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Abstract: In order to optimize the appropriate drought resistance measures in the implementation
of high-efficiency and intensive production of maize seed, in 2018 and 2019, maize cultivation
experiments with different drought resistance measures were carried out in the arid area of northwest
China, including water retention agent (SA), white plastic film mulch (WF), black plastic film mulch
(BF), straw mulch (SM), and open ground flat seed as control (CK). A total of five treatments were
conducted. Ten specific indicators contained four types of attributes, namely the yield, quality,
water use efficiency (WUE), and economic benefit of maize seed production, aimed at constructing a
multilevel evaluation system. To improve the reliability of evaluation results, subjective and objective
weights of indexes were calculated using the analytic hierarchy process (AHP) and entropy weight
method (EWM), respectively. Then, based on the integrated weighting method of game theory (GT),
the combined weights of subjective and objective unity were obtained. Finally, with the help of the
technique for order preference by similarity to ideal solution (TOPSIS), a comprehensive benefit
evaluation model was established to screen out the optimal drought resistance measures. Compared
with CK, different drought resistance measures significantly improved the grain quality of seeds-
production corn, and the average annual yield and WUE of black and white film treatments were
improved by 49.57% and 42.97% and by 65.67% and 58.21%, respectively. This proved that black
film mulching (BF) could significantly increase the yield and WUE of maize seed production and
effectively improve grain quality, which could be used as the best drought-resistant cultivation mode
for maize seed planting in Hexi and similar areas.

Keywords: maize seed production; drought resistance; TOPSIS model; combination weight optimization;
comprehensive evaluation

1. Introduction

In China, a country with a large agricultural industry and population, grain output
has an essential role. However, the grain export yield of China is lower than in other
countries [1]. Maize is one of the main grain crops in China, ranking 14th in average yield
per unit area. By 2020, the planting area of maize reached around 38.4667 million, the unit
price of commercial seeds was close to 36.75 RMB/kg [2], and the average maize yield was
5167 kg/ha, 45.4% lower than that of the United States. Providing more than two-thirds
of the province’s commodity grain, the Hexi Oasis Region is the main base of commodity
grain in Gansu province and even the northwest region. Zhangye, located in the middle of
the Hexi corridor, has become one of the main bases of maize seed production in China
because of its unique climatic resources and superior irrigation conditions. However, the
water demand of maize seed production is mainly supplemented by irrigation because the
precipitation in this region is extremely scarce, with an average of only 130 mm annually.
Due to the intense evaporation of precipitation, it is difficult to effectively store the limited

Water 2022, 14, 3262. https://doi.org/10.3390/w14203262 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w14203262
https://doi.org/10.3390/w14203262
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://doi.org/10.3390/w14203262
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w14203262?type=check_update&version=3


Water 2022, 14, 3262 2 of 18

rainfall as plant irrigation water, which seriously affects crop yield and the quality of
maize seed production. Therefore, it is necessary to identify the optimal drought resistance
measures for maize seed production.

The optimal drought resistance measures depend on crop type, variety characteristics,
climatic conditions, planting patterns, and other factors [3–5]. Currently, mulching and
adding super-absorbent resin have become important measures for soil water storage and
preservation, as well as efficient water saving of farmland soil in inhibiting water evapora-
tion [6]. Considerable studies showed that appropriate drought resistance measures could
significantly improve farmland agroecological microclimate [7], promote crop root differen-
tiation and growth [8], and increase leaf area index as well as dry matter accumulation [9],
ultimately improving yield, water use efficiency [10], fruit appearance, and nutritional
quality [11]. Therefore, the primary objective is to choose the appropriate drought resistance
measures in fulfilling the large-scale, intensive, and standard construction of the maize
seed production industry.

The confirmation of every index weight in the evaluation system is key to compre-
hensive quality evaluation. Many scholars put forward various index weight calculation
models based on the related mathematical theory, such as the expert scoring method,
weighing method, entropy value method, standard deviation method, etc. [12]. However,
due to different information angles and emphases, these single evaluation method-based
studies have their defects, including remarkable data fluctuations and difficulties in finding
typical distribution rules, which greatly limit the accuracy of the evaluation results. The
weights of crop growth, physiological nutrient uptake, yield, quality, evapotranspiration,
water use efficiency, and other indexes of oilseed rape were acquired based on the gray
relevancy analysis and entropy weight method (EWM) according to Du et al. [13], and
the comprehensive evaluation of oilseed rape planting patterns was conducted using prin-
cipal component analysis, ideal solution, and sequence preference similarity of dynamic
technology. The subjective weight of evaluation indexes was determined by Li et al. [14]
using the analytic hierarchy process (AHP) in establishing the evaluation model of the
impact of drought on winter wheat yield, and the comprehensive weight of evaluation
indexes was obtained, combined with the variation coefficient method, which greatly
improved the reliability of the evaluation model. Thus, with full consideration of both
the advantages and disadvantages of subjective and objective weighting methods, AHP
and EWM were selected to determine the subjective and objective weight of evaluation
indicators, respectively. In order to avoid the one-sidedness of a single weighting method
caused by the limitations of subjective and objective weights, the combination weighting
method of game theory (GT) was adopted to unify the subjective and objective weights
from multiple sources of information, making the comprehensive decision analysis more
reasonable and reliable.

