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Abstract: Modelling tools are commonly used for predicting non-point source (NPS) pollutants and it
is timely to review progress that has been made in terms of the development of NPS models. This pa-
per: (1) proposes a systematic description of model framework and generalizes some commonly used
models; (2) identifies the common challenges in model structure and applications; (3) summarizes the
future directions of NPS models. Challenges in model construction and application are based on the
following: (1) limitations in understanding specific NPS pollution processes; (2) model expansion to
different scales; (3) data scarcity and its impacts on model performance; (4) prediction uncertainty due
to model input, parameter and model structure; (5) insufficient accuracy for decision-making. Finally,
this paper proposes future directions for model development, including: (1) a source–flow–sink
framework for model development; (2) standardization for model input and parameter; (3) reliable
decision support for environmental management. The findings of this review provide helps in the
accurate prediction and management of NPS pollution around the world.

Keywords: nonpoint source pollution; model construction; model application; uncertainty; decision-making;
best management practice

1. Introduction

The rapid development of urbanization and agriculture has accelerated nonpoint
source (NPS) pollution that has led to the deterioration of surface water quality [1]. Simu-
lating the characteristics and the pathways of NPS pollutants would help to identify their
hot spots and environmental impacts to formulate region-specific controls and improve
the management efficiency [2]. However, it is a large challenge to track NPS pollutants
from production to final fate due to their various forms and multiple paths [3]. Actual
measurement data are important for model calibration and verification. Additionally, most
modeling even requires ongoing collection of data since calibrations/relationships change.
However, the stochasticity, indirection, and uncertainty of NPS pollutants emission along
the land–water continuum, as well as the temporal and spatial variability, make it difficult
for their measurement and simulation [4,5].

As an effective instrument, models have been widely used in the prediction and
management of NPS pollution in many watersheds around the world [6,7]. However, there
are challenges in NPS models, such as the massive, measured data required for model,
uncertainties in model application, insufficient accuracy for decision-making and so on.
Given the impact of NPS pollution and the fact that these impacts are likely to increase in
the future, and the difficulty of assessing the relative benefits of different NPS-reduction
options, it is timely to review progress that has been made in terms of the development of
NPS models and to identify future research directions.
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Reviews of NPS models in the last two decades have focused on (1) model identifi-
cation and provide suggestions for model selection [8]; (2) reviews for models applicable
to particular geographic scopes, such as catchment, field, and urban areas [7,9]; (3) the
development and application of a single model [10]; (4) for particular pollutants, such as
phosphorus (P), nitrogen (N) or sediment [11]; and (5) other aspects for modeling, such as
the Best Management Practice (BMP) scenario, uncertainty analysis, and sensitivity analy-
sis [12,13]. This review focuses on the following: (1) proposed a systematic description of
model framework and generalized some commonly used models; (2) identified the common
challenges in model structure and applications; (3) summarized the future directions.

2. Overview of NPS Model
2.1. Basic NPS Pollution Processes and Model Framework

NPS pollution involves multi-spherical migration and transportation process that are
influenced by various natural conditions and human activities [14]. Due to the inconsistency
of underlying surfaces, the terrestrial and aquatic transport processes are significantly
distinct, but both are complex [7,15]. Pollutants on the terrestrial surface usually move
with runoff and converge into rivers or lakes. Meanwhile, with the evaporation, infiltration,
and interception of vegetation, some pollutants enter the groundwater or are deposited.
Among these processes, pollutants may be adsorbed or desorbed by soil/sediment and
banks, deposited or resuspended, while reactions occur between pollutants in the water
column and they are influenced by plant or aquatic organisms. In wetland or lakes, the
retention time is long due to the slow velocity of water flow, which is conducive to the
accumulation of NPS pollutants; in addition, lake stratification causes the migration and
transportation of pollutants different from those of rivers (Figure 1).
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Figure 1. Major NPS processes in watershed and disciplines involved (the font size of different
disciplines represents their relative development in NPS model research; the solid straight arrows
for NPS emission process, hydrological cycle, and water withdrawal by human society, the curved
arrows for the biochemical process, the dashed arrows for explanation, the double arrows represent
the interrelationship between different disciplines).

The basic simulation processes generally include hydrology, soil erosion, and material
transport. Hydrological simulations include infiltration, evapotranspiration, surface runoff,
and groundwater processes. Commonly used functions for infiltration include Green-Ampt,
Philip, Horton, and Holtan algorithms [16]. The Soil Conservation Service (SCS) is a popular
method for runoff simulation and is now generally used in NPS models [17]. Besides, a
typical tool for soil erosion is the Universal Soil Loss Equation (USLE) model, which
has been modified and extensively used in NPS models [18]. At last, the transportation
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of pollutants is simulated based on the runoff processes, the soil erosion process, the
morphological transformation process, and the chemical reactions between substances,
etc. It is worth noting that it is not always possible to have every detailed process due to
simplified framework, special scenarios, and poor data availability.

2.2. NPS Model Development

To explore the trends and development of NPS models, we performed a topic search
that aimed to capture the maximum possible amount of relevant literature using the Web
of Science Core Collection database. We used the terms [TS = ((“nonpoint source”) OR
(“non-point source”) OR (“non point source”)) AND TS = (model)] as the search queries.
The search results were deduplicated, sorted, and irrelevant entries were removed, and
finally 3111 relevant documents were obtained as analysis data. CiteSpace, a popular bib-
liometric analysis software, was first developed by Chen and Song [19]. We used CiteSpace
for keyword analysis and then to summarize the development trends of NPS models.

