

Article N₂O Emission from Partial Nitrification and Full Nitrification in Domestic Wastewater Treatment Process

Pengzhang Li¹, Yongzhen Peng^{2,*}, Shuying Wang² and Yue Liu²

- ¹ Department of Municipal Engineering, Yancheng Institute of Technology, Yancheng 224051, China
- ² Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering
- Research Center of Beijing, Beijing University of Technology, Beijing 100124, China

* Correspondence: pyz@bjut.edu.cn; Tel./Fax: +86-10-67392627

Abstract: Using actual domestic wastewater as the research object, nitrogen compounds and their combinations were added to different nitrification (partial nitrification, full nitrification) processes to investigate nitrous oxide (N₂O) emission and its nitrification mechanisms. The presence of influent NH_4^+ was the driving force of N₂O emission during nitrification. Compared with full nitrification, NO_2^- in partial nitrification more readily generated N₂O by denitrification. Under the proportional gradient of NH_4^+ -N:NO₂⁻-N/NO₃⁻-N, 30:0, 20:10, 10:20, and 0:30, total N₂O emissions during partial nitrification. Full nitrification was more beneficial to N₂O emission reduction. This provides a control strategy for N₂O emission reduction in wastewater treatment processes under the background of reducing the production of greenhouse gases.

Keywords: N₂O; domestic wastewater; partial nitrification; full nitrification; greenhouse gas reduction

Citation: Li, P.; Peng, Y.; Wang, S.; Liu, Y. N₂O Emission from Partial Nitrification and Full Nitrification in Domestic Wastewater Treatment Process. *Water* **2022**, *14*, 3195. https://doi.org/10.3390/w14203195

Academic Editor: Stefano Papirio

Received: 29 August 2022 Accepted: 8 October 2022 Published: 11 October 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1. Introduction

Nitrous oxide (N₂O) is a potent greenhouse gas whose greenhouse effect exceeds CO₂ by ~300 times [1]. N₂O is also a potential ozone depleting substance (ODS) [2]. Wastewater biological treatment is an anthropogenic source of N₂O emissions, and both nitrification and denitrification processes produce N₂O [3–6]. Full nitrification involves two steps: NH₄⁺ oxidization to NO₂⁻ via NH₂OH utilizing Ammonia Oxidizing Bacteria (AOB) followed by subsequent oxidation of NH₂OH to NO₂⁻ by AOB (the energy generation step); Secondly, NO₂⁻ is further oxidized to NO₃⁻ using Nitrite Oxidizing Bacteria (NOB). In this process, ammonia mono-plus oxidase (AMO) catalyzes the oxidation of NH₃ to NH₂OH and O₂ acts as the electron acceptor [7]. Hydroxylamine oxidase (HAO) catalyzes the oxidation of NH₂OH to NO₂⁻ and O₂ acts as the main electron acceptor [8]. In the nitrification process, there are two possible pathways for N₂O emission as a byproduct: (1) N₂O is produced during autotrophic denitrification by AOB, NO₂⁻ acts as an electron acceptor, and is converted into N₂O via NO using nitrite reductase and nitric oxide reductase [9,10]; (2) N₂O is produced by the incomplete oxidation of NH₂OH [11–13].

A few studies have reported some operational control factors related to N_2O emission regarding full nitrification, such as dissolved oxygen (DO), temperature, pH, Sludge Retention Time (SRT), salinity, and toxic substances [14–21]. However, fewer studies on N_2O emission during partial nitrification have been published. Most studies were conducted using culture medium and artificial wastewater, which does not accurately simulate the complex actual nitrification.

In this study, a Sequencing Batch Reactor (SBR) and specific test rules explored N_2O emission and some nitrification mechanisms using partial and full nitrification of sludge cultivated with actual domestic wastewater. These results provide a theoretical basis for the control of N_2O emission in wastewater treatment.

2. Methods

2.1. Sludge and Wastewater

Two 12L SBRs were used for cultivation of partial and full nitrification sludge and the index of domestic wastewater inflow is shown in Table 1. The traditional full nitrification operation mode was as follows. The average operational cycle was 420 min, which included feeding (30 min), aeration (240 min), anoxic denitrification (120 min), and settling (30 min), 3 cycles per day, with the DO was 2 mg/L and Mixed Liquid Suspended Solids (MLSS) remaining at about 3000 mg/L. SRT was 20 days, and the rate of nitrate accumulation during full nitrification was about 99%. The partial nitrification operation mode was similar to that for full nitrification, except the DO was 1 mg/L and running temperature was 30 °C, SRT was 11 days; the rate of nitrite accumulation during partial nitrification was about 98%. After anoxic denitrification, the effluent's composition, consisting of NH_4^+ -N, NO_2^- -N, and NO_3^- -N were all below 1 mg/L. The full nitrification and partial nitrification sludge taken from the SBRs was aerated for 12 h, then washed 3 times with deionized water repeatedly, for batch testing. The effluent's COD was less than 50 mg/L and could not be oxidized for longer.