Rational evaluation of agricultural production is a crucial way to promote scientific
agricultural production. The TOPSIS model evaluates the merits of samples by calculating
the relative distance of samples from positive and negative ideal solutions. It has no special
requirements for sample size, and is not disturbed by the selection of reference sequences,
which ensures the robustness of the evaluation effect. The application of TOPSIS in basic
agricultural science mainly focuses on agricultural cultivated land quality evaluation [15,16],
agricultural ecological environment evaluation [17,18], integrated management of water and
fertilizer [19,20], irrigation water allocation and automatic network management [21,22], and
agricultural economic benefit evaluation [23,24], confirming the evaluation effect of the TOPSIS
model. Wang et al. [25] used the TOPSIS model to evaluate the yield and quality of radix
isatidis under water deficit irrigation (WDI), revealing that continuous application of mild
water deficit during the vegetative growth period and fleshy root growth period improved
root quality, and the yield was not greatly reduced. The TOPSIS model was also used in
a comprehensive analysis of planting priority planning of corn, rape, and soybean crops,
and the three methods indicated significant difference at the probability level of 0.05 [26].
According to the grades assigned by the priority model, corn crop was superior to other
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plants. The comprehensive benefits of the rice planting model were evaluated by adopting
the TOPSIS model [27]. The input and output of rice under different planting models were
analyzed comprehensively, and an evaluation system with three first-level indicators and
eight second-level indicators was established, with the final evaluation results showing that
the direct sowing model of rice had the highest comprehensive benefits. Wang et al. [28] used
the TOPSIS model to evaluate the management of different water and fertilizer amounts under
drip irrigation in silty loam. Therefore, the TOPSIS method has been extensively applied to
evaluate crop irrigation patterns, planting systems, and water and fertilizer applications, but
the comprehensive evaluation research on crop drought resistance measures is still scarce,
especially in the crop seeds-production industry in northwest China. The application of
TOPSIS in crop evaluation mainly focuses on measured data collection, including yield,
growth index, and irrigation amount. We introduce GT to improve the TOPSIS evaluation
method, combining the subjective weight and objective weight, and putting maize seed yield,
quality, water use efficiency, and economic benefits into full consideration. Therefore, our
drought resistance evaluation is conducted based on multiple categories and indexes, which
will provide a theoretical basis for drought resistance measures in selecting the most suitable
maize seed production system in northwest China.

2. Materials and Methods
2.1. Description of the Experimental Site

The experiment was carried out at the comprehensive demonstration site (100◦6′–100◦52′ E,
38◦32′–39◦24′ N) of maize seed production by the integration of water and fertilizer in 2018
and 2019 in Tianjiazha Village, Ganzhou District of Gansu Province. The test area belongs to a
temperate continental climate zone, with an altitude of 1474 m, annual average temperature of
7.25 ◦C, annual average precipitation of 130 mm, sunshine duration of 2975 h, and frost-free
period of 157 days. The tested soil was sandy loam with medium fertility, the maximum
field water capacity was 26.8%, the wilting coefficient was 7.3%, and the soil bulk density
was 1.38 g/cm3. The soil pH value within the 0–40 cm surface layer was 8.35, the organic
matter content was 16.30 g/kg, and the soil available phosphorus, nitrogen, and potassium
contents were 15.80, 45.32, and 125.36 mg/kg, respectively. The rainfall in 2018 was 118.2 mm
and the evaporation was 1898.5 mm; in 2019, the rainfall was 207.5 mm and the evaporation
was 1736.9 mm.

2.2. Experimental Design and Field Management

Maize seed (Zea Mays L.) was used as the test material, and the maize variety was
NC242. It was provided by Gansu Zhongzhong International Seeds Co., Ltd. Zhangye City,
China, with the planting density of 8.0 × 104/ha. The experiment was designed with white
mulching film (WF), black mulching film (BF), straw mulching (SM), and open-ground
seeds (CK) (Table 1) with three replications. There were 15 plots in total with the plot area of
132 m2 (6 m× 22 m), and the split plot design was adopted. A drip irrigation belt produced
by DAYU Water-Saving Group Co., Ltd. Jiuquan City, China was paved on the soil surface.
In the first experimental year, the female seeds were sown on 17 April 2018, and the male
seeds were sown in the first and second phases on 26 and 30 April, respectively, while the
crops were harvested on 30 September 2018. In the second experimental year, the female
seeds were sown on 12 April 2019, and the male seeds were sown in the first and second
phases on 19 and 24 April, respectively, while the crops were harvested on 15 September
2019. The planting row ratio of parents was 1:4, with 1 line of father plants and 4 lines
of mother plants oriented east–west. The female seeds were sown in wide-narrow rows
with row spacing of 0.45 m and plant spacing of 0.2 m, while the male seeds were sown
in the middle 2 lines of female parents with row spacing of 1.35 m and plant spacing of
0.2 m. Each plot was laid with 5 lines of film, and 2 lines of seeds were sown on each
film. Basal fertilizer application was urea of 105 kg/ha, with P2O5 of 138 kg/ha and K2O
of 75 kg/ha, and the nitrogen topdressing dosage was 345 kg/ha. The topdressing was
carried out at maize jointing, silking, and filling, with a topdressing ratio of 3:4:3. Drip
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irrigation was adopted with water and fertilizer coupling. During the growth period of
maize seed in 2018, irrigation was carried out 7 times on the 51st, 65th, 73rd, 90th, 98th,
108th, and 116th day after sowing, with the irrigation quota of 400, 450, 450, 450, 500, 500,
and 400 m3/ha, respectively, for a total of 3150 m3/ha. In 2019, the maize seed was irrigated
6 times during the growth period on the 46th, 62nd, 82nd, 95th, 101st, and 120th day after
sowing, with the irrigation quota of 400, 550, 500, 400, 550, and 550 m3/ha, respectively, for
a total of 2950 m3/ha.

Table 1. Experimental design.

Number Treatment Description of Treatments

SA water retention agents

Forestry water retention agent (long-term) was selected from Gansu Hai Ruida
Ecological Environmental Science and Technology Co., Ltd. Lanzhou, CN. The

arable layer soil was turned over 30 cm before sowing and mixed with seed manure
of 45.0 kg/ha and depth of 10–15 cm. Then, the drip irrigation belt was paved.

Planter dibbling was used to sow female seeds first, and male seeds were sown in
different stages.

WF white mulching film

The arable layer soil was turned over 30 cm before sowing. Enough fertilizer was
applied, and the drip irrigation belt was paved. A 120 cm wide white mulch film
was used to cover, purchased from Shanxi Dongqing Agricultural Film Co., Ltd.

Datong City, CN.No space was left between the films, and the films overlapped each
other by about 5 cm. Soil was compacted at the interface. Planter dibbling was used

to sow female seeds first, and male seeds were sown in different stages.