Figure 2 shows the yearly distributions of papers published. It also shows that stud-
ies of NPS models began between 1975 and 1990. It is an initial stage for exploration of
some processes, such as mineralization of organic nitrogen, ammonia volatilization, carbon
transformations. Some conceptual models and NPS models with simple processes are
produced based on hydrological models, such as the Chemicals, Runoff and Erosion from
Agricultural Management Systems (CREAMS) model developed by the USDA Agricultural
Research Service (USDA-ARS), the Groundwater Loading Effects on Agricultural Manage-
ment Systems (GLEAMS) [20], and the Agricultural Non-Point Source (AGNPS) [21]. Since
1991, publications show a steady upward trend. At this stage, a growing emphasis is being
placed on watershed management, pollution control, and water quality improvement,
not only in predicting NPS pollution load. The introduction of geographic information
system (GIS) facilitated the development of NPS models, and more complex and integrated
models were developed, such as the Hydrological Simulation Program-Fortran (HSPF)
model [22], Annualized Agricultural Non-Point Source (AnnAGNPS) [23], and a mechan-
ical model for large- and medium-scale watershed management in daily steps, the Soil
and Water Assessment Tool (SWAT) [24] developed by the USDA-ARS. The NPS models
mentioned above are more related to the terrestrial NPS pollutant transport process, and
the conveyance process in rivers is often insufficiently considered. Therefore, some special
river and lake models, such as the Environmental Fluid Dynamics Code (EFDC) [25] and
One-Dimensional Transport with Inflow and Storage (OTIS) [26], are also widely used for
the simulation of the advection and dispersion process of NPS pollutants in rivers and
lakes. Models mentioned above are listed in Table 1.
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Figure 2. Counts of publications of NPS model research by year, Source: authors based on Web of
Science database, Term: [TS = ((“nonpoint source”) OR (“non-point source”) OR (“non point source”))
AND TS = (model)] (note that 2022 is not yet over, so the collection of 2022 is not complete).
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Table 1. Comparison of some commonly used NPS pollution models.

Model Materials Spatial Scales Application

SWAT [24] sediment, nutrients, pesticide, heavy
metal, etc. watershed

A semi-distributed model that can effectively simulate
the spatial and temporal characteristics of runoff and
pollutants, and analyze the influence of topographic

features, substrate features, land management features,
climatic features, hydrological features and other factors

on runoff, soil erosion, pollutant leaching and
groundwater environment.

HSPF [22] sediment, nutrients, pesticide, salts,
pathogens, etc. watershed

A lumped model that can simulate the runoff and water
quality for each subbasin individually, and the
migration and transformation process of river

pollutants can also be simulated according to the
upstream and downstream relationships of the basin.

AGNPS [21] COD, nutrients, etc. catchment

An event-oriented distributed model that mainly used
for agricultural NPS pollution estimation and

prediction. It requires less data than other
distributed models.

AnnAGNPS [8] COD, nutrients, etc. watershed

A continuous distributed model that developed from
the AGNPS model, inherits the advantages of the
AGNPS model except for the simulation of single

rainfall event.

GWLF [27] sediment, nutrients catchment/watershed

A semi-distributed and semiempirical watershed load
model; it can be applied to an ungauged watershed,
used in estimation of nutrient loads from multiple

sources (including point source, rural runoff, urban
runoff, groundwater, saprophytic drainage system, etc.).

DNDC [28,29] carbon (C) and N cycles field

A plot model for simulating C and N cycles in
terrestrial ecosystems; it has a good performance in

paddy ecosystem; different farm management scenarios
can be simulated and analyzed.

CREAMS [20] nutrients, pesticide, etc. field
A field model to simulate NPS pollution and to

simulate the effects of different management practices
on pesticide loads in groundwater.

GLEAMS [20] nutrients, pesticide, etc. field
A field model to evaluate the effect of agricultural

management practices on soil erosion, nutrients and
pesticide leaching, and runoff with a layering system.

APEX [30,31] sediment, nutrients, pesticide, etc. catchment/watershed

A spatially distributed model that can divide the field
or small watershed area into relatively uniform spatial
units according to soil type, landscape location, surface
hydrological elements, and management practices; the

units are interconnected by river channels. Additionally,
it can simulate the contaminants at each subdivision

outlet or at the entire watershed outlet.

SWMM [27,32] nutrients, pesticide, TSS,
oil/grease, etc. catchment/watershed

An urban NPS model mainly used for water quality
simulation, scenario prediction and pollutant

management assessment for single rainfall events or
long-term continuous rainfall-runoff processes from

primarily urban areas.

SPARROW [33] nutrients, pesticide, heavy metal, etc. watershed

A regression statistical model of watershed spatial
attributes combining empirical statistics and

mechanisms; the statistical estimation of land and water
parameters separately to quantitatively describe the

migration rate of pollutants from source to river and the
transport between upstream and downstream of the

river network, which is advantageous in terms of data
requirement and is also feasible for simulation in areas

with uneven distribution of monitoring points.

PLOAD [34,35] nutrients, pesticide, heavy metal, etc. watershed
A GIS-based model for calculating NPS pollutant loads

from different sub-watersheds based on annual or
seasonal precipitation and land use.

Export coefficient
model [36,37] nutrients, pesticide, heavy metal, etc. watershed

A typical statistical NPS model that mainly estimates
pollution loads based on export coefficients, without
considering the influence of subsurface conditions,

provides good applicability to areas with scarce data.

EFDC [25] DO, COD, algae, nutrients, active
metal, etc.

river, lake, reservoir, estuaries,
ocean and wetland

EFDC is a 3D environmental fluid dynamics model,
which is widely used in the dispersion process of

pollutants in lakes, reservoirs, rivers, etc. This model is
often used in the assessment of environmental response

to NPS pollution and in the simulation of
algal outbreaks.

OTIS [26]
water-borne solutes, e.g., chloride,

phosphate, nitrate, dissolved
metals, etc.

river, stream

A model that focuses primarily on the fate and
transport processes of solutes in a river or stream. The

model is good at pollutant longitudinal transport
simulation but lacks consideration of vertical deposition.

Two conceptual areas are defined in the model: the
main channel for advection and dispersion processes,
and the storage area (the porous area of the dead pool

and the riverbed) for transient storage process.
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2.3. Model Classification

Model classification helps researchers to quickly understand the differences between
models and to help users to choose the most suitable model for a particular problem.

2.3.1. Statistical Model and Mechanism Model

According to methods used to quantify hydrologic processes, NPS models can be
classified as statistical models and mechanism models. The statistical model, also named as
empirical-based or “black box” model, is based on statistics for describing the functional
relationship between different variables, which usually requires considerable data for
variables. Since the underlying surface characteristics of the study area are often neglected,
it is relatively simple and straightforward and has good applicability in areas with limited
data varieties. For example, the export coefficient model, the pollution load (PLOAD),
and the Spatially Referenced Regressions On Watersheds (SPARROW) are commonly
statistical models. Mechanistic model, also known as the physical-based model, is based on
hydrological, chemical, and biological principles and aims to describe the migration and
transportation processes of pollutants, the so-called “white box” model. For example, the
HSPF, SWAT, AGNPS, Generalized Watershed Loading Functions (GWLF), Agricultural
Policy/Environmental eXtender (APEX), and DeNitrification–DeComposition (DNDC)
are mechanistic ones. Hydrological processes are the basis for the transportation of NPS
pollutants [38], while the migration of pollutants between the water–soil–atmosphere are
the main mechanisms [39]. Mechanistic models basically include hydrology, soil erosion,
and pollutant transport modules. However, given the complexity of the model structure, the
availability of data, and the mechanisms that are not completely clear, “grey box” models are
more popular, using a statistical method to determine parameters to quantitatively simulate
pollutant behavior under the mechanistic model framework. Empirical approaches such
as the USLE, which is acknowledged as a practical tool for predicting soil erosion, have
been widely used as soil erosion modules applied in SWAT, AGNPS, and other NPS
models [18,21,40].

