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Abstract: Antecedent moisture conditions are essential in explaining differences in the translation
of flood-producing precipitation to floods. This study proposes an empirical residual-oriented
antecedent precipitation index (RAPI) to estimate and further link antecedent moisture conditions
with flood predictive uncertainty. By developing a fully kernel-based residual error model without
functional presumptions, the proposed RAPI is calibrated as the regressor of the deterministic model
residual. Furthermore, the MI-LXPM algorithm is applied to search for optimal parameters in mixed-
integer constraints. The rationality of the proposed framework is demonstrated by its application to a
case study in South-East China. The quality of probabilistic streamflow predictions is then quantified
using reliability, precision, and the NSE of the prediction mean. The results show that the RAPI
closely connects to the uncertainty of hourly flood prediction as a proxy of antecedent soil moisture.
The influence of RAPI is mainly on the precision and unbiasedness of flood prediction. Compared
with the deterministic model output, the RAPI provides a better flood prediction of small to median
flood events as a regressor. Along with the proposed date-driven residual error model, the framework
can be applied to any pre-calibrated hydrological model and help modelers achieve high-quality
probability flood prediction.

Keywords: antecedent moisture condition; predictive uncertainty; hydrological modeling; kernel
regression; residual error model

1. Introduction

Hydrological models are widely used to produce streamflow predictions in environ-
mental and water resource applications. As the models can only approximate the described
natural system under substantial simplifications, its output is inherently uncertain [1].
The predictive uncertainty assessment is, thus, highly significant for both operational pur-
poses [2] and model diagnosis [3]. Research on the evaluation of the predictive uncertainty
can be divided into two categories: (1) decomposition approaches that describe differ-
ent sources of uncertainty explicitly and propagate the uncertainty via random sampling
(e.g., [4]), and (2) residual error model approaches that skip any distinction of uncertainty
sources and directly analyze the time series of model residuals (e.g., [5]).

The residual error model approach is conceptually more straightforward and less
data-intensive than the decomposition approach, which leads to a wide range of applica-
tions in various hydrometeorological conditions (e.g., [6,7]). Practical implementations of
the residual error model approach typically adopt the ‘post-processor’ strategy that first
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estimates the hydrological model parameters, followed by a separate estimation of the
residual error model parameters (e.g., [8]). The post-processor strategy is operationally
attractive because it avoids the interaction of hydrological model parameters and residual
error model parameters while enabling different objective functions for two calibration
stages [9].

Given the time-varying nature of the hydrological process, the heterogeneity of the
model residual may also be time-varying, especially for its mean and variance [10]. Most
residual error models set the residual mean and variance as linear functions of the deter-
ministic model output to simulate this time-varying characteristic (e.g., [6,9,11]). However,
the choice of the parametric model and regressor may differ between different hydrometeo-
rological conditions [12], which sometimes makes this restriction too rigid.

On the other hand, antecedent moisture conditions (AMCs) are widely understood
as essential in explaining differences in the translation of flood-producing precipitation to
floods [13]. Many studies suggest that a variation in antecedent soil moisture can lead to
a variation in flood magnitude (e.g., [14,15]). Investigating the AMC is, hence, important
for characterizing the physical processes that lead to floods and developing projections of
future flood uncertainty [16]. However, the AMC can be difficult to estimate due to the
complexity of natural soil conditions and the lack of observation techniques [17].

The empirical antecedent precipitation index (API) model [18] is widely used as a
proxy of AMCs for its simple structure and data availability. The API is defined to be a
weighted summation of antecedent precipitation amounts. The decay constant k in API
calculation has a critical influence on the accuracy of AMC estimates [19]. The value of
k is relatively arbitrary and is generally empirically selected as a value between 0.80 and
0.98 concerning different study areas and purposes. As a result, the arbitrary value of
k creates much confusion for API calculation, soil moisture content evaluation, runoff
simulation, and relative uncertainty estimation. There is still a lack of a general framework
to estimate and further link the AMC with flood predictive uncertainty.

This paper presents an empirical residual-oriented antecedent precipitation index
(RAPI) to estimate and further link AMCs with flood predictive uncertainty. By developing
a fully kernel-based residual error model, the proposed RAPI is calibrated as the regressor
of the raw model residual. Furthermore, the MI-LXPM algorithm is applied to search
for optimal parameters in mixed-integer constraints. The rationality of the proposed
framework is demonstrated by its application to a case study in South-East China. The
quality of probabilistic streamflow predictions is then quantified using reliability, precision,
and the NSE of the prediction mean.