Table 1. The quality of real domestic wastewater.

	COD (mg/L)	NH4 ⁺ -N (mg/L)	NO ₂ ⁻ -N (mg/L)	NO ₃ ⁻ -N (mg/L)	TN (mg/L)	pН	Alkalinity
minimum	88	39.6	0	0	56.4	6.9	262
maximum	276	91.2	2.8	1.2	98.5	7.7	343
average	182	65.4	1.4	0.6	77.4	7.3	303

2.2. Batch Test Rules

The experimental batch test reactor is shown in Figure 1. The effective volume of the reactor was 3 L. At the beginning of each batch test, 1 L of concentrated full nitrification and partial nitrification sludge was added into the reactor, followed by 2 L of wastewater, and the MLSS were controlled at 3000 mg/L. Nitrogen compounds, DO and pH levels were then adjusted for the batch set upon commencing operation (Table 2). The running time for batch tests was 180 min.

Figure 1. N₂O emission during partial nitrification (partial nitrification effluent +NH₄Cl-N/NaNO₂-N, DO = 0.5 mg/L).

Batch Test Number	Sludge—Water Mixture Type	Initial pH	Reaction Time (h)	NH4 ⁺ -N (mg/L)	NO ₂ ⁻ -N (mg/L)	NO ₃ ⁻ -N (mg/L)	DO (mg/L)
1	partial nitrification sludge + effluent	7.5	3	30	0		0.5
	partial nitrification sludge + effluent	7.5	3	20	10		0.5
	partial nitrification sludge + effluent	7.5	3	10	20		0.5
	partial nitrification sludge + effluent	7.5	3	0	30		0.5
2	full nitrification sludge + effluent	7.5	3	30		0	0.5
	full nitrification sludge + effluent	7.5	3	20		10	0.5
	full nitrification sludge + effluent	7.5	3	10		20	0.5
	full nitrification sludge + effluent	7.5	3	0		30	0.5
3	full nitrification sludge + effluent	7.5	3		20		0.5
	full nitrification sludge + effluent	7.5	3		20		1
	full nitrification sludge + effluent	7.5	3		20		2
	full nitrification sludge + effluent	7.5	3		20		3

Table 2. Batch test rules.

2.3. Detection Method

COD, NH₄⁺-N, NO₂⁻-N, NO₃⁻-N were measured according to methods previously described [22]. DO, pH, T were measured by an oxygen, pH and temperature meter (WTW 340i, WTW Company, Munich, Germany). The Mixed Liquid Suspended Solids concentration was measured at the beginning and at the end of each test to obtain an average value, which was used for the calculation of the NH₄⁺-N oxidation rate, NO_x⁻-N production rate and N₂O emission rate. The total N₂O production consists of the N₂O emitted in the gaseous phase (emission-gas N₂O) and the N₂O dissolved in the mixed liquid phase (dissolved N₂O). The N₂O concentrations in gas samples were analyzed in triplicate using a gas chromatograph (Agilent 6890N, Santa Clara, CA, USA). The overhead space method was used to analyze the dissolved N₂O. Water and N₂O samples were taken at 30-min intervals.

3. Results and Discussion

3.1. N₂O Emission in Partial Nitrification Process

Figure 2 shows the variations of N₂O emissions under different NH₄⁺-N and NO₂⁻-N ratios during partial nitrification (partial nitrification's effluent +NH4Cl/NaNO₂). As shown in Figure 2a–c, the maximum N₂O emission occurred when NH₄⁺-N was about to be oxidized completely, and its maximum value was 1.20 mg/L, 1.37 mg/L, and 1.48 mg/L. When the ratios of NH₄⁺-N to NO₂⁻-N were 30:0, 20:10, and 10:20, the time for N₂O to reach its highest level decreased, and the N₂O emission rates increased; they were 0.16, 0.30, and 0.49, respectively (in mgN/(gMLSS·L·h). This indicated that the initial emission rate of N₂O increased with added NO₂⁻ in the presence of NH₄⁺-N. This was due to the electrons provided by the NH₄⁺ oxidation process being used for autotrophic denitrification of AOB in the partial nitrification process.

