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Abstract: Urbanization results in higher stormwater loadings of pollutants such as metals and
nutrients into surface waters. This directly impacts organisms in aquatic ecosystems, including
microbes. Sediment microbes are known for pollution reduction in the face of contamination,
making bacterial communities an important area for bioindicator research. This study explores
the pattern of bacterial responses to metal and nutrient pollution loading and seeks to evaluate
whether bacterial indicators can be effective as a biomonitoring risk assessment tool for wetland
ecosystems. Microcosms were built containing sediments collected from wetlands in the urbanizing
Pike River watershed in southeastern Wisconsin, USA, with metals and nutrients added at 7 day
intervals. Bacterial DNA was extracted from the microcosm sediments, and taxonomical profiles
of bacterial communities were identified up to the genera level by sequencing 16S bacterial rRNA
gene (V3–V4 region). Reduction of metals (example: 90% for Pb) and nutrients (example: 98% for
NO3−) added in water were observed. The study found correlations between diversity indices of
genera with metal and nutrient pollution as well as identified specific genera (including Fusibacter,
Aeromonas, Arthrobacter, Bacillus, Bdellovibrio, and Chlorobium) as predictive bioindicators for ecological
risk assessment for metal pollution.

Keywords: microcosm; constructed wetland; bioindicator; metal; pollutant; ecological risk assess-
ment; water pollution

1. Introduction

The root stressors of urbanization impact aquatic ecosystems, including the bacterial
community [1–4] (Figure 1). In this context, bioindicators can be very helpful as they can
detect signals of pollutant impacts across various temporal and spatial scales and provide a
dynamic picture of the environment (Figure 1) [5–7]. Previous studies have identified po-
tential plant bioindicators for pollutants including metals and nutrients [2,8]. Investigating
wetland bacterial communities as bioindicators is an emerging field of study to understand
the effects of land use change, as well as associated pollutant inputs (nutrients and metals),
on the maintenance of ecosystem stability and resilience after contamination [1–3,9–13].
These studies have shown that bacteria found in wetland sediments reduce the levels of
pollutants through biogeochemical processes that retain pollutants in the sediments, thus
contributing to overall ecosystem health [4,14–17]. Hence, bioindicators such as sediment
bacteria are responsive enough in detecting ecological variations in watersheds [18,19] and
thus are helpful in conducting sediment risk assessments from pollutants such as metals or
nutrients (Figure 1) [7,20,21]. The current study utilized microcosms consisting of sediment
collected from constructed wetlands in the Pike River, a rapidly urbanizing watershed in
southeastern Wisconsin. These wetlands were constructed for the purpose of stormwater
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control [22–24] and receive runoff from a combination of agricultural, commercial, resi-
dential, undeveloped, and industrial land uses [2,25]. Hence, it is a suitable site to depict
the impact of rapid urbanization (Figure 1). Microcosm systems have been widely used to
examine the fate, transport, and treatment of pollutants in a wetland ecosystem [26–28].
An experimental microcosm setup allows for manipulations in treatment, pollutant types,
and loading rate that are not possible in natural systems, allowing for the identification of
detailed and specific response patterns of bioindicators when exposed to pollutants in a
continuous manner [29]. In terms of bacterial indicators, diversity indices are used widely
to characterize bacterial communities [26,30] with the identification of specific bacterial
taxa as bioindicators within a community, illuminating crucial information about pollutants
in an ecosystem [31].
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Figure 1. Risk propagation model for watershed-based aquatic ecological risk assessment (adapted
from [32,33]).

The overarching goal of the study was to determine whether bacterial indicators can
serve as a tool for ecological risk assessment of wetland ecosystems (Figure 1), leading to
the research questions for this study: (1) Does the response of sediment bacterial indicators
(Shannon and Simpson diversity indices of genera) correlate with manipulated changes in
pollutant concentration? (2) Can microcosm experiments identify specific assemblages of
bacterial taxa that can serve as predictive bioindicators for water pollution?

2. Materials and Methods
2.1. Sample Collection and Construction of Microcosms

Sediment samples were collected from four wetland sites (1–4) (Figure 2) in the
Pike River watershed during summer 2017. These wetlands were constructed for flood
mitigation between 2001 and 2008 [22–24], and to the current day receive stormwater runoff
from catchments comprised of agricultural, commercial, residential, undeveloped, and
industrial land uses (Figure 2, Table 1) [2,8,25]. Hence, it is a suitable site to depict the
impact of rapid urbanization.

Two sediments samples were collected per wetland site using an Ekman dredge grab
sampler (15 × 15 × 25 cm). Sediment samples were collected and held in 4.73-L plastic
closed containers, transported on ice to the laboratory, and stored at 0–2 ◦C. Microcosms
were constructed using similar 4.73 L plastic containers (22 cm diameter × 18 cm height)
where sediments were placed to a level of 5 cm from the bottom with reverse osmosis (RO)
water added to a level of 10 cm from the bottom [34,35] (Figure 3). Microcosms were placed
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in a controlled growth chamber with a temperature between 25 and 30 ◦C throughout the
duration of the study.
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Table 1. Wetland site characteristics, wetland sites 1–4 in the Pike River watershed (adapted from [2,25]).