The rest of the paper is organized as follows: Section 2 outlines the data, definitions,
and methods used in this work. Section 3 reports the case study results in terms of the
performance metrics and residual diagnosis and further discusses the findings in the case
studies and the limitation of this study. Section 4 summarizes the key conclusions.

2. Materials and Methods
2.1. Study Area and Data

This study is carried out in the Changshangang River Basin, located in Zhejiang
Province, southeast of China (Figure 1). From the water system perspective, the Chang-
shangang River Basin is in the upper reaches of the Qiantang River Basin, with a drainage
area of 2390 km2. Due to the subtropical monsoon climate, the study area is warm and
humid, producing an average annual flow of 3.75× 109 m3 at the outlet of the basin (Chang-
shangang Station). The average annual precipitation of the study area is about 1500 to
2300 mm, while 80% of the precipitation falls between April and September. The uneven
temporal distribution of the precipitation causes frequent flood disasters along the river
network during rainy periods.
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Figure 1. Map of the Changshangang River Basin. Rain gages are shown with green circles, and
runoff observations are collected from the Changshangang station (red circle).

The Changshangang station was built in 2010 and relocated downstream in 2018.
Therefore, 22 flood events from 2010 to 2018 are selected in this study for consistency. The
flood events occurred from March to August, with the peak flow ranging from 838 m3/s
to 5278.3 m3/s. Hourly precipitation series of 12 rain gages in the Changshangang River
basin are collected and then averaged by the Thiessen polygon method. For the same
period, hourly stream flow and potential evapotranspiration data are collected from the
Changshangang Station. Note that an antecedent 240 h (ten days) data series of warmup
periods is included in each flood event. All data are obtained from the Taihu Basin Authority
of the Ministry of Water Resources.

2.2. The Xinanjiang Model

The model used in this study is the Xinanjiang (XAJ) rainfall-runoff model, which
is a physically based conceptual hydrological model developed by Zhao [20]. The XAJ
model consists of a runoff-generating component and a runoff-routing component. The
basin is divided into a set of sub-areas, and runoff is first transformed into discharge by a
linear system calculated from the water balance component. The outflow hydrograph from
each sub-area is finally routed down the channels to the basin outlet by the Muskingum
method. Figure 2 illustrates the model structure, including nine runoff-generating com-
ponent parameters: the capacity of upper, lower, and deepest soil layers Um, Lm, and Dm,
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respectively; the impervious area of the sub-basin Im; the areal mean free water storage
capacity Sm; the ratio of potential evapotranspiration to pan evaporation K; the exponent
of the tension water capacity curve B; the coefficient of deep evapotranspiration C; the
runoff-producing area Fr; as well as ten runoff routing component parameters: outflow
coefficients of the free water storage to groundwater and interflow Kg and Ki, respec-
tively; recession constants of groundwater, interflow, and channel system Cg, Ci, and Cs,
respectively; Muskingum parameters Ke and Xe; the lag time of routing L. For a detailed
explanation of the parameters, readers should refer to [20].
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2.3. Kernel-Based Residual Error (KRE) Model

We consider a deterministic hydrological model:

ŷt = f (Xt;θh) (1)

that provides the flow forecast ŷt as a function of the observed forcing data in the vector
Xt and a model parameter vector θh. As errors in multiple sources affect the forecast
simultaneously [21], the actual flow will be given by

yt = ŷt + et (2)

where et is the raw residual at time t. In hydrologic applications, the raw residuals often
exhibit temporal correlation, nonconstant variance (heteroscedasticity), and nonnormal-
ity [5,22]. To fully capture the statistical characteristics of the residuals with minimum
assumptions, a nonparametric additive structure is adopted:

et = mn(Rt) + σn(Rt)δt (3)

where mn(x) = E(et|Rt = x) is the nonparametric kernel regression function, σn(x) is the
conditional volatility (CV) satisfying that σ2

n(x) = Var(et
∣∣Rt = x) , Rt represents the value

of the regressor at time t, and δn is a random variable that follows an unknown distribution
with E(δt|Rt) = 0 and Var(δt|Rt) = 1.