Figure 2. N₂O emission during partial nitrification (partial nitrification effluent +NH₄Cl-N/NaNO₂-N, DO = 0.5 mg/L).

When NH_4^+ oxidation provided electrons, higher concentrations of electron acceptor NO_2^- led to increased autotrophic denitrification of AOB. As shown in Figure 2b,c, NO_2^- concentrations decreased with NH_4^+ oxidation in the first 30 min of the reaction. However, in the absence of NH_4^+ , as shown in Figure 2d, even a NO_2^- concentration of 30 mgN/L did not result in N_2O emission above 0.15 mg/L. This reaction resulted in denitrification of only 3.5 mgN/L of NO_2^- . The lack of BOD (effluent) suggested its electron source might be internal organic matter (PHB) stored in AOB sludge [23,24], hydrogen, and pyruvate [25]. In addition, under four different ratios of NH_4^+ -N and NO_2^- -N, the total production of N_2O was 3.29, 4.52, 3.26, and 0.35 mgN/L, respectively. N_2O production was maximized when NH_4^+ -N and NO_2^- -N ratios were 20:10. This was due to the presence of electron acceptor NO_2^- (10 mgN/L), and contrasted with the minimal levels observed with the ratio of 30:0 (Figure 2b). Compared with 10:20, the reaction in Figure 2b had more electron donors from NH_4^+ .

3.2. N₂O Emission in Full Nitrification Process

Figure 3 shows the variation of N₂O emission during full nitrification (full nitrification effluent +NH₄Cl/NaNO₂) under different NH₄⁺-N and NO₃⁻-N ratios. As shown in Figure 3a–c, with decreasing NH₄⁺-N and increasing NO₃⁻-N, the time it took for N₂O to maximize decreased; however, the N₂O emission rates also decreased (0.051, 0.029, and 0.005, mgN/(gMLSS·L·h)). When the ratios of NH₄⁺-N to NO₃⁻-N were 30:0, 20:10, and 10:20, the maximum yields of N₂O were 0.46, 0.18, and 0.02 mgN/L, respectively. As shown in Figure 3a–c, the maximum production of N₂O occurred as NH₄⁺-N was oxidized, which was the same as for the N₂O emissions in the AOB enrichment system. Figure 3 also shows that under the four proportional gradients, the total N₂O production was 1.17, 0.40, 0.05, and 0.03 (mgN/L), which indicated that with full nitrification (where AOB and NOB co-exist), the production of N₂O mainly depended on the initial concentration of NH₄⁺, rather than the concentration of NO₃⁻. In addition, as shown in Figure 3d, in the absence of COD, a very small amount of N₂O was still generated when NO₃⁻ was added to the system, which may be caused by the denitrification of using internal organic matter in sludge.

Figure 3. N₂O emission during full nitrification (full nitrification effluent +NH₄Cl-N/NaNO₂-N, DO = 0.5 mg/L).

Figure 4 shows the variation of N₂O emissions during full nitrification (full nitrification effluent +NaNO₂ 20 mgN/L). This batch test added 20 mgN/L NaNO₂ to the nitrification system effluent and investigated the oxidation of NO_2^- by NOB to produce N_2O under different DO concentrations. As shown in this figure, N₂O reached its maximum value after 30 min, and its maximum production decreased with increasing DO, with values of 0.054 mg/L, 0.051 mg/L, 0.014 mg/L, and 0.007 mg/L. The NO₂⁻ oxidized to NO₃⁻ within 60 min. After 60 min, no NO_2^- remained in the system (data not shown), but the production of N_2O was not 0, which indicated that during full nitrification, there was still N_2O production during NO_2^- oxidation to NO_3^- by NOB. Although the amount was very small, this N₂O may come from microorganisms using endogenous substances to provide electrons for denitrification. During the reaction, the total production of N₂O was 0.14 mg/L, 0.09 mg/L, 0.04 mg/L, and 0.03 mg/L for the four different DO gradients, and the proportion of N₂O in influent NO₂⁻-N was 0.70%, 0.45%, 0.20%, and 0.15%. The percentage was smaller than N_2O production in an AOB enriched system (Figure 2d), which was 1.17% (when DO = 0.5 mg/L) and indicated that NO₂⁻ in an AOB enriched system was more readily denitrified than with full nitrification.