2.3.2. Lumped, Semi-Distributed and Distributed Model

NPS pollutants behave differently under various combinations of spatial factors such
as vegetation, topography, soil, and land use. NPS models usually employ lumped ap-
proach, semi-distributed approach or distributed approach for spatial discretization [9].
These approaches express different degrees of spatial heterogeneity and have unequal
requirements for input parameters. The lumped (no discretization) model represents a
watershed with a fixed set of properties, such as dominant soil, vegetation and land use.
The semi-distributed model assigns values to different simulation units based on properties
of land use, soil type and topography features. Hydrologic Response Units (HRUs), for
instance, used as the fundamental spatial unit, each HRU can be set with unique land
use, soil, topography, vegetation and other characteristic parameters [24]. Additionally,
it is tendency for HRUs to not interact with each other in a semi-distributed model like
SWAT. The distributed model divides a watershed into hydraulically connected elements.
Each element has individual parameter set. Such as irregular “cells” of uniform land
management and soil used by AGNPS and AnnAGNPS [8,21].

2.3.3. Field-Scale, Catchment-Scale and Watershed-Scale Model

According to the principal processes of NPS pollution at different spatial scales, NPS
models can be classified into field-scale, catchment-scale and watershed-scale. Field-
scale models focus on water and contaminants transformation processes, especially the
vertical material exchange between the soil and atmosphere in agricultural fields, and
they rarely account for the connections between upstream and downstream [41]. DNDC
is a typical field-scale model. Catchment-scale models allow the study of the interactions
between slopes and channels, but the interaction and transformation between various
forms of pollutants are not considered enough [42], such as AGNPS. A watershed is
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a fundamental unit to simulate various hydrologic, hydraulic, soil erosion, sediment
transport, and nutrient dispersion processes that accounts for surface water, groundwater,
and their interaction as a whole system [8], the most commonly used watershed models
are SWAT, HSPF, AnnAGNPS.

It is important to note that some watershed models are applicable to a very wide range
of scales [43]. For example, SWAT model was applied to University of Kentucky Animal
Research Center, Kentucky (5.5 km2) [44] as well as Upper Mississippi River basin at Cairo,
Illinois (491,700 km2) [45]. Therefore, the scale effect discussed in this review mainly refers
to the principal processes of NPS pollution considered in model. We also suggest that
researchers choose an appropriate model based on the characteristics of the study area and
the issues to be addressed.

2.4. Classical NPS Models
2.4.1. The Export Coefficient Model

The export coefficient model is a typical statistical model that is commonly applied to
agricultural watersheds. The export coefficient characterizes NPS pollution by establishing
a response relationship between pollutant loads generated by different land uses and the
intensity of pollution [46]. Since the influence of climate and terrain on NPS pollutant is not
considered, its application in large areas is limited. Additionally, it must be carefully “tuned”
for local areas, which has big data collection demands. Generally, some modules, such as
meteorological factors, terrain factors, and vegetation interception, are often coupled to
enhance the availability of the model [36]. For example, the PLOAD model is an improved
version of the GIS-based export coefficient that evaluates the annual NPS loads of sub-
watersheds [47].

2.4.2. Soil and Water Assessment Tool (SWAT) Model

SWAT is a mechanistic model and is a commonly used semi-distributed watershed
model [48–50]. HRUs, originally used in SWAT models, overlap information on land
use, soil types, and topographic features like slope to calculate runoff processes, soil
erosion processes, sediment, nutrient and other pollutant transport processes in each sub-
watershed. The hydrological processes including surface runoff, peak flows, groundwater,
evapotranspiration, etc. are simulated based on water balance equations. The soil erosion
caused by rainfall runoff can be determined by the Modified Universal Soil Loss Equation
(MUSLE). The SWAT model can simulate the transport process of many substances includ-
ing sediment, nutrients with various forms, heavy metals, etc., which is mainly coupled
to hydrological processes [43]. SWAT model incorporates numerous empirical equations
for critical parameters or pollutant behaviors. Therefore, it requires not only extensive
parameter data, but also a significant amount of measured data of these parameters for
development and calibration [51].

2.4.3. Hydrological Simulation Programs Fortran (HSPF) Model

HSPF is also a mechanistic watershed model. It is developed from the Stanford
Watershed Model (SWM), adopted and integrated Hydrocomp Simulation Programming
(HSP), NonPoint Source Model (NPS), Agricultural Runoff Management Model (ARM)
and Sediment & Radionuclides Transport (SERATRA) and traditional hydrological water
quality models [22]. HSPF model generalizes a watershed into three modules: PERLND,
IMPLND, RCHRES, which can be subdivided into different compartments. The PERLND
and IMPLND modules simulate runoff and water quality constituents from pervious and
impervious land areas respectively. The RCHRES module is responsible for simulating
the hydrology and water quality of the river. ATEM, PWATER, IWATER, SNOW, HYDR
etc. compartments in the PERLND and IMPLND modules can simulate the hydrological
processes in the watershed; water quality (including sediment) simulations are done with
SEDMNT, PQUAL and Agri-Chemical modules, and users can choose different methods
depending upon the available data. The simulation algorithms within HSPF, which is
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similar to SWAT model, are a mixture of physically-based and empirical approaches.
Therefore, it also requires considerable amounts of measured data for calibration and
validation. The flexible modular design and robust simulation capabilities make the HSPF
model one of the most important tools for water resources management both in urban and
agricultural watershed [52–54].

There are numerous NPS models at present, and different models have their own scope
of application. Researchers should be fully introduced to these models when making their
selection. In this regard, the above analysis, as well as Table 1, provides some suggestions
to researchers.