BF black mulching film

Soil preparation, fertilizing, and drip irrigation belt pavement were the same as the
WF treatment before covering the ground. A 120 cm wide black mulch film was
used to cover, purchased from Shanxi Dongqing Agricultural Film Co., Ltd. No

space was left between the films, and the films overlapped each other by about 5 cm.
Soil was compacted at the interface. Planter dibbling was used to sow female seeds

first, and male seeds were sown in different stages.

SM straw mulching

Soil preparation, fertilizing, and drip irrigation belt pavement were the same as the
WF treatment before covering the ground. The corn straw was crushed into 5–10 cm

long sections by machinery, and evenly covered the bare ground between rows
totaling 3500 kg/ha after the emergence of seedlings. Planter dibbling was used to

sow female seeds first, and male seeds were sown in different stages.

CK open-ground seed Planter dibbling was used to sow female seeds first, and male seeds were sown in
different stages without covering.

2.3. Measurements and Calculations
2.3.1. Soil Moisture Content

During the growth period, soil samples were randomly collected from the middle
position of two maize plants every 15 days, and soil water content was determined to select
the drying method. The soil depth was 100 cm with a gradient of 20 cm.

θ = ma −mb/mb (1)

where θ is the soil moisture content (%), ma is the weight of a fresh soil sample (g), and mb
is the dry soil sample weight (g).

2.3.2. Plant Yield

The maize was harvested separately according to plot after maturity, and the grain was
threshed and calculated after natural air drying. Three to five days before maize harvest,
20 maize plants with uniform growth were randomly selected from each plot to determine
ear diameter, ear length, number of grains per ear, grain weight per ear, and 100-grain
weight per plant.
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2.3.3. Water Consumption and Water Use Efficiency

The water balance equation was used to calculate the water consumption of maize
seed during the crop growth season:

ET = P + W1 −W2 + I + K− R (2)

where ET is the total water consumption during the growth period (mm), P is the rainfall
during the growth period, W1 is the soil water storage capacity (mm) in the 0–100 cm
soil layer after harvest, W2 is the soil water storage capacity (mm) in the 0–100 cm soil
layer at sowing time, I is the irrigation amount (mm), K is the inland water replenishment
amount (mm) during the time period, and R is the surface runoff (mm) during the time
period. The field capacity of this experiment was 26.8%.

Water use efficiency was calculated according to grain yield and water consumption
during the growth period:

WUE = Y/ET (3)

where Y is the grain yield of maize seed, and WUE is the water use efficiency (kg/m3).

2.3.4. Quality

The contents of starch and soluble sugar were determined by the anthrone colorimetric
method [29], the crude fat content was determined by the residual method [30], the crude
protein content was determined by the Kjeldahl nitrogen determination method [31], and
the crude fiber content was determined by the filter bag method [31].

2.3.5. Determination of Weights

Analytic hierarchy process (AHP) is an unstructured decision theory proposed by
American operations research expert T.L. Saaty [32] that can help decision makers de-
compose complex problems into several levels and elements. The weight coefficients of
different factors are generally obtained by simple comparison, judgment, and calculation
of the factors. The specific steps are as follows:

(1) Establishment of the declining hierarchical structure. The relationship and affiliating
among every factors were divided into multiple levels, including criterion layer, target
layer, and scheme layer, according to the different characteristics of factors.

(2) Construction of pairwise judgment matrix. Pairwise comparison of factors in the criterion
layer was carried out to construct a pairwise comparison matrix among factors, and a
nine-point scale method was adopted (Table 2). Then, a pairwise comparison judgment
matrix was formed from the quantization results O− C =

(
aij
)

n×n.
(3) Calculation of the relative weight of the factors. The relative weight of the factors was

calculated by the judgment matrix, and the weight of all the elements in this layer
in the upper layer was calculated and further synthesized by the calculation results
of the weight of a single layer. By weight sorting, the optimal scheme was selected
and the consistency of the judgment matrix was tested to ensure the scientific and
reliable calculation.

The next step is the calculation of the normalized weight coefficient. In previous
papers, while using the AHP method to solve practical problems, one of the methods was
used to derive the weight, leading to the deviation of the results. In this work, we used
the arithmetic average method, geometric average method, and feature vector method to
calculate the weight of each index.
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Table 2. Judgment matrix scale definition.

Scaling Meaning

1 Equally important
3 Slightly important
5 Obviously important
7 Strongly important
9 Extremely important

2, 4, 6, 8 The median of the above two adjacent
judgments

reciprocal A is compared to B if the scale is 3, then B is
1/3 compared to A

a. Arithmetic average method

ωi =
1
n

n

∑
j=1

(
aij

/
n

∑
k=1

ajk

)
(i = 1, 2, . . . . . . , n) (4)

b. Geometric average method

ωi =

(
n

∏
j=1

aij

) 1
n
/

n

∑
k=1

(
n

∏
j=1

aij

) 1
n

(i = 1, 2, . . . . . . , n) (5)

c. Feature vector method

The maximum eigenvalue of the matrix λmax and the corresponding eigenvector were
calculated, and the processing was normalized to obtain the weight ωi. The judgement
matrix is O− C =

(
aij
)

n×n, and the steps for checking consistency are as follows:

a. Calculation of consistency indicators (CI):

CI = (λmax − n)/(n− 1) (6)

b. Calculation of the corresponding average random consistency index (RI) (Table 3).
c. Calculation of consistency ratio CR:

CR = CI/RI (7)

Table 3. Average random consistency index.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
RI 0 0 0.52 0.89 1.12 1.24 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59

If CR < 0.1, the consistency of the matrix is acceptable; otherwise, it should be modified.
The entropy weight method (EWM) was used to assign index weight depending on

the discreteness of data [33], and the specific steps are as follows:

(1) The indexes to be calculated are formed into a numerical matrix to judge whether
there is a negative number in the input matrix. If so, it should be re-normalized to a
non-negative range to ensure that every element is a non-negative number to form a
positive matrix X =

(
Xij
)

n×m.