As shown in Figures 2 and 3, under the same ratio of NH_4^+ -N to NO_2^- -N and NO_3^- -N (DO = 0.5 mg/L), and under four proportional gradients, in the AOB system with NO_2^- , the total N₂O emissions were 2.81, 11.30, 65.20, and 11.67 times greater than the total N₂O emission during full nitrification, which indicated that under the same conditions of influent NH_4^+ -N, partial nitrification produced more N₂O than full nitrification. During partial nitrification, NO_2^- was more involved in autotrophic denitrification of AOB as a product, while during full nitrification, NO_3^- would not participate in autotrophic denitrification as a nitrification product. Moreover, NO_2^- further oxidized to NO_3^- by NOB as an intermediate product of full nitrification; therefore, only a small amount of NO_2^- was involved in autotrophic denitrification by AOB.

Figure 4. N₂O emission during full nitrification (full nitrification effluent +NaNO₂-N 20 mgN/L).

4. Conclusions

The N₂O emission in partial and full nitrification of actual domestic wastewater was investigated under specific conditions and yielded the following conclusions:

(1) The presence of influent NH_4^+ was the driving force of N_2O emissions in full and partial nitrification processes.

(2) Compared with full nitrification, NO_2^- was more likely to participate in denitrification during partial nitrification to produce N_2O .

(3) Under four proportional gradients, the total production of N_2O during partial nitrification was 2.81, 11.30, 65.20, and 11.67 times greater than the total N_2O production during full nitrification.

Author Contributions: P.L.: Investigation, Sampling, Data curation, Writing – original draft; Y.L.: review & editing; P.L.: Investigation, Sampling, Data curation, Writing – original draft; Y.L.: review & editing; S.W.: Resources, Funding acquisition; Y.P.: Supervision, Visualization. S.W.: Resources, Funding acquisition; Y.P.: Supervision, All authors have read and agreed to the published version of the manuscript.

Funding: This research project was financially supported by National Key R&D Program of China (Grant No. 2021YFC3200601) and Yancheng Institute of Technology's Start-up Research Fund.

Data Availability Statement: The original data is backed up on my computer, ready for investigation.

Conflicts of Interest: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

- 1. Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Zhou, B. *IPCC Sixth Assessment Report, Climate Change* 2021: *The Physical Science Basis*; Cambridge University Press: Cambridge, UK, 2021.
- Ying, L.I.; Niu, S.L.; Wang, Y.Z.; Han, K.H.; Zhou, W.B.; Jun, W. Mechanism of N₂O reduction by biomass gasification gas reburning. *J. Fuel Chem. Technol.* 2021, 49, 1435–1443.
- Desloover, J.; Vlaeminck, S.E.; Clauwaert, P.; Verstraete, W.; Boon, N. Strategies to mitigate N₂O emissions from biological nitrogen removal systems 2012 Current Opinion in Biotechnology. *Curr. Opin. Biotechnol.* 2012, 23, 474–482. [CrossRef]
- Law, Y.; Ye, L.; Pan, Y.; Yuan, Z. Nitrous oxide emissions from wastewater treatment processes. *Philos. Trans. Soft Heroyal Soc.* B-Biol. 2012, 367, 1265–1277. [CrossRef]
- Kampschreur, M.J.; Temmink, H.; Kleerebezem, R.; Jetten, M.S.; van Loosdrecht, M.C. Nitrous oxide emission during wastewater treatment. *Water Res.* 2009, 43, 4093–4103. [CrossRef]
- 6. Ahn, J.H.; Kim, S.P.; Park, H.K.; Rahm, B.; Pagilla, K.; Chandran, K. N₂O Emissions from activated sludge processes, 2008–2009: Results of a national monitoring survey in the United States. *Environ. Sci. Technol.* **2010**, *44*, 4505–4511. [CrossRef]