2.5. Trends of NPS Model Research

Table 2 shows the top 25 keywords in the literature records of the last 20 years (Source:
Web of Science database, Term: [TS = ((“nonpoint source”) OR (“non-point source”) OR
(“non point source”)) AND TS = (model)]). In addition to “nonpoint source pollution”,
which is the most relevant search term, “water quality”, “land use”, “runoff”, “nitrogen
pollution”, “soil”, “swat model”, and “phosphorus” also appear frequently. It indicates that
SWAT is the popular model among the NPS model studies in the past 20 years, meanwhile,
nutrients, runoff, and sediment are the main simulated substances. Additionally, the
impact of NPS pollution on water quality and watershed management are still the hot
topic of research in recent years. The “soil”, “land use” and “scale” are some of the major
influencing factors that have drawn more attention. “Soil” is the important input parameter
for NPS models in terms of soil moisture content, soil type, soil particle size and other
attributions. Studies related to “land use” focus on the contribution of different land uses to
NPS pollution load and the relationship between land use and water quality. While studies
related to “land use change” emphasize predicting the impact of land use change on NPS
loads in watersheds. The “scale” includes “catchment”, “basin”, “watershed” etc. Each
“scale” has relatively unique NPS pollution processes, so there are different combinations of
“management” and “modelling”, such as “watershed management”, “catchment modeling”,
etc. In addition, “uncertainty analysis” and “sensitivity analysis” are also important
keywords in modeling studies, which helps to select the appropriate parameter sets for
complex models and increases the interpretation of model simulation results.

Unlike the frequency ranking, AGNPS model (2003–2008) has a greater impact in
the early years as shows in Table 3. The “geographic information system” has the great
impact in early years, which contributed greatly to the development of NPS models.
In addition, “watershed management”, “flow”, “prediction”, “spatial variability” and
“sediment transport” all have long burst periods, indicating that the spatial heterogeneity of
flow and sediment transport, the NPS pollution prediction and the watershed management
measures are critical issues at this period. The “hydrological modeling”, “watershed
modeling”, “watershed model” also have a long burst period. Most of NPS models are
developed on the basis of hydrological models; therefore, hydrological modeling is an
important content of early NPS modeling. The “watershed modeling” and “watershed
model” have similar burst periods, but “watershed model” is more concerned with model
structure, improving model accuracy, developing new model frameworks, etc., “watershed
modeling” emphasizes model application, especially the simulation for nitrogen, total
maximum daily load, ecosystem, etc. The “nonpoint source pollution model” has the
longest burst period (2003–2014), which corresponds to the distributions of publications,
indicating that this is the period of rapid development of the NPS model. From 2005 to 2011,
the “total maximum daily load” (2007–2014) and “validation” (2007–2016) have longer
burst periods, and “gulf of mexico” have a seven-year burst period from 2011 to 2016,
indicating that the Gulf of Mexico was the hot spot. After that, “china” has a short burst
period in 2017–2018, indicating that NPS model studies are popular in China since then.
In recent years, the study of NPS models has focused on the evaluation and improvement
of model performance as well as the land landscape and climate change. Finally, it is
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worth noting that the study of NPS models has gradually shifted from “water quality” to
“ecosystem service” and the trend is continuing.

Table 2. Top 25 keywords with frequency in last 20 years.

Counts Year Keywords

1186 2003 nonpoint source pollution
519 2003 water quality
339 2003 land use
319 2003 runoff
316 2003 nitrogen pollution
306 2003 swat model
305 2003 soil
299 2003 phosphorus
267 2003 best management practice (bmp)
216 2003 sediment
199 2003 river basin
199 2003 uncertainty analysis
183 2003 climate change
177 2003 catchment
176 2003 simulation
163 2004 river
156 2003 land use change
127 2003 soil erosion
119 2007 nutrient
116 2005 basin
116 2005 calibration
112 2003 flow
111 2003 scale
108 2003 sensitivity analysis
103 2003 watershed management

Table 3. Top 25 keywords with the strongest citation bursts.

Keywords Strength Begin End

geographic information system 14.32 2003 2008
watershed management 13.49 2003 2008

agnps model 10.1 2003 2008
flow 9.01 2003 2010

water quality 7.32 2003 2004
prediction 5.61 2003 2012

spatial variability 5.24 2003 2010
sediment transport 5.12 2003 2012

hydrological modeling 5.04 2003 2008
watershed modeling 4.95 2003 2012

watershed model 4.76 2003 2010
nonpoint source pollution model 4.42 2003 2014

watershed 4.98 2005 2008
runoff 4.58 2005 2006

total maximum daily load 6.44 2007 2014
validation 5.06 2007 2016

constructed wetland 4.52 2009 2014
gulf of mexico 6.76 2011 2016

china 7.59 2017 2018
landscape pattern 5.53 2017 2022

emission 4.91 2017 2020
conservation practice 4.57 2017 2020

climate change 9.11 2019 2022
ecosystem service 5.23 2019 2022

performance 5.02 2019 2022
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3. Challenges in NPS Model Research

The stochasticity, indirection, and uncertainty of NPS pollution, as well as the scale-
variability, make it difficult to simulate. This section summarized challenges in model
construction and application (Figure 3).
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3.1. Challenges in Model Construction
3.1.1. Specific Process Incorporation

There are many concepts and algorithms of NPS pollution. However, there are barriers
that lead to limitations in understanding specific processes.

Firstly, ditches and ponds are important landscapes in rural and agricultural areas.
They play a critical role in geochemical cycling [55], and present valuable ecosystem and
society functions [56]. However, due to the small size and scattered locations, they are
hard to detect on maps or traditional satellite images. Therefore, they are often simplified
or ignored in the model, especially in large scale research. Holgerson and Raymond [57]
explored the contribution of small ponds (<0.001 km2) to global natural carbon cycling, the
results showed that small ponds comprise only 8.6% of the global surface area of lakes and
ponds, but account for 15.1% of CO2 emissions and 40.6% of diffusive methane emissions.
Authors believe that more research is required on the global distribution of small ponds,
and new technologies are needed for small ponds mapping. Currently, few studies have
assessed the impact of small ponds on the nutrient cycling at the global scale, but there are
many local studies, especially in downstream Yangtze River Basin in China, location of the
ditch- and pond-dominated areas. Sun et al. [58] explored the contribution of ditch-pond
systems to pollutant removal by developing a model framework. They rasterized natural-
artificial drainage channels and realized the accurate spatial representation of ditches
and ponds. This framework effectively fills the gaps in the current models regarding the
consideration of complex ditch and pond systems. Given that different ditch profiles (soil,
concrete, mixed, etc.) and ditch vegetation patterns have a significant effect on the pollutant
removal efficiency [59], there is still potential for research on the slow release of pollutants
intercepted by ditches and the variation in decontamination efficiency over time.