X =

x11 . . . x1m
. . . . . . . . .
xn1 . . . xnm

 (8)
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So, the normalized matrix polar Z is:

zij = xij/

√
n

∑
i=1

x2
ij (9)

If there are negative numbers in the Z-matrix, another normalization method needs to
be used for X.

The Z-matrix is obtained after the normalization of matrix X, and its standard formula is:

Zij =
xij −min

{
x1j, x2j, . . . , xnj

}
max

{
x1j, x2j, . . . xnj

}
−min

{
x1j, x2j, . . . xnj

} (10)

(2) The non-negative matrix Z is obtained through normalization, and the proportion of
the ith sample in the jth index is calculated, which is regarded as the probability used
in relative entropy calculation:

Z =

z11 . . . z1m
. . . . . . . . .
zn1 . . . znm

 (11)

Calculation of the probability matrix P, with the calculation formula of each element
Pi j in P, is as follows:

pij = zij

/
n

∑
i=1

zij (12)

(3) Calculations of the information entropy of each indicator, the information utility value,
and the entropy weight of each indicator through normalization were conducted
as follows:

ej = −
1

ln n

n

∑
i=1

pi j ln
(

pi j
)

(j = 1, 2, . . . , m) (13)

dj = 1− ej (14)

Wj = dj

/
m

∑
j=1

dj (j = 1, 2, . . . , m) (15)

Index weight plays an important role in the comprehensive evaluation of a multi-factor
system. The advantages of subjective and objective weight assignment were taken into full
consideration, and the GT clustering model was used to combine the indexes to achieve
the balance and unity of subjective and objective weight. The specific steps are as follows:

(a) Use different weighting methods (L kinds) to weight the participating indicators and
construct the basic weight vector set.

uk = {uk1, uk2, . . . , ukn} (k = 1, 2, . . . , L) (16)

(b) Construction of the linear combination q of weight vectors. The linear combination of
the above L vectors is:

u =
L

∑
k=1

αkuT
k

(
αk > 0,

L

∑
k=1

αk

)
(17)

(c) where u is the weight set after linear combination, and αk is the coefficient of linear
combination. In order to minimize the deviation with each, the equilibrium idea of
GT is used to optimize αk, i.e.,
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min

∥∥∥∥∥ L

∑
j=1

αjuT
j − ui

∥∥∥∥∥
2

(i = 1, 2, . . . , L) (18)

According to the first derivative of Equation (18), the equivalent linear equations can
be obtained: 

u1 · uT
1

u1 · uT
2 · · · u1 · uT

L
u2 · uT

1
u2 · uT

2 · · · u2 · uT
L

...
...

...
...

uL · uT
1

uL · uT
2 · · · uL · uT

L




α1
α2
...

αL

 =


u1 · uT

1
u2 · uT

2
...

uL · uT
L

 (19)

(d) After obtaining the optimal linear combination coefficient (α1, α2, . . . αL) according to
Equation (19), it is processed with the improved normalization formula [34], i.e.,

α∗k = |αk|
/

L

∑
k=1
|αk| (20)

(e) By applying GT, the comprehensive weight vector is obtained by combining AHP
and EWM:

u∗ =
L

∑
k=1

α∗k uT
k (21)

2.4. TOPSIS Model Evaluation Method

TOPSIS is a method for ranking finite evaluation schemes according to their proximity
to idealized schemes, and it belongs to one of the multi-attribute decision-making meth-
ods [35,36]. The basic principle is to calculate the optimal solution and the worst solution,
and then, according to the distance between each optimal solution and the optimal solution
and the worst solution, if the evaluation scheme is closest to the optimal solution and
furthest from the worst solution, it is the optimal solution. The calculation procedure is
as follows:

(1) Construct the weighted evaluation matrix.

∼
Zij = wj × zij =


∼
z 11

∼
z 12

∼
z 12

∼
z 1m∼

z 21

∼
z 22

∼
z 12

∼
z 2m

...
...

. . .
...

∼
z n1

∼
z n2 · · · ∼

z nm

 (22)

(2) Determine positive and negative ideal solutions. First, the weighting matrix was
forward—that is, the benefit index—and then the matrix Z was obtained by normaliz-
ing and removing the dimension. Finally, the positive ideal solution set was formed
by the maximum value of each participating index in the scheme, and the negative
ideal solution set was formed by the minimum value.

The maximum value of each column was regarded as the optimal vector:
Z+ =

(
Z+

1 , Z+
2 , · · · , Z+

m
)

=
(

max
{∼

z 11 ,
∼
z 21 , L,

∼
z n1

}
, max

{∼
z 12 ,

∼
z 22 , L,

∼
z n2

}
, L, max

{∼
z 1m ,

∼
z 2m , L,

∼
z nm

})
The minimum value of each column was regarded as the worst vector:

Z− =
(
Z−1 , Z−2 , · · · Z−m

)
=
(

min
{∼

z 11 ,
∼
z 21 , L,

∼
z n1

}
, min

{∼
z 12 ,

∼
z 22 , L,

∼
z n2

}
, L, min

{∼
z 1m ,

∼
z 2m , L,

∼
z nm

})
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(3) Calculate Euclidean distance. For each evaluation scheme, the distance to the pos-
itive ideal solution and the distance to the negative ideal solution were calculated
as follows:

D+
i =

√√√√ m

∑
j=1

(∼
Z
+

j −
∼
z ij

)2

(23)

D−i =

√√√√ m

∑
j=1

(∼
Z
−
j −

∼
z ij

)2

(24)

(4) Calculate the comprehensive score. According to Equation (25), the proximity Si of
each scheme to the optimal scheme was first calculated, and then the comprehen-
sive score of each evaluation scheme was obtained after normalization according
to Equation (26):

Si = D−i /
(

D+
i + D−i

)
(25)

∼
Si = Si

/
n

∑
i=1

Si (26)

2.5. Statistics Analysis

Duncan’s multiple comparison method in SPSS (Version 19.0, Stanford University,
Stanford, CA, USA) was used to compare the significance differences of data. Microsoft
Excel 2010 (Microsoft 365) was used for data statistics and chart making, and MATLAB
R2021b (MathWorks, Natick, MA, USA) was used for model solving.