Water 2022, 14, 3222 5 of 18

We adapt a residual-based estimator [23] to estimate mn(·) and σ2
n(·) successively. First,

the kernel regression function mn(·) is estimated using the Adaptive Nadaraya–Watson
(ANW) estimator [24],

m̂n(x) =

n
∑

t=1
K
(

x−Rt
hm(Rt)

)
et

nhm(Rt)

1
n

n
∑

t=1
K
(

x−Rt
hm(Rt)

)
1

hm(Rt)

(4)

where x is the given regressor value and n is the sample length of the residual in the calibra-
tion period. The kernel smoothing function K adopted in this study is the Gaussian kernel.
For standard kernel density estimation problems, constant optimal bandwidths tend to be
inadequate when estimating heavily skewed distributions [25] that are frequently observed
in hydrological data series due to nonnegativity. To accommodate the statistical character-
istics of hydrological data, we use the Abramson-type adaptive bandwidth selector [26]
instead of constant optimal bandwidth. The adaptive bandwidth selector provides variable
bandwidth hm(Rt) for different regressor values when estimating the regression function as

hm(Rt) = hN

{
f̃ (Rt)/g

}−αm
(5)

where f̃ (Rt) = 1
nh ∑n

t=1 K
(

x−Rt
h

)
is the prior kernel estimator with a fixed bandwidth

h = 1.06sn−0.2, s is the standard deviation of the considering regressor [27], and g (assuming
g 6= 0) is the geometric mean of f̃ (Rt). The exponential parameter αm is called the sensitivity
parameter, which satisfies 0 ≤ αm ≤ 1. The adaptive bandwidth selector reduces to the
fixed bandwidth when αm = 0 and equals to the nearest neighbor estimator when αm = 1.

The conditional variance function can then be estimated with

σ̂2
n(x) =

n
∑

t=1
K
(

x−Rt
hσ(Rt)

)
dt

nhσ(Rt)

1
n

n
∑

t=1
K
(

x−Rt
hσ(Rt)

)
1

hσ(Rt)

(6)

where dt = (et − m̂n(Rt))
2 and hσ(Rt) is the variable bandwidth for σ̂2

n(·) given the sensi-
tive parameter ασ according to Equation (6).

Following Evin et al. [28], the AR (1) model is applied to the standardized residual δn,t
to capture the temporal dependency:

δt = ϕδt−1 + εt (7)

The temporally independent innovation ε in Equation (7) is approximated by a
location-mixture Gaussian distribution, whose density is given by

f (x; b) =
1
n

n

∑
j=1

1
b

φ

(
x− εt

b

)
(8)

where φ(·) is the probability density function of the standard Gaussian distribution, and b
is the estimate of the constant innovation bandwidth. The parameters of the KRE model
can then be collectively denoted as θk = {αm, ασ, b, ϕ}.

2.4. Residual-Oriented Antecedent Precipitation Index (RAPI)

The RAPI adopts the same expression as the antecedent precipitation index presented
by Kohler and Linsley [18] to summarize the antecedent moisture condition:

RAPI =
M

∑
t=1

Ptkt (9)
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where Pt is the precipitation in the tth antecedent hour, M is the statistical number of
antecedent hours involving the estimation of RAPI, and k is the decay constant. The
parameters of the RAPI model are then θA = {k, M}.

The value of the RAPI depends on both M and k. Larger values of the two parame-
ters produce a larger value of the RAPI. To find the optimal parameter set that links the
antecedent moisture condition to the flood residual, we estimate θA and θk simultaneously.
Details of the calibration method are presented in Section 2.6.

2.5. Calibration Method
2.5.1. The MI-LXPM Algorithm

The estimation of θh and θA is complicated because of the integer restriction of the
lag parameter L and antecedent hour number M. The MI-LXPM algorithm is a real coded
genetic algorithm proposed for solving integer and mixed-integer constrained optimization
problems [29]. The algorithm modifies and extends the Laplace crossover and power
mutation for integer decision variables. Moreover, a special truncation procedure for
the satisfaction of integer restriction on decision variables and a ‘parameter-free’ penalty
approach are used in the MI-LXPM algorithm for handling constraints.

2.5.2. Two-Stage Calibration Procedure

A two-stage calibration is applied in this study. The XAJ model is first calibrated by
maximizing the Nash–Sutcliffe Efficiency (NSE) [30] using the MI-LXPM algorithm. The
NSE is expressed as

NSE
(

ŷ, Q̃
)
= 1−

n
∑

t=1

(
ŷt − Q̃t

)2

n
∑

t=1

(
Q̃t −Q

)2 (10)

where Q is the mean of flow observations Q̃. The raw residual et can then be derived by
Equation (2).