Land Use Percent in Pike River Watershed

Wetland
Site

Watershed
Area (ha)

Percent Percent Percent Percent Percent

Residential Commercial Industrial Agricultural Underdeveloped

1 104.45 11 15.1 12.1 61.6 0
2 334.18 42.3 0 0 57.5 0
3 493.72 15.7 14.2 20.08 0 49.3
4 720 0 72.2 20.2 0 7.2
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Figure 3. Schematic diagram of the microcosms with sediment and reverse osmosis (RO) water
and sediment.

2.2. Types of Microcosms

For each wetland site, six microcosms were built (24 total). Two treatments micro-
cosms (one high and one low pollutant concentration) were created to examine the effects
of metals and nutrients. Each set of treatment microcosms was paired with a control micro-
cosm where no pollutants were added (Figure 4). The nutrient experiments (also called
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nutrient treatments or nutrient microcosms) and the metal experiments (also called metal
treatments or metal microcosms) both followed similar designs, with pollutants added to
the microcosms on day 0 as well as the water changed, and pollutants were re-introduced
in 7 day cycles. Microcosm experiments exposed to metal pollution ran for 15 days, while
nutrient experiments ran for 30 days.
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Figure 4. Experimental design for wetland sediment microcosm experiments that manipulated
loadings of pollutant metals (metal treatments) and pollutant nutrients (nutrient treatments). Controls
include sediment without pollutants. In test sediments, pollutants were added in two (low and high)
concentrations. This same design was followed to build microcosms with sediments collected from
wetland sites 1, 2, 3, and 4.

2.3. Pollutants

The wetland site sediments used to construct the microcosms are dominated by urban
and agricultural land uses (Figure 2). A previous study detected the presence of nutrients
and metals in the water and sediments in these wetland sites [2]. The treatment microcosms
were loaded with phosphate (Na2HPO4) and nitrate (KNO3) for nutrients, and lead (PbNO3)
and copper (CuSO4) for metals. Pollutants were dissolved in RO water to produce the
desired concentrations (low and high concentrations; see Table 2) and poured over the
sediments [27,34–39]. Control microcosms were constructed with wetland sediment and
RO water and ran the course of the experiment without pollutants added.

Table 2. Metal and nutrient microcosm experiment design with sediment treatment type for each
wetland (1, 2, 3, and 4) in control and test sediments.

(A) Metal Microcosm

Test Sediment

Metal Added to Water Control Low Concentration High Concentration

Cu as CuSO4 0 mg/L 0.05 mg/L 0.15 mg/L
Pb as PbNO3 0 mg/L 0.1 mg/L 0.3 mg/L
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Table 2. Cont.

(B) Nutrient Microcosm

Test Sediment

Nutrient Added to Water Control Low Concentration High Concentration

NO3
− as KNO3 0 mg/L 5.0 mg/L 15.0 mg/L

PO4
3− as Na2HPO4 0 mg/L 1.0 mg/L 3.0 mg/L

2.4. Measurements in Microcosm

Both high and low concentrations of metals (Pb and Cu) and nutrients (NO3
− and

PO4
3−) were added to the microcosms at day 0 (Figure 4, Table 2). Pollutant concentration in

microcosm water was measured along with water quality characteristics (pH, temperature,
dissolved oxygen, specific conductance, and turbidity) on days 1, 4, 7, 8, 11, and 15 for metal
microcosms and days 1, 4, 7, 8, 11, 15, 16, 22, 23, and 30 for nutrient microcosms (Figure 4).
In all treatment microcosms, the water was decanted down to the level of the sediment
layer and replaced with water containing initial treatment concentrations of pollutants
at 7 day intervals (once in metal microcosms, twice in nutrient microcosms). The 7 day
interval was selected on the basis of the recommended retention time for artificial wetlands
(marshes and ponds) in wastewater treatment systems (4–12 days) from the United States
Environmental Protection Agency [40].

Within the metal microcosms, concentrations of Pb and Cu in water (WM in Figure 4)
were measured using inductively coupled plasma mass spectrophotometry (ICP-MS).
Analysis was conducted at the University of Wisconsin-Milwaukee School of Freshwater
Sciences utilizing a Thermo Scientific Element 2 High Resolution Sector field ICP-MS [41].
In the nutrient microcosms, NO3

− and PO4
3− in water were analyzed with an HACH DR

2800TM spectrophotometer using powder pillow test kits—cadmium reduction method for
NO3

− (in mg/L) and ascorbic acid method for PO4
3− (in mg/L). Water quality parameters

in all microcosms were measured using YSI 6600 EDS™ multi-parameter sondes [2,42].
In addition, sediment samples were collected on days 0 and 15 from metal microcosms

and on days 0 and 30 from nutrient microcosms to identify bacterial taxonomical diversity of
genera (Figure 4). The bacterial DNA was extracted using a DNATM spin kit for soil [2,43–45].

To measure concentrations of metals in the sediments (SM in Figure 4), we collected
samples on days 0, 7, and 15 and analyzed them using X-ray fluorescence (XRF) [2]. Due to
constraints in sediment amount, for the day 0 sediment measurements, aggregate sediment
samples by wetland sites were used before dividing among the microcosms.