3. Results
3.1. Selection of Evaluation Indicators

Ten specific indexes reflecting four attributes of maize seed yield, quality, water use
efficiency, and economic benefit under different drought resistance measures were selected
as the participating indexes. A comprehensive evaluation of drought resistance measures
was carried out at different crop growth and physiology levels. Table 4 shows the effects of
different drought resistance measures on maize yield, WUE, water consumption, output
value, output value of one cubic meter of water, starch, crude protein, crude fat, and soluble
sugar in seed production in 2018 and 2019.

Different drought resistance measures in both years had significant (p < 0.05) effects on
water consumption, yield, water use efficiency, and crop quality during the whole growth
period of maize seed (Table 4). Based on the data of 2018 and 2019, it was found that
different drought resistant measures could significantly reduce the water consumption of
maize seed during the whole growing period. Among them, water consumption is greatly
reduced in the SM, which was 659.51 m3/ha less than conventional open-field planting CK.
Compared with CK, the WF, BF, and SA also reduced the water consumption during the
whole growth period, and the decreases were 14.07%, 9.67%, 9.60%, and 9.13%, respectively.
The WUE in CK was the lowest, with only 1.34 kg/m3, and the WUE was significantly
increased by 36.37–65.49% by adding drought resistance measures. The WUE in BF was the
highest, with 2.22 kg/m3, followed by WF, SA, and SM, which were significantly increased
by 65.49%, 58.60%, and 42.11%, and 36.37%, respectively, compared with CK.
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Table 4. Experimental results of the indicators for a comprehensive evaluation system.

Year Treatment Yield
(kg/ha)

Starch
(%)

Crude
Protein
(mg/g)

Crude
Fat
(%)

Soluble
Sugar

(%)

Crude
Fiber
(%)

Water
Con-

sump-
tion

(m3/ha)

WUE
(kg/m3)

Output
Value

(RMB/ha)

Output
Value of

One
Cubic

Meter of
Water

(RMB/m3)

2018

SA 8280.75
bc 67.57 a 9.08 ab 1.49 ab 13.28 ab 6.75 a 4211.35

ab 1.97 b 31301.24
bc 9.94 bc

WF 9075.44
ab 64.96 ab 9.12 ab 1.33 bc 12.04 c 4.83 c 4027.18

bc 2.25 a 34305.16
ab 10.89 ab

BF 9431.62 a 68.69 a 9.66 a 1.55 a 12.91 bc 4.53 c 4111.46
ab 2.29 a 35651.52

a 11.32 a

SM 7566.39 c 67.90 a 9.14 ab 1.61 a 14.75 a 3.87 d 3985.60 c 1.90 b 28600.95
c 9.08 c

CK 6229.51
d 62.78 b 8.47 b 1.15 c 10.37 d 5.61 b 4529.03 a 1.38 c 23547.55

d 7.48 d

2019

SA 7915.08 b 66.98 ab 8.92 bc 1.31 cd 12.76 ab 6.29 a 4305.71
bc 1.84 bc 28098.53

b 9.52 b

WF 8845.55 a 65.11 ab 8.45 c 1.42 bc 11.84 bc 4.37 b 4439.24
ab 1.99 ab 31401.70

a 10.64 a

BF 9317.17 a 70.18 a 10.58 a 1.84 a 12.15 b 4.46 b 4360.85
bc 2.14 a 33075.95

a 11.21 a

SM 7128.76 c 68.14 ab 9.61 ab 1.51 b 13.66 a 5.90 a 4067.93 c 1.75 c 25307.10
c 8.58 c

CK 6305.24
d 63.10 b 7.79 c 1.22 d 11.03 c 4.51 b 4843.51 a 1.30 d 22383.60

d 7.59 d

Note: Within each column, different letters after the values indicate significant differences at p < 0.05 according to
Duncan’s test.

Different drought resistance measures significantly (p < 0.05) increased maize seed
yield (Table 4). Based on the analysis of the average data in 2018 and 2019, we found that
the yield of BF treatment was marked the highest with 9374.40 kg/ha2, followed by WF
treatment and SA treatment with 8960.50 and 8097.92 kg/ha2, respectively. Compared
with CK, the yield of these three treatments was significantly increased by 49.57%, 42.97%,
and 29.21%, respectively. Although the increase rate of straw mulching treatment was
lower than in other drought resistance measures, the rate was still notably increased by
17.24% compared with CK. The effect of different drought resistance measures on output
was consistent with the change in yield and could significantly increase the water output
by 1.30–3.74 RMB/m3, among which BF and WF treatment were the most significant,
with increases of 3.74 RMB/m3 and 3.24 RMB/m3, which were 49.57% and 42.97% higher
than CK. Although the increase rate of SA and SM treatment was lower than that of
plastic film mulching, it was still increased by 2.20 RMB and 1.30 RMB/m3 compared
with CK, which was significantly increased by 29.20% and 17.23%. Different drought
resistance measures had different effects on quality components of maize seed production.
BF treatment significantly increased starch content of maize seed, followed by SM, which
was significantly increased by 10.32% and 8.07% compared with CK. Although starch
content in SA and WF treatments increased by 6.89% and 3.33%, there was no significant
difference (p > 0.05). The crude protein and crude fat contents of maize seed were greatly
increased by different drought resistance measures, among which the BF was the highest,
with 10.12 mg/g and 1.70%, respectively, followed by SM, SA, and WF. Compared with CK,
the crude protein and crude fat contents in all the treatments were significantly increased
by 24.48%, 15.31%, 10.70%, and 8.06% and 43.04%, 31.65%, 18.14%, and 16.03% respectively.
Different drought resistance measures were beneficial to the accumulation of soluble sugar
content in maize seed, among which the accumulation effect of SM was the best, with
14.21%, followed by SA, BF, and WF, which were significantly increased by 32.76%, 21.68%,
17.10%, and 11.59% compared with CK. The application of a water retaining agent could
significantly increase the crude fiber content of maize seed by 28.85%, while plastic film
mulching and straw mulching were not suitable for the accumulation of crude fiber content.
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Compared with CK, the grain crude fiber content in BF treatment decreased the most
(11.17%), followed by WF treatment (9.09%), and the difference was significant. The grain
crude fiber content in SM treatment decreased the least (3.46%), and the difference was
not significant.