Second, the detailed source information and transportation of pollutants should be
considered. In terms of geochemical processes, there are significant differences in the
range and interfacial processes of different pollutants. For example, nitrogen (N) is not
only transported between landscape–water interfaces but also readily interacts with the
atmosphere in the form of ammonia and nitrous oxide [5]. Traditional research has focused
mainly on NPS pollution of the water and soil mass transport interface, with less attention
given to atmospheric deposition. The present models of NPS pollution comprise few
atmospheric deposition modules, but according to recent studies, the emissions of reactive
nitrogen intensify air pollution [60], and N deposition increases watershed N export as a
consequence [61]. According to Tian et al. [62], global atmospheric nitrogen deposition is
showing a steady increase from 1980s–2016. Chen et al. [6] combined atmospheric deposi-
tion data with a distributed NPS model to quantify the effect of atmospheric deposition on
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water quality. The results showed the decrease in N deposition (0.45 × 104–1.09 × 104 T
yr−1) leads to a decrease in tributary N: P stoichiometry (approaching to 22.04), resulting
in a shift from P limitation to N limitation in the reservoir, which is critical for water
quality management in the reservoir. Thus, the incorporation of excessive atmospheric
deposition and other processes, such as N leaching or gaseous loss, on the biogeochemical
cycle should be emphasized; otherwise, the simulation and prediction of NPS pollution
will be distorted [63].

Finally, specific biogeochemical processes, such as microorganisms that have a con-
siderable impact on material transport, are less considered at present. For instance, soil
N-cycling has a close linkage with soil microbes. Microorganisms play an essential role in
the N mineralization, nitrification, and denitrification processes [64]. It has been reported
that increased surface temperature can alter soil microbial metabolic processes and rates,
which promote N transformation [65]. Given that the consideration of climate change will
alter environmental conditions, such as wind speed, precipitation, temperature, etc., as
well as microbial metabolic processes, some previously neglected or streamlined processes
need to be reassessed for their contribution to NPS pollution for the accurate and precise
simulation [66].

3.1.2. Model Expansion to Different Scales

Hydrological processes as well as the migration and transportation of pollutants
show significant spatial heterogeneity because of the intertwined effects caused by the
topography, vegetation, and soil characteristics [58,67].

The field scale mostly considers processes such as soil–vegetation, and the key prin-
ciple is the knowledge of agronomy and soil science. The DNDC is a typical field-scale
model [29]. It was initially used to study greenhouse gas emissions from ecosystems, and
denitrification and decomposition are basically the effects of C and N emissions from the
soil to the atmosphere. Based on denitrification and decomposition, the model was applied
to C and N cycling in different ecosystems. In agricultural ecosystems, the prediction of
crop growth, soil C and N dynamics, greenhouse gas emissions and N loss provide a great
help to the study of NPS pollution [68].

A catchment scale model would consider the converging processes, for example,
precipitation-runoff with the influences of ditches, ponds, and other factors. Catchment
models are generally based on hydrology, hydraulics, soil science and many other dis-
ciplines. The AGNPS model is a typical catchment model, which is an event-oriented
distributed model based on physical processes that can simulate the hydrological cycle, soil
erosion, and nutrient loss in a catchment.

Watershed-scale models, such as SWAT and HSPF [69], give more attention to com-
plex river networks, reservoirs, and water extraction for human development based on
hydrology, hydraulics, soil erosion and other disciplines.

For field-scale and catchment-scale models, the extension from the field scale to
the watershed scale usually divides the simulation area into multiple cells, in which the
various conditions are homogeneous. Then, all cells are simulated one by one, and the
cells are finally superimposed together. The advantage is that it can divide different
cells according to the spatial heterogeneity of the region, and the simulation is more
flexible and accurate for each cell [29]. The disadvantage is that it may overlook some
transfer processes between cells, leading to biased results overall. Catchment models
introduce additional transport channels (e.g., rivers) between cells compared to field
scale ones, but catchment models seldom consider groundwater flow; therefore, they
remain to be proven for applications in large watersheds. Watershed models often present
the strengths of multiple simulation steps, including hourly, daily, monthly, and annual
scales, and the spatial scales of simulation include small watersheds, medium- and large-
scale watersheds, and even entire regional scales. These features facilitate a detailed
analysis of the mechanisms, processes, and environmental impacts of NPS pollution in the
watershed [70]. However, considering the complexity and feasibility of the model, some
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processes and parameters are generally neglected or weakened. The description of some
processes is not as detailed as field and catchment-scale models [49]. In addition, the model
structure is complex, and more parameters are needed, providing a great challenge for
application, especially in areas with scarce data.

3.2. Challenges in Model Application
3.2.1. Data Are Still a Problem

Modeling is an efficient instrument in understanding observations and in develop-
ing and testing theories but cannot be an alternative to measurement and monitoring.
Currently, data scarcity remains a major issue in model applications. Data required for
NPS modeling generally include spatial data (DEM, land use, soil type and distribution,
etc.), meteorological data (precipitation, temperature, wind speed, solar radiation, etc.),
vegetation data, pollutant source data, etc. Given different model structures and research
objects, the required data can vary in quantity, size, and resolution [58,71]. Pollution loads
can generally be assessed based only on the source data, land use data, and export coeffi-
cients by statistical models. In contrast, complex models such as SWAT, HSPF, and AGNPS
usually require large amounts of data for delineation of surface features [9,36]. In addition,
additional data are needed for special processes (e.g., data of snowfall, melt temperature,
etc., for snow module).

On the other hand, although the modernization and promotion of the monitoring
network have obtained abundant data (e.g., the hydrological stations collect continuous
data on water flow, water level, water temperature, etc.), data monitoring and collection
are still difficult in some areas because of various reasons, such as the poor base and the
treacherous environment. Even in urban areas where the monitoring networks are well
established, obtaining complete and high-precision data is difficult. For example, urban
drainage networks, pipe network reconstruction, loss of some original documents, or
confidentiality, are still incomplete in some areas. In addition, the matches between data are
low due to different monitoring locations, frequencies, strategies, etc., and the integration
of data from different sources has become another major challenge [72].