2.5. Data Analysis

Distributional properties were examined for all data collected from the microcosm
experiments, and all statistical analyses were conducted using JMP™ Software Version
14.0 [46]. Contrasts in pollutant concentrations among treatment levels and the exper-
imental timeline for water nutrients (WN), water metals (WM), and sediment metals
(SM) (Figure 4) were calculated for each treatment using multifactor analysis of variance
(ANOVA). The effects of treatment level and experimental timeline on bacterial indicators
were also examined using multifactor analysis of variance (ANOVA).

Forward stepping multiple regression was used to determine best-fit models for
the predictive linear relationships between concentrations of pollutants added to the
microcosms (metals and nutrients) and bacterial community indicators (Shannon and
Simpson diversity indices of genera).

The taxonomical profile of the sediment bacterial communities was determined from
sequencing of the 16S bacterial rRNA (v3–v4 region) [2] identified to the genus level. The
sequences were retrieved electronically. The bioinformatics analyses were performed with
the software Mothur (v1.36.1). This analysis used the SILVA database (Release Version
128) for sequence alignment and Greengenes Reference Taxonomy (Version13_8_99) for
taxonomy [2,47].
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Hierarchical cluster analysis was performed with the identified communities in each
wetland site for each type of microcosm (metal and nutrient). On the basis of visual exami-
nation of change in abundance within the clusters throughout the experiments relative to
their response to the pollutants, we identified the bacterial genera and categorized them as
intolerant, sensitive, and tolerant.

3. Results
3.1. Time and Treatment Effects on Metals and Nutrients in Microcosms

The study aimed to find out if bacterial indicators can be a tool for ecological risk
assessment for wetland ecosystems. The literature has shown that bacteria found in wetland
sediments can decrease pollutant levels [14–17]. Assuming the bacterial communities
present in the microcosms will help in the reduction. The first analysis of the study was
conducted to identify any pollutant reduction in the microcosms across the experimental
timeline. Effects of treatment level on concentrations of metals (in the water and sediments)
and nutrients (in water) across time are shown in Appendix A Table A1.

In both low and high treatment levels, metal microcosms showed a significant re-
duction in Pb concentrations in the microcosm water (p-value < 0.0001) (Figure 5 and
Appendix A Table A1). The low treatment microcosm’s concentrations of Pb were 0.00409 ppm
and 0.00037 ppm on days 0 and 15, respectively (90% reduction). The high treatment micro-
cosm’s concentrations of Pb were 0.00575 ppm and 0.00038 ppm on days 0 and 15, respectively
(93% reduction) (Figure 5).

In sediments, As decreased from 0.87 ppm at day 0 (control) to 0.35 ppm in low (59%
reduction) and 0.31 ppm in the high (64% reduction) treatment microcosms (Figure 6 and
Appendix A Table A1). However, the Pb detected in the microcosm showed a different
story. The Pb in the microcosm increased throughout the experiment from 0.002 ppm at
day 0 (control) to 0.004 ppm in low (100% increase) and 0.008 ppm in high (300% increase)
treatments. None of the other metals from sediment (Ag, Cd, Fe, Hg, Ni, Rb, Zn) showed
any significant changes (Figure 6 and Appendix A Table A1).

Nutrient concentration in microcosm water decreased over the course of the experiment
for both low and high treatments of NO3

− (p-value = 0.0036) and PO4
3− (p-value < 0.0001)

(Figure 5). NO3
− concentration decreased from 7.28 mg/L at day 0 to 0.14 mg/L (98%

reduction) for the low treatment and 0.87 mg/L to 0.86 mg/L (1.14% reduction) for the
high treatment. PO4

3− concentration decreased from 1.12 mg/L at day 0 to 0.5 mg/L (55%
reduction) for the low treatment and 1.635 mg/L to 0.73 mg/L (55% reduction) for the high
treatment. The effect of treatment level was not significant for Pb, Cu, NO3

−, and PO4
3−

(Figure 5 and Appendix A Table A1).

3.2. Time and Treatment Effects on Bacterial Bioindicators

The sequence alignment and taxonomical analysis of the extracted bacterial DNA
sequences were conducted using SILVA database Release Version 128 and Greengenes
Reference Taxonomy Version 13_8_99 [47]. Taxonomic profiles were determined up to
the genus level of classification for each microcosm. Among a total of 175,207 sequences,
70 unique phyla, and 32,848 unique genera were identified. A list of the major phyla is
listed in Appendix A Table A2. Shannon and Simpson diversity indices of genera were
used to calculate the bacterial indicators on the basis of the unique genera identified across
both nutrient and metal microcosms (Figure 7).

Bioindicators of wetland sediments have been observed to be sensitive and responsive
in detecting ecological changes in watersheds [18,19]. In both low and high treatment metal
microcosms, the Simpson diversity indices of genera decreased significantly throughout
the experiments compared to the control (p-value = 0.0314). On day 0, Simpson diversity
index was measured to be 74 and at day 15 decreased to 69 in the low (6.75% reduction)
and 41 in the high (44.59% reduction) treatment microcosms (Figure 7 and Appendix A
Table A3).
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Figure 5. (A) Median concentration of Pb and Cu (mg/L) in metal microcosms (for wetland sites
1–4) at days 0, 1, 7, and 15 of the experiment. (B) Median concentration of NO3

− and PO4
3− (mg/L)

in nutrient microcosms (for wetland sites 1–4) at days 0, 1, 15, and 30 of the experiment. This test
included a control treatment where no pollutants were added, accompanied by sets of low and high
concentrations in the treatment microcosms, where metals (Pb and Cu) and nutrients (NO3

− and
PO4

3−) were added to the water as per the experimental design in Table 2. Bars show mean ± 1 SE.
Multifactor ANOVA tables are in Appendix A Table A1.