As a key industry, it is important to select the best drought resistance measures for
maize seed production to increase WUE and grain quality on the basis of yield increase.
In this study, the important nutrients contained in seeds such as seed coating, embryo,
endosperm, etc., comprised the grain quality index, the yield was selected as the yield index,
the output value and the water output were selected as the economic benefit index, and
the water consumption and use efficiency during the whole growth period were selected
as the water use status index. Taking 10 indexes of the four attributes into consideration,
the drought resistance measures with high quality, high yield, and high efficiency of maize
seed in the semi-arid area of northwest China were evaluated by mathematical statistics.

3.2. Determination of the Weight of Indices in the Evaluation System
3.2.1. The Analytic Hierarchy Process

Analytic hierarchy process (AHP) is a combination of qualitative and quantitative,
systematic and hierarchical analysis methods, which can reflect decision makers’ experience
in different indicators. Based on a certain scale, a coherent hierarchical relationship was
constructed according to the importance of the indexes, and the index weighting number
was obtained. The main steps of the subjective weighting method were as follows:

(1) Establishment of a hierarchy. In order to find suitable drought resistance measures
for maize seed production in northwest China, the evaluation index system was
constructed considering the concepts of yield, water use efficiency, quality, and eco-
nomic benefits and the principles of scientific, representativeness, and consistency. In
addition, an index decomposition was conducted to the four dimensions that were
needed in the study of drought resistance measures. The comprehensive hierarchical
evaluation model was constructed by using the principle of the analytic hierarchy
process (Figure 1).
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(2) Construction of a judgment matrix. The weight was calculated by constructing the
judgment matrix O− C =

(
aij
)
n× n according to the 1–9 ratio scale method (Table 5).

Table 5. Judgment matrix O− C.

O C1 C2 C3 C4

C1 1 2 3 5/3
C2 1/2 1 7/3 2
C3 1/3 3/7 1 2
C4 3/5 1/2 1/2 1
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(3) Calculation of the subjective weights using the judgment matrix (wsj). In order
to ensure the rationality of the results, the arithmetic average method, geometric
average method, and feature vector method were adopted in this study to calculate
the weights.

The calculation results of MATLAB software are shown in Table 6 with CR = 0.0796 < 0.10.
Therefore, the judgment matrix O− C had acceptable consistency. The weight coefficients
calculated by the arithmetic average method, geometric average method, and eigenvector
method were basically the same. Finally, feature vectors were selected as the subjective
weight coefficients of each evaluation index, and the weights of each index layer were as
follows (Table 7).

Table 6. The weight coefficients of the judgment matrix O− C.

Method C1 C2 C3 C4 λmax CI CR

Average method 0.4023 0.2754 0.1731 0.1493
4.2124 0.0708 0.0796Geometric means method 0.4071 0.2830 0.1674 0.1425

Eigenvector method 0.4070 0.2774 0.1699 0.1456

Table 7. Subjective weight of evaluation index (AHP).

Target Layer Criterion Layer
(Weights)

Indicator Layer Comprehensive
WeightIndex Weights

Benefit evaluation
of different

drought resistance
measures of maize

seed

Yield
C1 (0.4070) Yield P1 1 0.4070

Quality
C2 (0.2774)

Starch P2 0.1161 0.0322
Crude protein P3 0.2502 0.0694

Crude fat P4 0.1269 0.0352
Soluble sugar P5 0.4047 0.1123
Crude fiber P6 0.1021 0.0283

Water use status
C3 (0.1699)

Water
consumption P7 0.2500 0.0425

WUE P8 0.7500 0.1274
Economic benefits

C4 (0.1456)
Output value P9 0.3333 0.0485

Output value of
one cubic meter of

water
P10 0.6667 0.0971

3.2.2. Entropy Weight Method

EWM is an objective weighting method which can avoid the unweighted overlapping
calculation of evaluation factors and artificial subjective interference. The information en-
tropy theory is used to determine the index weight according to the amount of information
provided by the observation value of each index.

According to the data in Table 4, the constructed matrix X was obtained after standard-
ization, and the objective weight of the evaluation index was calculated by using Equations
(8)–(15). The calculation results were as follows in Table 8.

Table 8. Objective weight of evaluation indicators (EWM).

Year Yield
P1

Starch
P2

Crude
Protein

P3

Crude Fat
P4

Soluble
Sugar

P5

Crude
Fiber

P6

Water
Con-

sumption
P7

WUE
P8

Output
Value

P9

Output Value
of One Cubic

Meter of Water
P10

2018 0.10168 0.10385 0.09884 0.10204 0.10440 0.10151 0.09055 0.09372 0.10168 0.10173
2019 0.09960 0.09652 0.10856 0.13416 0.09894 0.10630 0.07871 0.07796 0.09960 0.09963
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3.2.3. Combination Weights

The subjective weight obtained by AHP and the objective weight obtained by EWM
were optimized and combined with the GT, and the combined weight values of each index
were obtained according to Equations (16)–(21) (Table 9).

Table 9. The weight of each index in the evaluation system.