The parameters of the KRE and RAPI model {θA,θk} are estimated in the second
stage. The standardized residual δt can be calculated by substituting the RAPI estimates
into Equations (4) and (5). As the temporal autocorrelation structure of δt is assumed to be
captured by the AR(1) model, the ‘leave-one-out’ kernel likelihood function [31] of the raw
residual e can be expressed as

Lk(e|θA,θk ) =
n

∏
t=1


1

σn ,t(n− 1)

n

∑
j = 1
j 6= t

1
b

φ

(
ε j − εt

b

)
 (11)

where σn,t is the conditional volatility (CV) at time t given the estimated RAPI value ac-
cording to Equation (6). The MI-LXPM algorithm in Section 2.5.1 can then be implemented
to find the optimal values of {θA,θk} that minimize the negative log-likelihood function
derived from Equation (11).

2.6. Probabilistic Predictions

The probabilistic streamflow predictions are critical when analyzing the flood pre-
diction uncertainty structure and evaluating the rationality of the stochastic framework.
The predictive distribution of streamflow y̆ is given by combining the deterministic model
output ŷt and the residual replicates generated from the KRE model. At a given time step t,
the generating process can be described as follows:
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(1) Sample innovations from the inverse of the estimated innovation distribution in
Equation (8):

ε
(r)
t ← F−1(ε

∣∣∣b) (12)

(2) Model temporal structure with Equation (7):

δ
(r)
t = ϕ̂δ

(r)
t−1 + ε

(r)
t (13)

Note that we set the raw residual replicates at the first time step as δ
(r)
1 = ε

(r)
1 .

(3) Calculate the value of regression function m̂n(·) and CV function σ̂n(·) by substituting
the corresponding regressor Rt into Equations (4) and (6) sequentially.

(4) Generate samples of e(r)t using Equation (3):

e(r)t = m̂n(Rt) + σ̂n(Rt)δ
(r)
t (14)

(5) Combine with the deterministic model output ŷt

y(r)t = ŷt + e(r)t (15)

Then, all predictive replicates constitute the distribution of the predicted flow:

^
y =

{
y(r)t ; t = 1, . . . , n; r = 1, . . . , Nr

}
(16)

where Nr stands for the number of replicates. We set Nr = 10, 000 for all flood event
predictions made in this paper

2.7. Probabilistic Prediction Performance Metrics

The reliability and precision metric [6] are used in this work to evaluate the perfor-
mance of the marginal probabilistic predictions in the time domain. The Nash–Sutcliffe
Efficiency is used to measure the bias of point estimates for both hydrological model output
and stochastic simulations. The error-correction ability of the error models can then be
compared through these two results. In addition to these performance metrics, we use
the predictive quantile-quantile (PQQ) plot [32] to assess the reliability of the prediction
distribution of streamflow visually.

2.7.1. Reliability Metric

The reliability metric quantifies the statistical consistency of a predictive distribution
and the observation. It is numerically calculated as

π
[
Y, Q̃

]
=

2
n

n

∑
t=1

∣∣∣FU

[
FY(t)

(
Q̃t

)]
− FΩ

[
FY(t)

(
Q̃t

)]∣∣∣ (17)

where FY(t) is the cdf of the predictive distribution at time t, FU is the cdf of the uniform

distribution U(0, 1), and FΩ is the empirical cdf of Ω =
{

FY(t)

(
Q̃t

)
, t = 1, . . . , n

}
.

A reliability metric value of 0 represents that the PQQ plot follows the 1:1 line, thus
the perfect reliability. On the opposite, the value 1 represents the worst reliability. The
metric in Equation (17) is used frequently in the hydrological modeling literature to assess
the reliability of time-varying prediction distributions [4,8,33].

2.7.2. Precision Metric

Precision refers to the width or spread of the probabilistic prediction. A precision
metric is quantified using



Water 2022, 14, 3222 8 of 18

Pc
[
Y, Q̃

]
=

1
n

n
∑

t=1
std(Yt)

1
n

n
∑

t=1
Q̃t

(18)

where std(Yt) is the standard deviation of the predictive replicates at time t,
{

y(r)t ; t = 1, . . . , n
}

.
Equation (18) measures the ‘average’ standard deviation across all evaluated periods, scaled
by the observation mean to compare different catchments. A lower value of the precision
metric ensures good prediction sharpness. The precision metric does not depend on how
well the probabilistic predictions reproduce the actual observation. Thus, the reliability and
precision metric should be considered together to evaluate probabilistic predictions.

3. Results and Discussion

Following the stochastic framework and calibration strategy presented in Section 2,
this study investigates the influence of the soil moisture condition on the uncertainty
of flood prediction. The soil moisture condition is approximated by the RAPI, whose
parameters are calibrated with the KRE model simultaneously.