In the nutrient microcosms, the Shannon (p-value = 0.0013) and Simpson (p-value = 0.0418)
diversity indices of genera decreased significantly throughout the experiment. At day
0, Shannon diversity was measured to be 4.95 and decreased to 4.85 at the low (2.02%
reduction) and 4.90 (1.01% reduction) at the high treatment microcosms (Figure 7 and
Appendix A Table A3). For nutrient microcosms, the Simpson diversity index decreased
from 78 at day 0 to 60 (23 % reduction) in the low and 70 (10.25% reduction) in the high
treatment microcosms at day 15. However, these decreases were statistically significant
compared to the control (Figure 7 and Appendix A Table A3).

3.3. Effects of Pollutants on Bacterial Bioindicators

In the next part, relationships between pollutants and the bacterial bioindicators were
examined. Forward-stepping multiple regression analyses found significant, predictive
relationships between the bioindicators and metal pollutant levels measured in the water
(Table 3). The effect of increasing Cu concentration in the water of metal microcosms
significantly decreased the Shannon and Simpson diversity indices of genera (Table 3;
Figure 8). Higher Pb concentration caused a significant increase in the Shannon and
Simpson diversity indices of genera (Table 3; Figure 8). For sediment metals in metal
microcosms, Zn concentration positively correlated with increased Simpson diversity of
genera (Figure 8). There were no significant relationships between nutrient loading in the
nutrient microcosms and bacterial bioindicators.
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Water 2022, 14, x FOR PEER REVIEW 8 of 22 
 

 

genus level of classification for each microcosm. Among a total of 175,207 sequences, 70 
unique phyla, and 32,848 unique genera were identified. A list of the major phyla is listed 
in Appendix A Table A2. Shannon and Simpson diversity indices of genera were used to 
calculate the bacterial indicators on the basis of the unique genera identified across both 
nutrient and metal microcosms (Figure 7). 

 
Figure 7. Shannon and Simpson diversity indices of genera during at days 0 and day 15 of metal (A) 
and nutrient (B) microcosm experiments. This test included a control treatment where no pollutants 
were added, accompanied by sets of low and high concentrations in the treatment microcosms, 
where metals (Pb and Cu) and nutrients (NO3− and PO43−) were added to the water as per the exper-
imental design in Table 2. Bars show mean ± 1 SE. Multifactor ANOVA results are presented in 
Appendix A Table A3. 

Bioindicators of wetland sediments have been observed to be sensitive and respon-
sive in detecting ecological changes in watersheds [18,19]. In both low and high treatment 
metal microcosms, the Simpson diversity indices of genera decreased significantly 
throughout the experiments compared to the control (p-value = 0.0314). On day 0, Simpson 
diversity index was measured to be 74 and at day 15 decreased to 69 in the low (6.75% 
reduction) and 41 in the high (44.59% reduction) treatment microcosms (Figure 7 and Ap-
pendix A Table A3). 

In the nutrient microcosms, the Shannon (p-value = 0.0013) and Simpson (p-value = 
0.0418) diversity indices of genera decreased significantly throughout the experiment. At 
day 0, Shannon diversity was measured to be 4.95 and decreased to 4.85 at the low (2.02% 
reduction) and 4.90 (1.01% reduction) at the high treatment microcosms (Figure 7 and Ap-
pendix A Table A3). For nutrient microcosms, the Simpson diversity index decreased from 
78 at day 0 to 60 (23 % reduction) in the low and 70 (10.25% reduction) in the high treat-
ment microcosms at day 15. However, these decreases were statistically significant com-
pared to the control (Figure 7 and Appendix A Table A3). 

3.3. Effects of Pollutants on Bacterial Bioindicators 
In the next part, relationships between pollutants and the bacterial bioindicators were 

examined. Forward-stepping multiple regression analyses found significant, predictive 
relationships between the bioindicators and metal pollutant levels measured in the water 
(Table 3). The effect of increasing Cu concentration in the water of metal microcosms 

Figure 7. Shannon and Simpson diversity indices of genera during at days 0 and day 15 of metal
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where metals (Pb and Cu) and nutrients (NO3

− and PO4
3−) were added to the water as per the

experimental design in Table 2. Bars show mean ± 1 SE. Multifactor ANOVA results are presented in
Appendix A Table A3.
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Table 3. Multiple regression model with estimate (slope), p-value (significance), and combined R2 of
the relationship between Shannon and Simpson diversity indices of genera and the concentration
of Pb and Cu added (mg/L) to the water of metal microcosms. * in the p-value column indicates a
strong probability of significance.