Indicator
Subjective

Weight
Objective Weight Combined Weights

2018 2019 2018 2019

Yield P1 0.4070 0.10168 0.09960 0.4082 0.3845
Starch P2 0.0322 0.10385 0.09652 0.0319 0.0369

Crude protein P3 0.0694 0.09884 0.10856 0.0693 0.0723
Crude fat P4 0.0352 0.10204 0.13416 0.0350 0.0425

Soluble sugar P5 0.1123 0.1044 0.09894 0.1123 0.1113
Crude fiber P6 0.0283 0.10151 0.10630 0.0280 0.0340

Water consumption P7 0.0425 0.09055 0.07871 0.0423 0.0452
WUE P8 0.1274 0.09372 0.07796 0.1275 0.1238

Output value P9 0.0485 0.10168 0.09960 0.0483 0.0523
Output value of one
cubic meter of water P10 0.0971 0.10173 0.09963 0.0971 0.0973

3.3. Integrated Evaluation Model Based on the Improved TOPSIS Method

The TOPSIS method is an evaluation model for approximating ideal solutions, pro-
posed by Hwang and Yoon in 1981. Its calculation basis is derived from objective data with
appropriate objectivity and the results can accurately reflect the gap between various eval-
uation schemes, being suitable for the comparison and selection of multiple schemes [35].
Based on the improved TOPSIS method, the comprehensive evaluation models of different
drought resistance measures were established (Figure 2). The calculation results are shown
in the figures below.
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Figure 2. Construction process of comprehensive evaluation model.

According to the initial evaluation data of each drought resistance measure, the
cost index in the judgment matrix was further processed, followed by normalized treat-
ment. Among them, crude fiber P6 and water consumption P7 were selected as cost
indexes, while others were selected as benefit indexes. Normalized treatment was carried
out for five drought resistance treatment indexes, and the standardized weighted matrix
∼
Z =

( ∼
Zij

)
10×5

(Equation (22)) was constructed by using the comprehensive weight deter-

mined by GT. The positive and negative ideal solutions are presented in Table 10.
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Table 10. The weighted matrix of each standardized evaluation indicator.

Year Treatment
Number Yield Starch Crude

Protein
Crude

Fat
Soluble
Sugar

Crude
Fiber

Water
Con-

sump-
tion

WUE Output
Value

Output
Value of

One Cubic
meter of

Water

2018

SA 0.1844 0.0145 0.0309 0.0162 0.0523 0.0000 0.0148 0.0566 0.0218 0.0439
WF 0.2021 0.0140 0.0311 0.0145 0.0474 0.0126 0.0234 0.0646 0.0239 0.0481
BF 0.2101 0.0148 0.0329 0.0169 0.0508 0.0146 0.0195 0.0658 0.0249 0.0500
SM 0.1685 0.0146 0.0311 0.0176 0.0581 0.0189 0.0253 0.0546 0.0199 0.0401
CK 0.1387 0.0135 0.0288 0.0125 0.0408 0.0075 0.0000 0.0396 0.0164 0.0330

Optimal vector 0.2101 0.148 0.0329 0.0176 0.0581 0.0000 0.0000 0.0658 0.0249 0.0500
Worst vector 0.1387 0.135 0.0288 0.0125 0.0408 0.0189 0.0253 0.0396 0.0164 0.0330

2019

SA 0.1706 0.0166 0.0316 0.0169 0.0516 0.0000 0.0214 0.0558 0.0232 0.0432
WF 0.1906 0.0161 0.0300 0.0183 0.0478 0.0203 0.0161 0.0603 0.0259 0.0482
BF 0.2008 0.0174 0.0375 0.0237 0.0491 0.0193 0.0192 0.0649 0.0273 0.0508
SM 0.1536 0.0168 0.0341 0.0194 0.0552 0.0041 0.0309 0.0530 0.0209 0.0389
CK 0.1359 0.0156 0.0276 0.0157 0.0446 0.0188 0.0000 0.0394 0.0185 0.0344

Optimal vector 0.2008 0.0174 0.0375 0.0237 0.0552 0.0000 0.0000 0.0649 0.0273 0.0508
Worst vector 0.1359 0.0156 0.0276 0.0157 0.0446 0.0203 0.0309 0.0394 0.0185 0.0344

3.4. Results Analysis

The higher the comprehensive evaluation value Si, the better the comprehensive
benefit. The rank of different drought resistance measures according to the calculated value

of normalized score
∼
Si (Equation (26)) is shown in Table 11. The rank of comprehensive

evaluation value was BF > WF > SM > SA > CK in 2018 and BF > WF > SM > SA > CK in
2019. The decision evaluation of the TOPSIS method using GT to optimize weight was the
same in the two-year experiment, and BF was the best drought resistance measure in the
two growing seasons, followed by WF, with Si values of 0.8195, 0.7772, and 0.7806, 0.6773,
respectively. The worst evaluation in the two years was CK, with Si values of 0.1729 and
0.3232, respectively. The worst drought resistance measure in both years was CK, with Si
values of 0.1729 and 0.3232, respectively. After two years of the field experiment, different
drought resistance measures were tested, such as functional polymer materials, biology,
physics, and so on, which proved that BF had practicability in improving maize seed yield
and efficiency, and had an overall effect on high quality, high yield, and high efficiency, and
thus could be used as the best drought resistance strategy in arid areas of northwest China.

Table 11. Sequencing and calculation of the progress of each test process.

Treatment
Number

2018 2019

D+ D− Si
∼
Si Ranking D+ D− Si

∼
Si Ranking

SA 0.1365 0.1266 0.4812 0.1632 4 0.1406 0.1318 0.4839 0.1719 4
WF 0.0555 0.1935 0.7772 0.2636 2 0.0860 0.1804 0.6773 0.2405 2
BF 0.0443 0.2013 0.8195 0.2779 1 0.0581 0.2068 0.7806 0.2772 1
SM 0.0822 0.1900 0.6979 0.2367 3 0.1321 0.1619 0.5508 0.1956 3
CK 0.2139 0.0447 0.1729 0.0586 5 0.2135 0.1020 0.3232 0.1148 5