- Arp, D.J.; Stein, L.Y. Metabolism of inorganic N compounds by ammonia-oxidizing bacteria. *Crit. Rev. Biochem. Mol. Biol.* 2003, 38, 471–495. [CrossRef] [PubMed]
- 8. Hooper, A.B.; Vannelli, T.; Bergmann, D.J.; Arciero, D.M. Enzymology of the oxidation of ammonia to nitrite by bacteria. *Antonie Van Leeuwenhoek* **1997**, *71*, 59–67. [CrossRef] [PubMed]
- Kim, S.W.; Miyahara, M.; Fushinobu, S.; Wakagi, T.; Shoun, H. Nitrous oxide emission from nitrifying activated sludge dependent on denitrification by ammonia-oxidizing bacteria. *Bioresour. Technol.* 2010, 101, 3958–3963. [CrossRef]
- Chandran, K.; Stein, L.Y.; Klotz, M.G.; van Loosdrecht, M.C. Nitrous oxide production by lithotrophic ammonia-oxidizing bacteria and implications for engineered nitrogen-removal systems. *Biochem. Soc. Trans.* 2011, 39, 1832–1837. [CrossRef] [PubMed]
- 11. Ni, B.J.; Peng, L.; Law, Y.; Guo, J.; Yuan, Z. Modeling of Nitrous Oxide Production by Autotrophic Ammonia-Oxidizing Bacteria with Multiple Production Pathways. *Environ. Sci. Technol.* **2014**, *48*, 3916–3924. [CrossRef] [PubMed]
- 12. Wunderlin, P.; Mohn, J.; Joss, A.; Emmenegger, L.; Siegrist, H. Mechanisms of N₂O production in biological wastewater treatment under nitrifying and denitrifying conditions. *Water Res.* **2012**, *46*, 1027–1037. [CrossRef]
- Yang, Q.; Liu, X.; Peng, C.; Wang, S.; Sun, H.; Peng, Y. N₂O production during nitrogen removal via nitrite from domestic wastewater: Main sources and control method. *Environ. Sci. Technol.* 2009, 43, 9400–9406. [CrossRef]
- 14. Pan, Y.; Ni, B.J.; Bond, P.L.; Ye, L.; Yuan, Z. Electron competition among nitrogen oxides reduction during methanol-utilizing denitrification in wastewater treatment. *Water Res.* 2013, 47, 3273–3281. [CrossRef]
- 15. Kampschreur, M.J.; Tan, N.C.G.; Kleerebezem, R.; Picioreanu, C.; Jetten, M.S.M.; van Loosdrecht, M.C.M. Effect of dynamic process conditions on nitrogen oxides emission from a nitrifying culture. *Environ. Sci. Technol.* **2008**, *42*, 429–435. [CrossRef]
- 16. Ding, R.W.; Xu, X.; Ji, R.P. Study on the integrated Suspended Filler Bed-Artificial Wetland for rural sewage treatment. *Technol. Water Treat.* **2020**, *46*, 110–115 + 120.
- 17. Gong, Y.K.; Feng, H.; Ren, L.F.; Li, M.L.; Sun, H.W. Utilization of pH to Regulate the PAOs-GAOs Competition and N₂O Release in Denitrification Phosphorus Removal Process. *Environ. Sci. Technol.* **2021**, *44*, 145–153.
- Masuda, S.; Sano, I.; Hojo, T.; Li, Y.Y.; Nishimura, O. The comparison of greenhouse gas emissions in sewage treatment plants with different treatment processes. *Chemosphere* 2018, 193, 581–590. [CrossRef]
- Li, K.; Duan, H.; Liu, L.; Qiu, R.; van den Akker, B.; Ni, B.J.; Ye, L. An Integrated First Principal and Deep Learning Approach for Modeling Nitrous Oxide Emissions from Wastewater Treatment Plants. *Environ. Sci. Technol.* 2022, 56, 2816–2826. [CrossRef] [PubMed]
- 20. Rassamee, V.; Sattayatewa, C.; Pagilla, K.; Chandran, K. Effect of oxic and anoxic conditions on nitrous oxide emissions from nitrification and denitrification. *Biotechnol. Bioeng.* 2011, 108, 2036–2045. [CrossRef]
- Pan, Y.T.; Ye, L.; Yuan, Z.G. Effect of H₂S on N₂O Reduction and Accumulation during Denitrification by Methanol Utilizing Denitrifies. *Environ. Sci. Technol.* 2013, 47, 8408–8415.
- 22. APHA. Standard Methods for the Examination of Water and Wastewater; Port City Press: Baltimore, MD, USA, 1998.
- Zhao, W.; Wang, Y.; Liu, S.; Pan, M.; Yang, J.; Chen, S. Denitrification activities and N₂O production under salt stress with varying COD/N ratios and terminal electron acceptors. *Chem. Eng. J.* 2013, 215–216, 252–260. [CrossRef]
- Quan, X.; Zhang, M.; Lawlor, P.G.; Yang, Z.; Zhan, X. Nitrous oxide emission and nutrient removal in aerobic granular sludge sequencing batch reactors. *Water Res.* 2012, 46, 4981–4990. [CrossRef] [PubMed]
- 25. Yu, R.; Kampschreur, M.J.; van Loosdrecht, M.C.M.; Chandran, K. Mechanisms and specific directionality of autotrophic nitrous oxide and nitric oxide generation during transient anoxia. *Environ. Sci. Technol.* **2010**, *44*, 1313–1319. [CrossRef] [PubMed]