Genera Shannon Genera Simpson

Diversity Index Diversity Index

Parameter Estimate p-Value R2 Estimate p-Value R2

Concentration of Pb (mg/L) in water 254 <0.0001 *
0.64

10187 <0.0001 *
0.64Concentration of Cu (mg/L) in water −116 <0.0001 * 1797 <0.0001 *

3.4. Predictive Indicator Categories Based on Key Pollutants in Field and Microcosm Study

In the last step of the analysis, specific bacterial genera were identified in relation
to the responses of the bacterial indicators with the metal pollutants (Pb and Cu). The
results above indicate that metals added to the microcosms have a significant effect on
the sediment bacterial community. To depict the abundance level of each genus identified
relative to their response to metals added, we performed a hierarchical cluster analysis in
each metal microcosm (Figures 9 and 10). On the basis of these clusters, we divided the
identified bacterial genera into three categories:
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metal microcosm and diversity indices of genera are listed in Appendix A Table A4.

Intolerant bacterial genera: genera that were present at the start of an experiment but
disappeared later in both the low and high treatments.

Sensitive bacterial genera: genera that were present in the low treatment but absent in
the high treatment of the metal microcosm near the end of the experiment.

Tolerant bacterial genera: genera present at the start and end of the low and high treatments.
Additional sub-types of tolerant genera were also observed and were designated as

less tolerant (genera present at the start and end of the low treatments) and highly tolerant
(genera present at the start and end of the low and high treatments).

Some bacterial genera not found at the start of the experiment appeared later. These
genera may have been introduced by contamination or were simply not detected at the
start of the experiment. Due to this inconsistency, these genera were not included in the
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analysis. The detected genera among all the wetland site microcosms are listed in Table 4
by their category (intolerant, sensitive, and tolerant).
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Figure 9. Hierarchical cluster analysis of the bacterial genera detected in the sediments of the treatments
of wetland site 1 (A) and 2 (B) metal microcosm, where day 0 = beginning treatment of the metal
microcosm experiment; C Day 15 = treatment of the metal microcosm experiment of the native control
sediment with no metals added; LC Day 15 = end treatment (day 15) of the metal microcosm experiment
with metals (Pb and Cu) added in lower concentrations in the water to the sediment; HC Day 15 = end
treatment (day 15) of the metal microcosm experiment with metals (Pb and Cu) added in higher
concentrations in the water to the sediment, as illustrated in the experimental design under Table 2.
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Table 4. Categories of bacterial indicator genera (sensitive, tolerant, intolerant) in the metal micro-
cosms of wetland sites 1, 2, 3, and 4.

Genera Detected in Metal Microcosm

Intolerant Sensitive Tolerant

Less tolerant Highly tolerant

Methylobacterium,
Microbacterium,
Shewanella,
Cupriavidus,
Enterococcus,
Rhizobium, Enterobacter,
Corynebacterium,
Chlorobium, Exiguobacterium,
Psychrobacter

Aquicella,
Agrobacterium,
Gemmata,
Sphingomonas,
Nitrospira,
Balneimonas,
Chlorobaculum,
Aeromonas,
Pedosphaera,
Arthrobacter

Aquicella,
Candidatus Solibacter,
Burkholderia, GOUTA19,
Holophaga, Sphingomonas,
Syntrophus, Anaerolinea,
Geobacter,
Cystobacter, Desulfococcus,
Syntrophobacter, Paludibacter,
Nitrospira, Methylocaldum,
WCHB1-05, C1_B004,
Candidatus_Xiphinematobacter,
Synechococcus, Balneimonas,
Trichococcus, Mycobacterium,
Sulfurimonas, Epulopiscium,
Ralstonia, Pedosphaera,
Bdellovibrio, Flavobacterium,
Clostridium, SJA-88,
Luteolibacter,
Treponema, Caldilinea, LCP-6,
Thiobacillus, Rhodoplanes,
Sulfuritalea, Rhodoferax,
Methylotenera, Planctomyces,
Rhodobacter,
Spirochaeta, Halomonas,
Gallionella, Roseomonas,
PSB-M-3, Dechloromonas,
Bacillus, Devosia,
Hydrogenophaga,
Sediminibacterium,
Phenylobacterium,
Sulfuricurvum,
Pedobacter,
Hyphomicrobium,
Pseudomonas

Nocardioides, Holophaga,
Gemmata, Syntrophus,
Bacteroides, Anaerolinea,
Geobacter,
Candidatus_Solibacter,
Cystobacter,
Desulfococcu, Syntrophobacter,
GOUTA9, Paludibacter,
Nitrospira, Clostridium,
Blvii28, Methylocaldum,
Synechococcus,
Candidatus_Xiphinematobacter,
WCHB1-05, Aeromonas,
Luteolibacter, C1_B004,
Methylibium, Anaerovorax,
Treponema, Sulfurimonas,
Chlorobaculum, Epulopiscium,
Caldilinea,
Pedosphaera, Bdellovibrio,
Flavobacterium, SJA-88,
Blvii28, LCP-6,
Thiobacillus, Rhodoplanes,
Sulfuritalea,
Rhodoferax, Methylotenera,
Rhodobacter, Gemmatimonas,
Spirochaeta, Halomonas,
Gallionella, Roseomonas,
PSB-M-3, Fusibacter,
Dechloromonas, Bacillus,
Devosia, Sediminibacterium,
Hydrogenophaga,
Prosthecobacter,
Phenylobacterium,
Sulfuricurvum,
Arthrobacter, Pedobacter,
Hyphomicrobium,
Pseudomonas, Ralstonia

