ± 0.097 0.03 ± 0.013 0.03 ± 0.022

Site SA
Range 0.57–1.27 0.19–0.62 0.01–0.07 0.006–0.07

Mean ± SD 0.95 ± 0.24 0.36 ± 0.14 0.03 ± 0.021 0.02 ± 0.021

Site KO
Range 0.91–0.97 0.29–0.48 0.02–0.06 0.01–0.03

Mean ± SD 0.95 ± 0.021 0.42 ± 0.066 0.04 ± 0.015 0.01 ± 0.005
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Figure 3. Concentration of heavy metals in roof-harvested rainwater.

The heavy metals Zn and Fe do not exert any health effects if their concentrations are
low. However, they may disturb the aesthetic value of water [56]. It was clear from the
results that the mean values of Cu in all rainwater samples were below the permissible
limit of the WHO, which is 1.3 mg/L. Similarly, the highest mean value of Cu was in site SI,
which was 0.078 mg/L, while the lowest mean value was 0.030 mg/L, which was found in
site SA.

In the same way, the highest mean value of Pb was reported in site SI, which is
(0.056 mg/L), while the lowest mean value was determined in site KO, which is 0.019 mg/L.
It is clear from Table 2 that the values of Pb were above the permissible limit of the WHO,
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which is 0.015 mg/L. The high value of Pb in the given rainwater sample of the study area
may be related to the presence of lead-containing paint on the roof surface, which then
enters rainwater storage tanks [57–60]. During sample collection, the authors noticed that
the stairs and railings of the building roofs were painted and that these paints contain
Pb. Roofing material painted with Pb may be oxidized by weathering, which can then be
washed away to accumulate in the reservoir of harvested rainwater [61]. Another source of
Pb could be the gutter and bottom pipe. Zhang and Lin [62] reported that Pb could leach
from unplasticized polyvinyl chloride pipes because Pb-based compounds are used as a
stabilizer during the unplasticized polyvinyl chloride manufacturing process.

Moreover, the deposition of Pb particles on the roof surface may enter the harvested
rainwater due to Pb emissions from industrial discharges and exhaust [63]. Lead is regarded
as one of the most significant contaminants that cause different problems in human health,
such as kidney problems and damaged nervous and reproductive systems. It may cause
learning and behavioral disorders [64].

3.3. Health Risk Assessment

We assessed health risks related to rainwater in the study area due to the heavy metal
intake. The indicators of health risks, MDI and HRI, were obtained from Equations (1) and
(2), and their results are presented in Tables 3 and 4.

3.3.1. Maximum Daily Intake (MDI)

The results of MDI for heavy metals are shown in Table 3 and Figure 4. These results
show that the mean values of MDI for Fe were 0.013, 0.0067, 0.015, 0.028, and 0.026 mg/kg-day
in sites SI, HA, LA, SA, and KO, respectively. The graph shows that the highest mean value
was found (0.028 mg/kg-day) in site SA. In contrast, the lowest mean of MDI for Fe was
found (0.0067 mg/kg-day) in site HA.

Similarly, the mean MDI values for Zn were 0.0053, 0.0080, 0.0069, 0.010, and
0.012 mg/kg-day in sites SI, HA, LA, SA, and KO, respectively. The mean MDI values of
Cu were 0.0024, 0.00099, 0.0011, 0.00082, and 0.0012 mg/kg-day in sites SI, HA, LA, SA, and
KO, respectively. In the same way, the mean values of Pb in sites SI, HA, LA, SA, and KO
were 0.0016, 0.0008, 0.00081, 0.0009, and 0.0006 mg/kg-day. Table 3 shows the MDI values
of heavy metals. The highest mean MDI value found in site SA was 0.028 mg/kg-day for
Fe, while the lowest mean MDI was 0.00057 mg/kg-day in site KO for Pb. So, it is clear
from the results that the maximum intake occurs for Fe and Pb in the rainwater of the study
area. Thus, MDI in the study area was shown to be in the order of Fe > Zn > Cu > Pb.
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Table 3. MDI index of heavy metals in roof-harvested rainwater.