The residual sample e is derived after the first-stage calibration of the XAJ model.
Prior limits and optimal estimates of the XAJ model parameters are shown in Table 1. Only
11 XAJ model parameters are chosen to be calibrated by the ‘Maximum-NSE’ criteria, while
others are pre-determined empirically following [20]. Based on the geo-morphological
lumping nature of the XAJ model, the rainfall-runoff process of the Changshangang River
Basin is aggregated into one single cell with equivalent hydrological properties. On the
other hand, consistent with the hydrometeorological observations, the time step of the
flood simulation is one hour.

Table 1. Prior limits and optimal estimates of the XAJ model parameters.

Parameter K * B * Wm * Im Fr Um Lm C Dm Sm *

Upper limit 0.7 0.1 100 - - - - - - 5
Estimate 1.190 0.662 136.483 0.010 0 20.000 60.000 0.180 56.483 10.453

Lower limit 1.3 0.8 150 - - - - - - 50

Parameter Ex Ki Kg * Ci * Cg * Cs * L * Xe * Ke *

Upper limit - - 0.01 0.8 0.93 0 0 −0.5 1
Estimate 1.500 0.359 0.341 0.892 0.995 0.865 6 −0.195 1.500

Lower limit - - 0.69 0.95 0.995 1 20 0.5 2.5

Asterisks (*) are used to indicate calibrated parameters. Other parameters in the table are pre-determined empirically.

In the second-stage calibration, the KRE and RAPI model parameters are estimated
by minimizing the negative log-likelihood function value according to Equation (11).
Meanwhile, to further evaluate the predictive performance of RAPI on flood prediction
uncertainty, the deterministic model output ŷ is chosen as another regressor of the KRE
model, which is common practice in the hydrological modeling literature [9,34,35]. We
call the two scenarios ‘KA’ and ‘KF’ corresponding to the regressors RAPI and ŷ. As ŷ is
fixed after the first-stage calibration, the ‘KF’ scenario only has three parameters of the KRE
model. The prior setting and optimal parameters of the two modeling scenarios are listed
in Table 2.

Table 2. Parameter of the KRE and RAPI model.

Parameter αm ασ ϕ b k M

Upper limit 0.01 0.01 0.01 0.10 0.10 1
Estimates for KA 0.92 0.10 0.07 0.93 0.97 51
Estimates for KF 0.59 0.22 0.12 0.95 - -

Lower limit 1.00 1.00 10.00 0.99 0.99 240
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3.1. Flood Prediciton Residuals and RAPI Estimates

Given the optimal parameters in Table 1, the XAJ model reproduces the hourly stream-
flow relatively well for all flood events in the Changshangang River Basin, with a mean
NSE value of 0.82. Figure 3 shows the one-to-one correspondence between the simulated
streamflow and the observations. The fitted linear trend of the scatter plot is close to
the 1:1 line for the most part with an R-squared value of 0.92. However, clusters in the
upper right corner above the 1:1 line mean that the XAJ model underestimates the extreme
flood peaks. On the contrary, opposite trends in the lower left corner indicate that the
XAJ model overestimates low flow periods of the selected flood events. Moreover, the
‘fanning-out’ pattern of the scatter plot suggests heteroscedasticity of the residuals for
different streamflow magnitudes.
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Figure 3. Scatter plot of hourly flow observations and the discharge simulated by the calibrated XAJ
model for all 22 flood events. The fitted linear trend (red dashed line) and the 1:1 line (black solid
line) are also shown.

According to Table 2, the optimal RAPI is the weighted average precipitation of the
preceding 51 h. Compared to the XAJ lag parameter L (6 h, according to Table 1), the RAPI
shows a longer time scale than the forcing precipitation. A decay constant of 0.97 implies
that the impact of precipitation decreases slowly with the antecedent time, providing a
minimal weight of 0.21 for the earliest time step.

Figure 4 summarizes the statistical characteristics of the optimal RAPI. The optimal
RAPI ranges between 0 mm and 149.82 mm, with a mean of 19.78 mm. The nonnegative
nature of the precipitation leads to the positive skewness of RAPI. Moreover, a kurtosis
of 3.74 (0 for Gaussian distribution) implies outliers in the right tail, consistent with the
significant deviation between the mean and 95th percentile of RAPI.

Distributions of the optimal RAPI in different months are shown in Figure 5. Most
outliers of the optimal RAPI occur in June, which possesses the most precipitation of the
year. In addition to June, optimal RAPI samples in March and April possess the largest
median value, suggesting that larger soil moisture is necessary for flood events to occur in
months with less precipitation.
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Figure 5. Boxplots for the optimal RAPI samples in different months. On each box, the central mark
indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles,
respectively. Outliers are plotted using solid points.