4. Discussion

Root stressors of urbanization, such as land-use change, contribute to pollutant ac-
cumulation in aquatic ecosystems and causes environmental hazards (Figure 1) [48–50].
Studies in urbanized intertidal sediments in China [48] and wetlands in India [49] have
shown how pollutants such as metals and nutrients can accumulate in an ecosystem. In
order for the risks imposed by these accumulated pollutants to be understood, it is cru-
cial to identify responsive bioindicators able to detect ecological effects [18,19]. In this
regard, sediment bacteria are an emerging bioindicator as their communities are highly
impacted by and are resilient to pollutants. Both these criteria are important in order to be a
bioindicator [6,14–17]. The current study aimed to establish bacterial bioindicators as a risk
assessment tool by investigating correlations between wetland sediment bacterial diversity
with metal and nutrient pollutant concentrations and then identify specific bacterial genera
from the wetlands as predictive bioindicators.
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4.1. Time and Treatment Effects on Pollutants in Microcosms

In the first step of analysis reduction in the pollutants being added to the microcosms
across the experimental timeline was examined. It was observed that in the metal micro-
cosms, concentrations of Pb in water decreased significantly over time both in high and
low levels of treatment of the microcosm water (Figure 5), but an increase in Pb (in ppm)
in the sediments over time was also observed (Figure 5). This implies that the added Pb
was removed from the water column and accumulated in the sediments of the microcosms.
Aquatic ecosystems, such as wetlands, are known to retain metals such as Pb, forming
metal complexes, although this property of metal retention varies with sediment properties
such as adsorption and desorption [51]. A study in Savannah River site, Aiken, SC, USA,
examined contamination retention in constructed wetland sediment in the form of metal
retention (or recalcitrant factor). For Pb, the recalcitrant factor was 73%, indicating Pb can
bound to sediment strongly as Pb has an affinity for sulfide, thus forming strong com-
plexes [52]. In similar sediment studies for trace elements in Songkhla Lake, Thailand [51],
and Tablas de Daimiel wetland in Spain [53], the researchers also observed accumulation
of Pb, often in high concentrations [53], in sediment, and it was associated with reduced
sulfur fractions [51].

In the nutrient microcosms, the concentration of NO3
− and PO4

3− decreased signifi-
cantly over time both in high and low levels of treatment (Figure 5; Appendix A Table A1).
Previous studies have also shown wetlands treat water by removing these pollutants from
nutrient-rich waters by mechanisms such as bioretention [54–57]. However, the bioretention
varies with the media (sediment composition) [57].

4.2. Bacterial Bioindicators and Effect of Pollutants

The study examined the suitability of “bacterial bioindicators” for ecological risk
assessment in wetlands. Variation in the bacterial bioindicators (or the diversity indices)
across the experimental timeline were analyzed. In metal microcosms, the diversity indices
decreased over time (Figure 7). Bioindicators of wetland sediments are known to be highly
responsive to detecting ecological changes within watersheds [18,19], as observed for the
diversity indices of this experiment.

On the other hand, in relation to the specific pollutants, increasing Cu concentration in
the water of metal microcosms significantly decreased the Shannon and Simpson diversity
indices of genera (Figure 8; Table 3). Studies suggest that long-term exposure to heavy
metals such as Pb, Cu, Cd, and Zn can decrease the microbial biomass, activity, and diver-
sity [58]. A study in Ain River sediment, France, based on 16SrRNA genes quantification,
revealed that bacterial community structures showed a clear shift after Cu exposure [59].
Specifically, metals such as Cu (alone or in combination) affect the genetic structure of
the exposed bacterial community [59]. However, with increasing Pb concentrations in
water of the microcosm, there is a significant increase in both diversity indices (Figure 7;
Table 3). In addition, the detected metals in the sediments showed a similar relationship
with Pb in water, with higher Zn levels in sediments being correlated with higher Simpson
diversity indices of genera (Figure 8). Several studies have demonstrated a change in the
microbial community structure and function after exposure to metal pollution [60–62].
Heavy metal pollution has also been shown to create selective pressure on bacterial com-
munities [63,64]. Bacterial communities adapt with metal resistance genes becoming stably
present, resulting in their continuing presence even after long-term exposure to metal
pollutants [2,60–62,65,66]. For example, a study in Lake DePue, IL, USA, demonstrated
that metal pollution impacted microbial community structure and increased the abundance
only of certain metal resistance genes [61]. Certain evolutionary processes work behind
this selective pressure. Rensing et al. (2002) [67] suggest that mechanisms such as lateral
gene transfer (LGT) are the primary active evolutionary process by which soil or sediment
microbial communities adapt, which in turn impacts the diversity of a bacterial community
as certain genes increase in frequency [60].
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In nutrient microcosms, the Shannon diversity index was higher at the start of the
experiments but decreased over time (Figure 7; Appendix A Table A3). This is consistent
with other studies that showed phosphorus deficiency can negatively affect the growth and
development of microorganisms, thus reducing their number and diversity [68].

Overall, the bacterial diversity bioindicators were highly correlated with the manipu-
lated changes of pollutant loadings in the microcosms systems.