Locations Statistic Fe Zn Cu Pb

Site SI
Range 0.004–0.02 0.002–0.008 0.001–0.003 0.0005–0.003
Mean 0.01 0.005 0.002 0.001

Site HA
Range 0.001–0.02 0.002–0.001 0.0004–0.001 0.0004–0.001
Mean 0.006 0.008 0.001 0.0008

Site LA
Range 0.003–0.021 0.003–0.01 0.0007–0.001 0.0001–0.002
Mean 0.01 0.006 0.001 0.0008

Site SA
Range 0.01–0.03 0.005–0.01 0.0004–0.002 0.0002–0.002
Mean 0.02 0.01 0.0008 0.0009

Site KO
Range 0.02–0.028 0.008–0.01 0.0007–0.001 0.0004–0.0009
Mean 0.02 0.01 0.001 0.0006

3.3.2. Health Risk Index (HRI)

In site SI, the mean HRI values for Fe, Zn, Cu, and Pb were detected (0.019, 0.017,
0.007, and 0.16). Similarly, for site HA, the mean HRI for Fe, Zn, Cu, and Pb were 0.0097,
0.026, 0.0027, and 0.080 mg/kg-day, as shown in Table 4.

Table 4. HRI for heavy metal via consumption of roof-harvested rainwater.

Locations Statistic Fe Zn Cu Pb

Site SI
Range 6.7 − 03–3.8 − 02 8.2 − 03–2.7 − 02 5.0 − 03–8.0 − 03 4.6 − 02–3.01 − 01

Mean ± SD 1.9 ± 02 1.7 ± 02 7.0 ± 03 1.6 ± 01

Site HA
Range 2.4 − 03–3.0 − 02 9.6 − 03–4.2 − 02 1.2 − 03–3.7 − 03 3.7 − 02–1.3 − 01

Mean ± SD 9.7 ± 02 2.6 ± 02 2.7 ± 03 8.0 ± 02

Site LA
Range 5.1 − 03–3.0 − 02 1.2 − 02–3.5 − 02 1.9 − 03–4.6 − 03 9.4 − 03–2.2 − 01

Mean ± SD 2.2 ± 02 2.3 ± 02 3.0 ± 03 7.9 ± 02

Site SA
Range 2.3 − 02–5.2 − 02 1.8 − 02–5.9 − 02 1.0 − 03–5.9 − 03 1.8 − 02–1.9 − 01

Mean ± SD 4.1 ± 02 3.3 ± − 02 2.2 ± 03 8.6 ± 02

Site KO
Range 3.3 − 02–3.9 − 02 2.8 − 02–4.6 − 02 1.9 − 03–5.2 − 03 3.9 − 02–8.5 − 02

Mean ± SD 3.8 ± 02 4.1 ± 02 3.4 ± 03 5.5 ± 02

The mean HRI values of site LA were found at 0.022, 0.023, 0.0030, and 0.0793 mg/kg-day
for Fe, Zn, Cu, and Pb, respectively. The mean HRI values for Fe, Zn, Cu, and Pb were
found to be 0.041, 0.033, 0.0022, and 0.086 mg/kg-day, respectively, in site SA. Similarly, in
site KO, the mean HRI values for Fe, Zn, Cu, and Pb were determined (0.038, 0.041, 0.0034,
and 0.055 mg/kg-day). The graph showed that the highest HRI was found in site SI (0.1601)
for Pb, presented in Figure 5. In contrast, the lowest HRI value was recorded (0.034) in site
KO for Cu. The HRI for heavy metals was calculated in the order of Pb > Fe > Zn > Cu. The
results showed that this study’s HRI values for Fe, Zn, Cu, and Pb are less than 1 (HRI <1).
An HRI value less than one (HRI < 1) is safe, while an HRI greater than 1 is unsafe [65].
So, it was clear that the rainwater in the study area was safe for drinking. The HRI for
heavy metals showed no health risk to the resident of the study area when the results were
compared to those of US EPA [45].
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3.4. Quantitative Assessment

The results of the quantitative assessment are presented in Table 5 and Figures 6–8. To
determine the annual rainwater-harvesting potential of the study area based on the equa-
tion, we used the equation RW potential = R × A × RC, where R represents the average
annual rainfall, A represents the roof area (80 m2), and Rc represents the runoff coeffi-
cient (0.8). These are the key parameters for determining the quantity of roof-harvested
rainwater [66,67].

Table 5. Monthly harvested rainwater potential of the study area.