Some complex models can be simplified by using a limited number of modules to
reduce input data or using public datasets or developed tools established for running
models. For example, there are global databases such as soil data, stream network data,
and weather data for models to run. When the accuracy of meteorological data in the
study area is not sufficient, the SWAT model also provides the weather generator module
to generate the daily data needed for the model based on monthly data [24]. However, if
local weather shows any gradients with elevation or distance (usually true in mountain
or monsoon-nourished areas), the global sets may not be adequate, and measured data
will be better. All of these methods have improved the applicability of models, especially
in poor data areas. However, the lack of local data for calibration will lead to a great
influence on the interpretation and analysis of simulation results. Based on different
sampling frequencies, Piniewski et al. [73] conducted a water quality simulation of a boreal
catchment in southern Finland using the SWAT model. The results showed that high-
frequency sampling could significantly improve model performance. Additionally, many
studies have reported that simulation results respond sensitively to the resolution of input
data [74]. For data matching, methods such as interpolation and scale conversion are
used to obtain the matching data. Data on flux provide substantial information for NPS
pollution processes [38]. However, compared with flow data, the cost of collecting and
analyzing water quality is higher. Thus, the sampling frequency is once a month or even
less, while the daily water flow can be easily obtained. Therefore, in the flux calculation,
it is necessary to use some methods to match the stream flow and water quality data of
different scales [75], whereas the simulated value cannot be equal to the real value [76].

The validity and accuracy of the data will directly affect the model performance
and the understanding of NPS processes [77]. However, while the techniques of flux
monitoring and estimation have been increasing, since the lack of uniform criteria of
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these methods and the data derived from different methods can be greatly different, data
availability has not largely improved [78]. Therefore, there have been studies on model
development and application for data shortage areas, and some studies have investigated
the impact of limited data on different methods with a view to providing methodological
implications for studies in areas with scarce data [79,80]. At the same time, making full use
of satellite remote sensing and advanced scientific technologies to improve the coverage
of the monitoring network and obtain more high-precision data is also important in areas
with scarce data [81]. In addition, for the consideration of economy and data accessibility in
practical applications, how to mine effective information from relatively easy-to-obtain data
or how to determine the minimum accuracy under the premise of ensuring the reliability
of results is an important problem in model application.

3.2.2. Prediction Uncertainty Puzzles Modelers
Data Uncertainty

Models require various data but the different monitoring methods, as well as data
preprocessing techniques, may lead to large differences in the resolution and accuracy
of data. Consequently, there may be great discrepancies in the simulation results, which
caused great prediction uncertainty. For example, the resolution of DEM data has a
large impact on the depiction of watershed boundaries and topographic slope, which in
turn affects the estimation of processes such as surface runoff, sediment transport, and
material flow in the watershed [82]. Ground monitoring data, for example, observations of
flow, water quality, precipitation, etc., is influenced by the density of monitoring stations,
equipment, monitoring frequency, etc. [83]. In areas with sparse monitoring sites, the
accuracy of input data is restricted by the method of generating the dataset, and the
interpretability of the simulation results is therefore greatly affected [84]. In general, high-
resolution input data can improve the performance of the model to some extent, but it
is also costly in data acquisition and model running. Shen et al. [85] obtained different
resolution data of DEM (30 m × 30 m, 40 m × 40 m, 90 m × 90 m, 200 m × 200 m), land
use–land cover (LULC) (40 m × 40 m, 90 m × 90 m, 200 m × 200 m) by re-sampling and
data of soil maps (200 m × 200 m). They grouped data in all possible ways to obtain twelve
combinations as GIS input of SWAT. Additionally, then, they investigated the different
effect of these combinations on NPS prediction uncertainty. The result showed that the
simulation of sediment increased (3494 ton to 4167 ton) from 30 m × 30 m to 90 m × 90 m,
and then showed an increase (3659 ton) at 200 m × 200 m. A similar change could be found
by TP outputs. Meanwhile, GIS inputs showed limited influence on runoff and nitrogen
(N) predictions. They also proved that there is a threshold of GIS resolution within which
more precise data would be less beneficial to SWAT performance. Obviously, determining
the appropriate data resolution and obtaining sufficient information with a relatively small
amount of data is a very necessary problem for model application.

Structural Uncertainty

Modeling is a powerful tool for understanding of observations, and in turn, guided
by the understanding of transport processes, NPS models are improved; therefore, the
structural uncertainty mainly comes from our limited understanding of the watershed
systems. As an example, the simulation of the hydrological cycle is mainly based on the
natural processes of evaporation–precipitation–runoff–infiltration in the SWAT. However,
Wang et al. [86] believed that the natural water cycle was not sufficient for describing the
hydrological cycle in a basin with extensive human activities and proposed the nature–
society dualistic water cycle theory. Another example includes legacy nutrients in which
there is a consensus that there is a hysteretic watershed response for reduction in nutrient
input [87]. However, it is difficult to quantify the magnitudes of legacy nutrients in
various environmental compartments or clearly report the timescales of legacy nutrient
release into surrounding water bodies [88]. Nutrient input can be accumulated in soil,
groundwater, sediment, and other landscapes. A study of the Dengsha River watershed
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in China pointed out that excessive levels of P stored in agricultural soils could maintain
the growth of crops for over one decade even after P fertilization ceased [69]. The mass–
balance function is commonly used for the estimation of legacy nutrients. Since the impact
of some processes, such as atmospheric N deposition and denitrification, can hardly be
quantified, the results are still uncertain [88]. However, neither statistical models, such as
SPARROW, nor mechanistic models, such as SWAT and HSPF, can accurately simulate the
legacy nutrient process. In recent years, numerous efforts have been made for accurate and
dynamic legacy nutrient assessment, but there is not yet a mature method [89,90].