A representative example of the residual and RAPI time series is presented in Figure 6.
The chosen flood event from 12 June 2017 to 8 July 2017 contains the largest flood peak
volume (4870 m3/s at 23:00 24 June 2017) and absolute residual value (1746 m3/s at 2:00
25 June 2017). Figure 6 shows that lower values of the optimal RAPI correspond to stable
residuals near zero, while a larger RAPI follows with strong fluctuations in residuals.
This phenomenon suggests that the optimal RAPI can capture the heteroscedasticity of
the residual.
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Figure 6. Model residual and RAPI time series of the flood event with the largest peak flow. The
optimal RAPI estimates are plotted using the blue solid line, and residuals are plotted using black
triangle markers.

3.2. Impact of the Optimal RAPI on Flood Residual

Figure 7a shows the optimal kernel regression of the flood residual given the regressor
of RAPI. After a slight ascending trend, a mild descending trend appears in the regression
function. When RAPI < 14.09 mm, the regression function of the residual is above zero,
implying an underestimation of the XAJ model under low-soil-moisture conditions and
vice versa. Moreover, an R-squared value of 0.12 implies that the estimated RAPI cannot
fully explain the expectation of raw flood residuals.
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Figure 7. Illustration of the impact of the optimal RAPI on flood simulation residuals: (a) Optimal
kernel regression function and (b) conditional volatility function of the residuals given RAPI as the
regressor. The R-squared values are also shown.

On the other hand, the CV function in Figure 7b rises with an increasing gradient
over the optimal RAPI value. A minimal CV value of 38.2 m3/s corresponds to the lowest
RAPI of 0 mm, while a maximum CV value of 782.5 m3/s corresponds to the largest RAPI
of 149.82 mm. The increasing trend in the CV function of the residual suggests that the
predictive uncertainty magnifies almost 20 times between the minimal and maximum
optimal RAPI value. A relatively high R-squared value of 0.47 suggests that RAPI provides
an adequate representation of changes in the CV function of flood residuals.

After applying the KRE model, the standardized residual of the ‘KA’ scenario presents
a first-order autocorrelation coefficient of 0.93 (Table 2), which can be attributed to the
memory effect of XAJ residuals [21] and the imperfection of the KRE model. Nevertheless,
the AR (1) model captures the temporal autocorrelation structure relatively well, only
leaving permissible dependence in the first lag. Note that the standard deviation of the
innovation ε is 0.36, as shown in Figure 8b, which leads to a close-to-one standard deviation
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of δn (as std(ε) = std(δn) ∗
√

1− ϕ2). This result further verifies the assumption of the
KRE model.
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The distribution of the innovation is distinct from the Gaussian distribution, especially
for its excessive kurtosis (Figure 8b). This phenomenon is also reported in [5], demonstrat-
ing the necessity of applying a more flexible distribution model such as the location-mixture
Gaussian in this study.

3.3. Stochastic Predictive Performance

As shown in Table 3, the two modeling scenarios perform similarly with respect
to probabilistic predictions considering their relative metric values. The ‘KA’ scenario
outperforms the ‘KF’ scenario in likelihood and precision, suggesting more sharpness
in the flood prediction uncertainty bands (PUBs) and more reliable assumptions on the
residual. On the other hand, the ‘KF’ scenario gains a higher value of NSES, implying better
bias-correction ability.

Table 3. Performance metrics and negative log-likelihood values of the two modeling scenarios.

Scenario Reliability Metric Precision Metric NSES
1 −log(Lk)

KA 0.04 0.33 0.82 30077
KF 0.04 0.35 0.84 30221

1 NSES represents the NSE value comparing flood observations and the mean of probabilistic predictions. NSES
then evaluates the average bias-correction ability for each modeling scenario.

The almost overlapping lines of the prediction mean and deterministic model output
in Figure 9 proves the identical value of NSES and NSE for the ‘KA’ scenario. The flat
regression function in Figure 7a explains t as a poor bias-correction performance, especially
for extreme flood peaks with significant underestimation.

The 95% PUB for the ‘KA’ scenario covers the flood observations well, except for the
highest flow observations from 23:00 24 June 2017 to 05:00 25 June 2017 (Figure 9a). It is
noteworthy that all flow peak observations in the other 21 flood events are within the range
of 95% PUB for the ‘KA’ scenario. Furthermore, observations of flood peaks are found
clustering near the upper limit of the 95% PUB, showing a trend of under-prediction. The
PQQ plot in Figure 9b lies above the 1:1 line, again proving the under-prediction trend of
the ‘KA’ scenario.
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Figure 9. Typical examples of probabilistic streamflow predictions in the Changshangang River Basin
for the ‘KA’ scenario: (a) mean and the 95% PUBs for the flood prediction with deterministic model
output and flood observations; (b) PQQ plot for all simulated flood events.