Months Average Monthly
Rainfall (mm)

Average Roof
Area (m2)

Runoff
Coefficient

Monthly Harvested
Rainwater (L/month)

Jan 38 80 0.8 2432
Feb 181.66 80 0.8 11,626.24
Mar 98.35 80 0.8 6294.4
Apr 99.66 80 0.8 6378.24
May 33.25 80 0.8 2128
June 40.83 80 0.8 2613.12
July 120.86 80 0.8 7735.04
Aug 120.16 80 0.8 7690.24
Sept 53.3 80 0.8 3411.2
Oct 54 80 0.8 3456
Nov 30.33 80 0.8 1941.12
Dec 17.16 80 0.8 1098.24

Total 887.56 - - 56,803.84
Average 73.96 - - 4733.65

3.4.1. Monthly Rainfall

The average monthly rainfall distribution of Lower Dir District is shown in Figure 6
based on rainfall data from 2010 to 2015. According to the given figure, an increase in
rainfall occurs in January and February, and then sharp decreases occur in May and April
in 2011, 2012, 2013, 2014, and 2015. Similarly, a sharp increase occurs in July and August
and then decreases up until December. The graph shows that there are two sharp increases
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between January and July and regular sharp decreases in May and September. The figure
shows that the highest average monthly rainfall occurs in February, July, and August
(181.23, 120.45, and 120.67 mm, respectively). The lowest average monthly rainfall occurred
in May and December (33.56 mm and 17.23 mm, respectively).
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Figure 6. Average monthly rainfall distribution in the study area (2010–2015).

3.4.2. Annual Rainfall

Similarly, Figure 7 shows the average annual rainfall of the study area from 2010
to 2015. The graph shows the variation in the annual rainfall pattern. The maximum
average rainfall, 88.25 mm, was observed in 2010, while the minimum annual rainfall,
61.08 mm, was observed in 2011. The figure showed annual variability in rainfall data.
The graph showed a decrease in the average annual rainfall of the study area from 2010 to
2015. The rainfall distribution changes are related to climate change [68]. There was high
changeability in the rainfall pattern, but the average annual rainfall of the study area was
73.96 mm, as determined from the five-year rainfall data.
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3.4.3. Rainwater-Harvesting Potential

Table 5 shows the rainwater-harvesting potential of the study area per household,
for which the equation RW = R × obtained A × RC was used, where R = 73.96 mm. In
contrast, an average roof area (80 m2) was determined for the study area, and RC was
taken as 0.80. We found that the annual rainwater-harvesting potential per household
was 56,803.24 L/year. The highest volume were collected in February, 11,626.24 L/month.
In contrast, the lowest was 1098.24 L in December. In comparison, the average annual
harvested rainwater was 4733.35 L, as shown in Figure 8. Collecting rainwater depends
on the monthly rainfall, roof area, and roof runoff coefficient [69]. As determined in the
literature, the roof area varies between 25 and 200 m2 [70,71]. Furthermore, the roof runoff
coefficient (RC) varies between 0.75 and 0.95 in the literature [72]. An RC value of 0.8 was
adopted for this study, as utilized by [69,73], and leakage, spillage, infiltration, roof surface
wetting, and evaporation were accounted for in 70–85% of the harvestable rainfall, as
suggested by [74].
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Figure 8. Monthly harvested rainwater in the study area.

4. Conclusions

The results of this study showed that all the water quality parameters were within
acceptable limits compared to the WHO’s permissible limits. In contrast, the values of some
parameters, such as pH, turbidity, and heavy metal Fe and Pb, were above the permissible
limits outlined by the WHO. In the same way, the health risk assessment showed that
the rainwater samples of the study area were safe and not risky for human health. The
high levels of Fe and Pb do not currently cause any harmful effects, but may cause health
effects in the future through gradual accumulation in the human body. The compromised
rainwater quality could be affected by natural and anthropogenic activities, which increase
the number of atmospheric pollutants. So, it is necessary to avoid Pb-containing paint to
reduce the effects of Pb on health. As shown by the quantitative assessment, the study area
has great potential for rainwater harvesting. So, it was concluded from the present study
that roof-harvested rainwater was safe for drinking and other domestic consumption. The
quality of rainwater can be enhanced by taking proper care of the cleanness of the roof area,
storage system, and diversion of the first flush from the storage tank. Regular cleaning
and proper management would reduce health risks related to rainwater consumption.
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Overall, the rainwater quality in the study area was acceptable, but improvements should
be made. Proper monitoring and management are necessary to maintain the quality of
roof-harvested rainwater. Education and awareness should change people’s perceptions
of rainwater quality and harvesting. The government should make policies and plans
around the rainwater-harvesting system and make it mandatory as a strategy for water
conservation to solve the problem of water shortage at the country level. To solve the
problem of water scarcity, the government should launch a small-scale project to make
rainwater storage tanks for residents of the study area because most of the people in this
area are poor.
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