4.3. Finding of Bacterial Bioindicators

A bioindicator is a single or group of species whose status, functional abilities, or
population can represent a picture of the quality of the environment and the cumulative
effects of several pollutants present [6]. Soil microbial communities provide a multitude of
ecosystem services and thus play an important role in preserving ecosystem function. The
results of this study showed that metals have a significant impact on the sediment bacterial
community and specific bacterial genera concerning the metal pollutants were identified
and categorized (Table 4; Figures 9 and 10).

However, some genera were found to overlap among categories. For example, Gem-
mata and Sphingomonas were observed to be sensitive in the wetland 2 microcosms but
tolerant in the wetland 4 microcosms. This implies that there was a difference in the sedi-
ment chemistry across wetland sites in the watershed (Figure 2). However, some genera
had a very clear response trend. For example, Chlorobium was observed to be intolerant
to the exposure of heavy metals such as Pb and Cu in the microcosms (Figures 9 and 10;
Table 4. This genus disappeared in the treatment microcosms relative to the controls during
the experiment. Some genera such as Fusibacter, Chlorobaculum, Prosthecobacter, Nocardioides,
Aeromonas, and Arthrobacter were observed to be highly tolerant (or resistant) to the ex-
posure of heavy metals such as Pb and Cu in the microcosms (Figures 9 and 10; Table 4).
These genera were present throughout the experimental time in response to Pb and Cu (in
both low and high treatments of the microcosms) relative to the controls (Figures 9 and 10;
Table 4).

Bacterial genera such as Ralstonia, Pseudomonas, Flavobacterium, Clostridium, Bacillus, Pe-
dosphaera, Bdellovibrio, Holophaga, and Geobacter were observed to be tolerant (Figures 9 and 10;
Table 4). In some microcosms, these genera were less tolerant, and in some were highly
tolerant. As discussed before, this could have been due to the difference in the sediment
chemistry as the microcosms were built with sediments collected from different wetlands.
This also might be due to the fact possibly these genera belong to different species or strains;
hence, their tolerance level is different.

Among the tolerant genera identified, Ralstonia, Flavobacterium, Bacillus, Pseudomonas,
Clostrodium, Aeromonas, and Arthrobacter have been identified as Pb-resistant, remediating,
precipitating, and biomethylating, as well as Hg-resistant and bioremediating [69–76].
Previous studies have also identified Clostridium, Pseudomonas, Bacillus, and Arthrobacter
as Cu-resistant bacterial genera [77–82]. Bioindicators need to be responsive to a wide
range of stresses and be able to discriminate between anthropogenic changes and natural
variation [6]. In this study, a wide range of specific soil bacterial bioindicators were chosen
in relation to Pb and Cu exposure. Hence, these identified metal-resistant genera can be
used as ex-ante impact indicators for ecological risk assessment or biomonitoring tools in
constructed wetland ecosystems.

A limitation to this study is that we were only able to identify taxa up to the genus level.
In order for the correlation to be better understood, more specific analysis is needed, such as
identification of the bacterial genera to the species level. Moreover, bacterial communities
often develop metal-resistant genes (MRGs) [83] in response to metal pollution. Hence,
for future studies, identification of specific metal resistance genes, such as merA for Hg
resistance [84]; cop A, cop B, pco A, pco C, and pco D for Cu resistance; and pbr T for Pb
resistance [85] could be investigated to establish the functional capabilities of metal-resistant
bacterial communities.
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5. Conclusions

The objective of the study is to determine if bacterial bioindicators can serve as a tool
for ecological risk assessment in a wetland ecosystem. To achieve this objective, microcosm
systems with wetland sediments from the Pike River watershed were created to allow
manipulations of pollutant types (e.g., nutrient and metals) and loading rates. These
manipulations are not possible in a natural ecosystem and can help to determine specific
patterns of bioindicator response to pollutant exposure at a regular interval. Metals (Pb, Cu)
and nutrients (NO3

−, PO4
3−) were added to the microcosms at 7 day intervals. Bacterial

DNA was extracted from the microcosm sediments, and taxonomical profiles of bacterial
communities were identified up to the genera level. After analysis of the results, the
following conclusions can be made concerning the research questions of this study:

The sediment bacterial indicators (Shannon and Simpson diversity indices of genera)
were highly correlated with the pollutants, particularly the metals (Pb and Cu) added
to the microcosms. This answers the first research question. We observed that the Cu
added to the microcosm water negatively affected the bacterial diversity. The added Pb
accumulated from the water column to the sediment of the microcosms, which increased
the overall diversity of the bacterial community in relation to Pb. Hence, we observed
some highly Pb-resistant genera in the microcosm sediments in the next part of the analysis
where a specific assemblage of bioindicator bacterial genera in relation to metals such as
Pb and Cu were identified. The genera Ralstonia, Flavobacterium, Bacillus, Pseudomonas,
Clostrodium, Aeromonas, and Arthrobacter were identified as Pb-resistant, remediating, pre-
cipitating, and biomethylating by other studies in the literature and were also observed
in the bacterial community identified within this study. The hierarchical cluster analysis
in each metal microcosm showed the abundance level of each genus identified relative to
their response to metals. In terms of abundance, genera such as Fusibacter, Chlorobaculum,
Prosthecobacter, Nocardioides, Aeromonas, and Arthrobacter were identified as highly tolerant
to the stress of Pb and Cu by being present throughout the experimental time in both low
and high treatments of the microcosms relative to the controls. Genera such as Ralstonia,
Pseudomonas, Flavobacterium, Clostridium, Bacillus, Pedosphaera, Bdellovibrio, Holophaga, and
Geobacter were identified as tolerant (high or less). Chlorobium was identified as intoler-
ant as this genus disappeared in the treatment microcosms relative to the controls as the
experiment progressed.
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Appendix A