4. Discussion
4.1. Analysis and Evaluation of Measured Values Based on Indicators

The results show that the yield of maize seed is considerably improved by imple-
menting drought resistance measures. Compared with CK, BF, WF, SA, and SM were
significantly increased by 47.77–51.40%, 40.29–45.68%, 25.53–32.93%, and 13.06–21.46%,
respectively. It could be seen that the yield of BF was the highest, followed by WF, SA, and
SM, while there was no significant difference between BF and WF. Zhao [37], Zhang [38],
and Jin et al. [39] concluded that drought resistance measures such as plastic film mulching,
SA, and SM could all improve maize yield, consistent with our experimental conclusions,
but there were some slight differences in the yield-increase effect, which may be caused
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by crop varieties, experimental area environments, and irrigation quotas. At the same
time, it was found that the drought resistance measures could also significantly improve
WUE. Compared with CK, BF and WF significantly increased the WUE by 64.12–66.78%,
47.77–51.40% and 53.06–63.84%, 40.29–45.68%, respectively. The increase rates of the SA
and SM were lower than that of mulching with plastic film. It could be seen that plastic film
mulching was more conducive to improving WUE, and black plastic film mulching was
more advantageous. The same conclusion was also confirmed in the study of Sun et al. [40].

In addition, previous studies showed that crop quality could be improved and the output
could also be increased at the same time under the drought resistance measures [41,42]. It was
found that different drought resistance measures had different effects on quality components
of maize seed. The contents of starch, crude protein, ether extract, and soluble sugar in
maize seed grains increased by 9.41–11.22%, 14.05–35.82%, 34.78–50.82%, and 10.15–24.49%,
respectively, compared with no mulching. Although the WF, SA, and SM could also improve
the quality index content of maize seed, the improvement range was lower than that of the
BF, which was not beneficial to the improvement of comprehensive quality. Wang et al. [43]
found that black plastic film mulching could improve crop quality, which is consistent with
this conclusion.

It could be seen that the response characteristics and degree of different evaluation
indexes to drought resistance measures were not consistent, and a single index could not be
reasonably evaluated. Therefore, it was necessary to establish a comprehensive evaluation
model with multiple factors and layers.

4.2. CW of Evaluation Indicators

Weight is a value used to measure the effect of each statistical item on the whole. It
represents the importance of an index item in the system [44]. At present, there are many
methods to determine the weight of indicators, which are generally divided into subjective
and objective weight determination methods [45]. Since the measures of drought resistance
evaluation were not “absolutely” optimal and the interaction mechanism was also rela-
tively complex, problems existed in each index and the subjective evaluation process. GT,
namely empowerment methods, can be used to seek coordination or compromise among
various “conflicts” to achieve the optimal decision [46]. This study fully considered the
limitations and one-sidedness of subjective and objective weighting methods. Firstly, AHP
and EWM were used to obtain the subjective and objective weights of evaluation indicators,
respectively, and then the combined weights based on GT were constructed, which could
make the weight results better reflect the advantages of various weighting methods and
overcome the limitations of a single weighting method. A more ideal index weight value
was obtained for evaluating drought resistance measures of maize seed production.

However, faced with different research objects and environments, weight definition
and allocation become more difficult because the mathematical analysis and derivation
are cumbersome, with poor operability and applicability. Therefore, in future research
and applications, computer programming, machine learning, model training, and other
techniques should be combined. The samples’ properties and the regional environment
should also be put into consideration. In addition, it is necessary to test the consistency
of indicators at all levels and check the “conflict” of various weighting methods, so as to
avoid the blindness of combination and further improve the rationality and reliability of
evaluation results.

4.3. Comprehensive Evaluation Results of Drought Resistance Measures

A comprehensive evaluation method refers to a method that evaluates multiple indi-
cators and units simultaneously in a systematic and standardized way [47]. Su et al. [48]
performed a comprehensive evaluation of different drought-resistant cultivation measures
of cassava based on principal component analysis, and obtained adequate evaluation re-
sults. In this study, the TOPSIS comprehensive evaluation model by combination weighting
was used to evaluate the yield, quality, water use status, and economic benefits of maize
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seed in northwest China. According to the results, BF treatment achieved the unity of high
quality, high yield, and high efficiency, in agreement with the measured results. This is
similar to the analysis and evaluation conclusions of Xiao et al. [49] on different drought
resistance measures of maize seed production under the combined application of bacte-
rial fertilizers. Therefore, this model not only realized the optimization and screening of
drought resistance measures to a certain extent, but also provides the possibility of selecting
a rational crop evaluation model in arid areas.

Due to the condition limitations, there are still some deficiencies in this work. The
experiment only gave comprehensive evaluation scores to five different drought resistance
measures from 10 secondary evaluation standard level indicators. However, as the research
object of the study was maize seed, the key points should not only be seed yield, quality,
and storage, but seed germination, antioxidant enzyme activity, gene expression, and so on
should also be subjected to experimental study, requiring germination tests and research
on the maize seed harvest in order to filter and popularize it.

5. Conclusions

Ten different evaluation indexes were selected to construct the optimized evaluation
index model considering the four aspects of maize seed yield, quality, water use status, and
economic benefit. AHP and EWM were used to assign subjective and objective weights
to the indexes. Making full use of the index information in the original data and then
calculating the comprehensive weight of the two weighting methods by GT can avoid
the one-sidedness of a single weighting method. In the comprehensive weight obtained
from the two-year experimental data, the maximum weights of maize seed yield were
0.4082 (2018) and 0.3845 (2019). Considering five drought resistance measures put forward
for maize seed in the arid areas of northwest China, the optimization model was established
based on the TOPSIS theory of combination weighting to calculate the relative closeness
degree of each scheme. The normalized scores of each scheme were 0.1632, 0.2636, 0.2779,
0.2367, and 0.0586, respectively, in 2018, and 0.1719, 0.2405, 0.2772, 0.1956, and 0.1148,
respectively, in 2019. Black film mulching (BF) was determined to be the best drought
resistance measure. During the practical production of maize seed, the optimized scheme
is well adapted and is able to improve the output and water use efficiency to guarantee
economic benefits. This study proved that the multi-attribute decision-making model of
TOPSIS based on GT with combination weight is scientific and effective, providing a new
mechanism of identifying the optimal choice.
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