Additionally, the effect of the input data on the results is also affected by the model
structure. Previous research showed that the improvement of model performance by GIS
data resolution has a threshold, in which a higher resolution could not perform better than
a lower resolution [85]. In fact, the impact of data on the simulation results is determined
by the parametric functions. The greater the weight of the input data in the model is, the
greater its impact. For instance, the SCS method is not strongly dependent on terrain data;
therefore, the GIS data resolution has little effect on its hydrological simulation results. In
contrast, the terrain factor required in the modified universal soil loss equation (MUSLE)
comes from DEM data directly; therefore, the TP and sediment results are sensitive to
the GIS data resolution. Regarding differences in model structure and algorithms, even
the same data may pose various influences in distributed, semi-distributed, and lumped
models [91–93].

Parameter Uncertainty

Finally, assumptions for NPS pollution processes and generalization of complex pro-
cesses with limited parameters are important causes of model uncertainty [94]. Although
in mechanistic modeling, to account for real environmental conditions as much as possible,
there are often many parameters (e.g., >100 in the SWAT model). Due to our limited
knowledge, assumptions about a process can lead to parameter selection and setting errors.
In addition, facing specific research purposes, not all parameters have a great impact on
the simulation results. Therefore, to improve efficiency, parameter sensitivity analysis is
required to select specific parameters for simulation and prediction [95]. At present, param-
eter analysis can be divided into local and global sensitivity analysis. In comparison, global
sensitivity analysis can consider the interactions between parameters, which is better than
local sensitivity analysis [96]. Neither the local nor the global analysis considers the spatial
scale effect of parameters. The obtained parameter sensitivity is constant if sensitivity
analysis is based on the whole time series. However, the parameter sensitivity should also
be dynamic due to the scale effects of the parameters. There are several methods for the
time-varying effect of parameter sensitivity, such as sliding windows and the time-varying
and multi time scale (TVMT) method [97]. However, the spatial scaling effect of parameter
sensitivity has rarely been reported [98].

Model calibration and validation are important steps in model application, reflect-
ing the analysis of model uncertainty, which supports the interpretation of simulated
results [50,99]. However, the traditional model evaluation only considers the goodness-
of-fit between the measured and predicted data [100], which is not sufficient for model
uncertainty. The confidence interval (CI) and a probability density function (PDF) have
been proposed to express the uncertainty of model prediction [101]. Chen et al. [102] pro-
posed an interval-deviation approach (IDA) method for model evaluation in an uncertainty
framework. However, this approach is suitable for situations where there are less data,
and these intervals may not always be feasible when more data can be collected or when a
continuous and random data distribution can be assumed. The cumulative distribution
function approach (CDFA) and the Monte Carlo approach (MCA) are commonly used meth-
ods for model evaluation in uncertainty frameworks [103]. Nevertheless, due to limited
knowledge and natural randomness, a fixed PDF or error range cannot be found. Thus,
researchers should be more cautious about the evaluation of the error range of measured
data that can be used in watershed simulation. More data should be collected to obtain a
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reasonable margin of measurement error and an appropriate PDF of the predicted data. In
addition, due to scarce data, measured data and a model and its calibration are for a small
part of a catchment, often a single drainage, but the use of the model is scaled up to cover
the entire basin on the basis of one or two parameters without any assessment of whether
that scaling is justified by the distributions of measured and modeled data.

3.2.3. Insufficient Accuracy for Decision-Making

Watersheds are important spatial units of water environmental governance and a key
research scale of pollutant transport. BMP or low-impact development (LID) practices are
important means for watershed management, and many NPS models, such as SWAT, HSPF,
AnnAGNPS, APEX, and Storm Water Management Model (SWMM), have integrated the
BMP/LID module for watershed management [4,104]. Watershed models can evaluate the
impacts of multiple BMP on watershed hydrology and water quality. For structural BMP
(e.g., filter strips, riparian buffers, and detention ponds), some specific models have been
developed, such as the Vegetative Filter Strip Model (VFSMOD) and Riparian Ecosystem
Management Model (REMM) [105,106]. These specific models require higher resolution
data compared to watershed models. Therefore, they are more suitable for farmlands or
small watersheds with fully functional databases.

There are some problems in BMP module with models. First, there is a mismatch
between the simulation unit of the watershed model and the BMP unit [4]. For example,
users would assess BMP at watershed and sub-watershed scales using the SWAT model,
and the hydrological response units (HRUs) may represent the field-level conditions of
the BMP, but there is a clear disconnect between the hydrological scale of the HRU and
the actual field where these BMP are implemented. Second, before conducting BMP
evaluation, several steps, such as model calibration, validation, and simulation, must be
completed, which is tedious and not easy for managers. However, some tools, such as
the Pasture Phosphorus Management (PPM) calculator and Texas BMP Evaluation Tool
(TBET), can hide the complex model simply as an engine, helping users to simplify the
model and improve its operability [107,108]. However, the essence of the model remains
unchanged, and the accuracy of the simulation results is still affected by many of the factors
mentioned above. If managers do not understand the principles, it is difficult to interpret
the simulation results when the predefined situation changes. Finally, the largest problem
with the evaluation of BMPs in both watershed and specific models is that they rarely take
into account the decreasing efficiency of BMP over time. Bracmort et al. [109] assessed the
efficiency of grassy waterways, grade stabilization structures, field borders, and parallel
terraces in reducing sediment and TP using the SWAT model. The temporal variability
has been considered. The results showed that the BMP in good condition (fully functional)
reduced sediment up to 32% and phosphorus up to 24%, while degraded practices (partially
functional) reduced sediment by only 7% to 10% and phosphorus by only 7% to 17%. Thus,
current models may fail for future watershed decision-making. Therefore, a decay function
would be helpful for evaluating varying efficiency of BMPs; in addition, factors such as
maintenance activities and pollutant accumulation can also greatly affect the life of BMPs,
which should be considered carefully.

4. Future Prospects for NPS Model Development

Modeling is an approximation of reality and will inevitably be distorted; it is im-
portant to recreate the real situation as much as possible and improve the precision and
accuracy. There are still things to be done in this respect, including but not limited to the
following aspects.

4.1. The “Source–Flow–Sink” Framework for Model Development

To better integrate mechanistic research from different disciplines, a new framework
is proposed for the development of NPS models based on the “source–flow–sink” process
(Figure 4). The principles of different disciplines are utilized as three modules, “source–
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flow–sink”, where the “source” module strengthens the source information of pollutants
in farmland, urban, mining, forestry, rural, livestock, and farming. Meanwhile, the actual
measurement data serves as a strong support for modeling, the pollution source data
such as: source type, amount of pollutant generation, emission etc. are very important.
The “flow” module solutions for different regional production and convergence studies
strengthen the role of atmospheric deposition and the role of groundwater, coupling more
human activity impacts. In this part, the collection of data such as rainfall, river flow etc. is
critical for modeling. The “sink” module focuses on wetland, vegetation, ditch, reservoir,
river, and lake module development, especially the impact of policy-driven vegetation
restoration and reservoir construction. For this module, data like water qualities of rivers,
and reservoirs etc. are essential for model calibration and verification.