The similarity of Figures 9 and 10 confirms the findings from the performance metric
values in Table 3. One of the differences between the two modeling scenarios is that the
‘KF’ scenario produces a better correction of the flood peak prediction., which explains its
higher value of NSES. However, the better bias-correction ability of the flood peaks is still
insufficient to mitigate the overall underestimation trend of the ‘KF’ scenario according to
the PQQ plot (Figure 10b). Moreover, a more expansive PUB of the ‘KF’ scenario suggests
the overestimation of uncertainty. This deficit can be attributed to the regressor ŷt, which
cannot distinguish the high prediction uncertainty caused by the forcing precipitation from
the low prediction uncertainty of a pure recession period [12].
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Figure 10. Typical examples of probabilistic streamflow predictions in the Changshangang River
Basin for the ‘KF’ scenario: (a) mean and the 95% PUBs for the flood prediction with deterministic
model output and flood observations; (b) PQQ plot for all simulated flood events.

3.4. Impact of Soil Moisture on Predictive Performance of Flood

As the RAPI is the proxy of the antecedent soil moisture condition, we investigate
the impact of soil moisture on flood prediction performance by comparing the normalized
performance metric values under different RAPI conditions. The mean optimal RAPI is
chosen to represent the average soil moisture condition during flood events (a natural
logarithm is implemented to strengthen the linear trend). At the same time, the standard
deviation of RAPI is used to represent the variation in soil moisture. Results are shown in
Figure 11.
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Figure 11. Scatter plot of normalized predictive performance metric values: normalized metric values
as a function of (a) the natural logarithm of the mean optimal RAPI and (b) the standard deviation of
optimal RAPI for each flood event. Linear trends and corresponding R-squared value.

The evenly distributed markers of reliability metrics in both Figure 11a,b lead to flat
linear trends with negligible R-squared values. This finding suggests that antecedent soil
moisture has little effect on the reliability of the probabilistic flood predictions.

On the other hand, both the precision metric and NSES illustrate statistically significant
linear trends. According to the definition of the two metrics, although given opposite trends,
the result suggests improved predictive precision and unbiasedness. In the comparison
of Figure 11a,b, the unbiasedness of flood prediction is found to be more sensitive to the
variation in soil moisture. At the same time, the predictive precision is more sensitive to
the volume of soil moisture.

The relatively poor bias-correction ability of the ‘KA’ scenario (see Section 3.3) suggests
the improvement of unbiasedness. This improvement is mainly due to the deterministic
model output when facing abundant and fluctuating soil moisture. Unlike unbiasedness,
the reason for improved prediction precision can be twofold: (1) The improved unbi-
asedness provides more stable and smaller residuals, and (2) the KRE model can better
reproduce residuals in such soil moisture conditions. The second reason can be proved
by investigating the distribution of the optimal RAPI in Figure 4. Though applying the
adaptive bandwidth, the over-cluster of the optimal RAPI samples in low-value regions
still causes an over-smoothness of kernel regression and the CV function (see Figure 7), re-
ducing the effectiveness of the kernel estimator. As a result, lower RAPI values correspond
to worse predictive performances.

3.5. Comparison of the Regressor

To further evaluate the correspondence of the proposed RAPI toward flood prediction
uncertainty, we compare the predictive performance metrics of both modeling scenarios
under different flood magnitudes. Statistically significant improving trends are shown in
all three metrics for the two modeling scenarios, according to Figure 12.

As larger values of the standard deviation of RAPI often correspond to serious flood
events with larger total volumes, the reasons for improved predictive performance with
increasing flood volume are similar to those with increasing RAPI for both modeling
scenarios. In fact, as a regressor, the deterministic model output ŷ possesses more significant
kurtosis (25.03) and skewness (3.93) than the RAPI, leading to more severe clustering in
low flow values. As a result, both reliability and unbiasedness of the ‘KF’ scenario under-
perform those of the ‘KA’ scenario in lower flood volume conditions.