Table A1. Effect test from ANOVA showing the significance of experimental duration and treatment
level (high and low) on metal (Pb and Cu) added in mg/L in the water and metal detected in ppm in
the sediments of metal microcosm and nutrients (NO3

− and PO4
3−) added in mg/L in the water of

nutrient microcosm. * in the p-value column indicates a strong probability of significance.

Metal Microcosm—Metals Added in Water

Pb (mg/L) Cu (mg/L)

Effect Source SS F Ratio p-Value SS F Ratio p-Value

Experimental duration 0.000001 24.763 <0.0001 * 0.0003 1.1749 0.319
Treatment level 0.000067 0.5031 0.61 0.0005 0.6749 0.515

Nutrient Microcosm—Nutrients Added in Water

NO3
− (mg/L) PO4

3− (mg/L)

Effect Source SS F Ratio p-Value SS F Ratio p-Value

Experimental duration 9067 6.4182 0.0036 * 26 11.9591 <0.0001 *
Treatment level 79 0.0561 NS 6 2.5600 NS

Metal Microcosm—Metal Detected in Sediments

Ag (ppm) As (ppm) Cd (ppm)

Effect Source SS F Ratio p-Value SS F Ratio p-Value SS F Ratio p-
Value

Experimental duration 0.0012 0.3312 NS 0.0767 4.2484 0.0223 * 0.0054 0.4785 NS
Treatment level 0.0017 0.4522 NS 0.0307 1.7017 NS 0.0194 1.7162 NS

Fe (ppm) Hg (ppm) Ni (ppm)

Effect Source SS F Ratio p-Value SS F Ratio p-Value SS F Ratio p-
Value

Experimental duration 0.0002 0.0096 NS 0.0540 2.7600 NS 0.000131 0.252300 NS
Treatment level 0.0001 0.0032 NS 0.0025 0.1261 NS 0.000078 0.149100 NS

Pb (ppm) Rb (ppm)

Effect Source SS F Ratio p-Value SS F Ratio p-Value SS F Ratio p-
Value

Experimental duration 0.000011 1.9716 NS 0.0057 0.2966 NS 0.0473 0.3754 NS
Treatment level 0.000011 2.1328 NS 0.0083 0.4319 NS 0.0008 0.0067 NS

Table A2. (A) Number of sequences and the percent of total (more than 1% of total shown) for some
detected phylum in nutrient and metal microcosms.

(A) Phyla Detected Number of Sequences for Each Phylum Percent of Total

Proteobacteria 51,598 29.45%
Bacteroidetes 23,252 13.27%
Chloroflexi 16,236 9.27%
Planctomycetes 10,013 5.71%
OD1 9477 5.41%
Firmicutes 7513 4.29%
Acidobacteria 7323 4.18%
Verrucomicrobia 6934 3.96%
Actinobacteria 5417 3.09%
Chlorobi 3561 2.03%
Spirochaetes 3428 1.96%
Armatimonadetes 2702 1.54%
Elusimicrobia 2148 1.23%
Cyanobacteria 2099 1.20%
GN02 2090 1.19%
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Table A3. Effect test from ANOVA showing the significance of experimental duration and treatment
level (high and low) on the Shannon and Simpson diversity indices of genera in nutrient and metal
microcosm experiments. * in the p-value column indicates a strong probability of significance.

Shannon Diversity Index of Genera Simpson Diversity Index of
Genera

Effect Source SS F Ratio p-Value SS F Ratio p-Value

Experimental
duration 0.2765 3.3789 NS 1688.4 5.3548 0.0314 *

Treatment level 0.0553 0.3376 NS 410.21 0.6505 NS

Shannon Diversity Index of Genera Simpson Diversity Index of
Genera

Effect Source SS F Ratio p-Value SS F Ratio p-Value

Experimental
duration 0.0804 14.0738 0.0013 * 512 4.731 0.0418 *

Treatment level 0.0143 1.2515 NS 93 0.4282 NS

Table A4. Multiple regression model with estimate (slope), combined R2, and p-value (significance)
of relationship between Shannon and Simpson diversity indices of genera and the metals detected (in
ppm) in the sediments of metal microcosm.

Genera Shannon Diversity Index Genera Simpson Diversity Index

Parameter Estimate p-Value R2 Estimate p-Value R2

Ag(ppm) 0 NS

0.00

0 NS

0.27

As(ppm) 0 NS 0 NS
Cd(ppm) 0 NS 0 NS
Fe(ppm) 0 NS 0 NS
Hg(ppm) 0 NS 0 NS
Ni(ppm) 0 NS 0 NS
Pb(ppm) 0 NS −5606 0.0616
Rb(ppm) 0 NS 0 NS
Zn(ppm) 0 NS 57.85 0.0118
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