Figure 4. The main points in “source–flow–sink” modules.

With global climate change, the “source–flow–sink” relationship will change. However,
current studies have only predicted the change in a certain environmental factor, and there
is significant interaction between these factors. The enhancement of one factor may weaken
or promote the effect of other factors, resulting in more complex and difficult-to-predict
pollutant migration and transportation in the basin. There is no doubt that much work
needs to be done to study NPS pollution mechanisms. This paper proposes a new “source–
flow–sink” framework, based on which of the various paths and processes of NPS pollutant
transportation should be identified and made conducive for multi-process development
and integration. This may be a promising direction for model development.

4.2. Standardization for Model Input and Parameter

Many models have been developed in recent years, but the complex structure of these
models is an essential barrier for environmental managers to use. The statistical model
is relatively simple, but it is difficult to meet the integrated management of watersheds.
In addition to the complex structure of the mechanistic model, the model structure also
varies greatly, as do the parameters of the model and the required input data. Therefore, it
is necessary to standardize NPS models to address complex watershed circumstances.

First, a general NPS model should include a hydrology module, meteorology module,
erosion module, and pollutant transport module for terrestrial and aquatic areas (including
surface water and groundwater), and some models should also include a hydrodynamic
module (e.g., HSPF). Standardizing the representation of modules allows users to select
a suitable combination of modules for different purposes. This will notably minimize
scale effects and the obstacle of model coupling and solve the problem in which the
current comprehensive model is too complicated to apply, while the simple model has poor
interpretation of the results.
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Second, a standard database should be established. An ever-improving monitoring
network and a variety of portable devices provide us with access to massive data. The
standard database of input data that ensures a combination of different modules will work
successfully and will then improve efficiency in model coupling, model improvement and
application, especially in areas with scarce data. In addition, calibration and validation
are complex and massive, and it is beneficial for efficiency to construct a standardized
parameter bank. The bank in which all parameters required for modeling can be satisfied
will enable researchers to handle different models simply by learning this parameter bank.
Additionally, it is useful to strengthen the comparison of model parameters performed by
different studies in a region to reduce its uncertainty.

Finally, standard calibration can incorporate manual or automatic processes. Manual
calibration relies on the practical experience of the user to adjust the simulation results
close to the actual measured values, which is more effective but less efficient. In regard to
a particularly large numbers of parameters (e.g., SWAT model), this will cost enormous
time and effort. Automatic calibration is comparatively efficient but can easily result
in parameter values that do not match the actual situation. Many integrated models
generally offer both manual and automatic modes, and users can choose a single mode or
combination of the two to improve efficiency. However, there are still some models that are
not adapted to the automatic calibration platform (e.g., HSPF model), and for these models,
the calibration platforms of other models are not necessarily applicable. Therefore, it is
important to develop a common calibration platform with good optimization algorithms.
In addition, this is also beneficial for multi-model comparison. By the way, the purpose
of calibration is to make the model output closer to the measured data, and we have to
note that model results are not equivalent to measured data; those who use models must
be absolutely clear to distinguish between measured and model results.

4.3. Make Reliable Decision Support

Carrying out multi-model comparison and developing a platform for comparison will
be convenient for model users to choose a suitable model and come up with reasonable
environmental management strategies. Based on the mechanistic study and multi-model
comparison, the key parameters of the model are modified, and the relevant processes
(often described by empirical and semiempirical formulas) are improved. For local studies,
it will help to localize the model and make the study more focused, the exploration of local
mechanisms can promote the improvement of the model, and the performance for large-
scale simulation can be better. Models have different characteristics due to scale effects.

Developing and improving more modules, such as atmospheric deposition mod-
ules, microbial metabolic process modules and anthropogenic modules, might be an
important trend. Since some models have been developed to be relatively mature, al-
beit containing limited modules, the integration or coupling between models would be
a promising trend. For example, the coupling of SWAT and Modular Three-Dimensional
Finite-Difference Ground-Water Flow Model (MODFLOW) can more accurately reflect
surface and groundwater interactions [49]. Given the feedback between the models, such
as social and economic development and the hydrological cycle, two-way coupling would
be more reasonable than one-way coupling [39]. For models based on different operating
platforms (Win/Linux), different data formats and resolutions increase the difficulties in
model coupling. Therefore, it would be a great issue to select an optimum scale transfor-
mation method or develop an efficient one [110]. In addition, as models evolve, either
seamlessly integrated models that combine multiple functions and processes or the model
collection platform where multiple models are closely combined require powerful computer
algorithms and data-processing capabilities.
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5. Conclusions

In recent years, NPS models have constantly improved in regard to varying environ-
mental conditions. However, with global climate change, local weather, hydrology and
vegetation will change in the watershed, which will propose challenges for NPS model.
In this review, we try to analyze some challenges that exist in the current NPS models.
The unclear mechanisms of some modeling processes due to disciplinary barriers, model
limitations of spatial heterogeneity, lack of high-quality data, prediction uncertainties and
insufficient accuracy for decision-making are discussed in this paper. On the one hand,
the poor understanding of some NPS pollution processes leads to limitations in the model
structure, which is one of the main reasons for the uncertainty of the model predictions.
On the other hand, the spatiotemporal heterogeneity of NPS pollution requires significant
amount of measured data for model calibration and validation, but the scarcity of data
makes this very difficult. Although models cannot replace actual measurements, NPS
models serve as powerful tools for understanding NPS pollution processes, and we still
expect them to provide sufficient support for decision making. Therefore, we sorted out
the whole process of NPS pollution based on our understanding and proposed a “source–
flow–sink” conceptual framework, which, notably, is not a specific model. This framework
aims to provide a new perspective for model researchers on NPS pollution process, then
to guide model improvement. In addition, the concept that standardization for model
input and parameter and making reliable decision support are also be proposed. Anyway,
limited by our own research experience and knowledge, we can only summarize the issues
that we have encountered, and propose our suggestions in the hope that they will inspire
researchers in this field.
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