The cross point of fitted reliability lines appears in ln ∑ Q = 19.80, implying that the
‘KA’ scenario prediction is more reliable in 63% of all flood events with lower flood volume.
Similarly, the ‘KA’ scenario outperforms the ‘KF’ scenario in the lower 50% of flood events.
With the homologous performance in precision for both scenarios, this finding suggests
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that the RAPI is more critical than ŷ in estimating predictive uncertainty for less extreme
flood events. Bennett et al. reported a similar conclusion in [13].
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Figure 12. Comparison of the predictive performance of the ‘KA’ and ‘KF’ scenarios under different
total flood volume: (a) scatter plot of the reliability metric; (b) scatter plot of the precision metric;
(c) scatter plot of the NSES. Fitted linear trends and corresponding R-squared values are also shown.
Blue markers and lines represent the ‘KA’ scenario, while red markers and lines represent the ‘KF’
scenario. The natural logarithm is implemented to the flood volume to strengthen the linear trends.

On the contrary, the ‘KF’ scenario provides better stochastic predictions when dealing
with extreme flood events, implying better correspondence between ŷ and residuals of
extreme flood events than RAPI. As extreme flood events in the Changshangang River
Basin are mainly caused by short-time heavy rainfall, the superiority of ŷ may be due to its
inclusion of forcing precipitation.

Considering the performances of the ‘KA’ and ‘KF’ scenarios, practitioners can choose
the regressor based on relative flood volume. Further investigation of multi-variate model-
ing of ŷ and RAPI is recommended based on their complementary predictive performances.

3.6. Limitations and Future Work

The major limitation of this study is the neglect of rainfall uncertainty. The hourly
mean areal precipitation calculated from rain gages is assumed to be the ‘true input’
of the XAJ, RAPI, and KRE models. In this way, the computational complexity of the
likelihood function (Equation 11) is significantly reduced. However, the rainfall estimates
are inherently uncertain due to inadequate areal coverage of gaging sites, inaccurate
spatial-temporal interpolation, mechanical limitations of pluviometers, etc. [36]. As the
hydrological systems are heavily input-driven [37–39], inaccurate rainfall characterization
can impair the quality of calibration and prediction results [40,41].

While this study does not consider the influence of rainfall uncertainty, it does sub-
stantiate that antecedent accumulated rainfall has a critical impact on flood prediction
uncertainty. A natural progression of this work is to make the input rainfall uncertain and
to propagate it through the entire flood prediction process. As a simple but robust solution,
the so-called rainfall multiplier [42] can generate event-specific random variables that can
be multiplied with the rainfall observation to provide random rainfall input. Then, the
multipliers and their uncertainty are estimated jointly with all other model parameters to
correct possible flood prediction errors and account for the total predictive uncertainty.
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4. Conclusions

Antecedent moisture conditions are widely assumed to be essential in explaining
differences in the translation of flood-producing precipitation to floods. However, there still
lacks a general framework to estimate and further link it with flood predictive uncertainty.
Instead of implementing physical-based models, this study proposes an empirical model
only based on antecedent precipitation.

Despite the same structure as the API, the proposed RAPI differs in the calibration
procedure. This paper adopts a fully kernel-based residual error model without functional
presumptions, thus being data-driven. The RAPI is then calibrated simultaneously with
the KRE model as the regressor. Furthermore, the MI-LXPM algorithm is applied to search
for optimal parameters in mixed-integer constraints.

The rationality of the proposed framework is demonstrated by its application to a
case study in South-East China. The quality of probabilistic streamflow predictions is then
quantified using reliability, precision, and the NSE of the prediction mean. The key findings
of the paper are as follows:

1. For hourly flood predictions, the optimal RAPI can be the weighted average of hourly
precipitation falls in the antecedent days with a mild decay. The distribution of the
optimal RAPI is found to be highly peaked with positive skewness.

2. The optimal RAPI influences the residual conditional volatility more than the condi-
tional mean. As a result, a poor bias-correction ability can be found when making
probabilistic flood predictions with RAPI.

3. The reliability of probabilistic flood prediction is almost independent of the RAPI
value. On the contrary, prediction precision and unbiasedness are found to improve
with increasing value and variability of the RAPI.

4. As a regressor, the RAPI produces better probabilistic flood predictions for small
to median flood events than the deterministic model output ŷ. On the contrary, ŷ
provides better predictions of extreme flood events.

As a proxy of antecedent soil moisture, the RAPI closely connects to the uncertainty
of hourly flood prediction. Along with the proposed data-driven residual error model,
the framework can be applied to any pre-calibrated hydrological model and help model-
ers achieve high-quality probability flood prediction. Further research is recommended
to determine the influence of rainfall uncertainty on both the RAPI and flood predic-
tive uncertainty.
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