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Abstract: Soil water content (SWC) is one of the most important hydrologic variables; it plays
a decisive role in the control of various land surface processes. We simulated SWC using a Soil
and Water Assessment Tool (SWAT) model in southern Saskatchewan. SWC was calibrated using
measured data and Soil Moisture Active Passive (SMAP) Level-4 for the surface (0–5 cm) SWC for
hydrological response units (HRU) at daily and monthly (warm season) intervals for the years 2015
to 2020. We used the SUFI-2 technique in SWAT-CUP, and observed daily instrumented streamflow
records, for calibration (1995 to 2004) and validation (2005–2010). The results reveal that the SWAT
model performs well with a monthly PBIAS < 10% and Nash–Sutcliffe efficiency (NS) and R2 ≥ 0.8 for
calibration and validation. The correlation coefficient between ground measurement with SMAP and
SWAT products are 0.698 and 0.633, respectively. Moreover, SMAP data of surface SWC coincides well
with measurements in terms of both amount and trend compared with the SWAT product. The highest
r value occurred in July when the mean r value in SWAT and SMAP were 0.87 to 0.84, and then in June
for r value of 0.75. In contrast, the lowest values were in April and May (0.07 and 0.04, respectively)
at the beginning of the growing season in southern Saskatchewan. Furthermore, calibration in the
SWAT model is based on a batch form whereby parameters are adjusted to corresponding input by
modifying simulations with observations. SWAT underestimates the abrupt increase in streamflow
during the snowmelt months (April and May). This study achieved the objective of developing a
SWAT model that simulates SWC in a prairie watershed, and, therefore, can be used in a subsequent
phase of research to estimate future soil moisture conditions under projected climate changes.

Keywords: SMAP; soil water content; SUFI-2; SWAT; southern Saskatchewan

1. Introduction

Soil water content (SWC) is an important hydrologic state variable related to actual
and potential evapotranspiration, storage and infiltration, surface runoff, and overall water
balance [1,2]. From a regional perspective, SWC is a limiting factor in crop yield as water
demand often exceeds precipitation amounts [3,4]. The Canadian Prairies comprise about
80% of Canada’s agricultural lands with more than 90% wheat and canola production.
Southern Saskatchewan falls in the center of the region and is extremely prone to frequent
and severe droughts [5]. The semi-arid conditions include low precipitation, mostly re-
ceived from April through June, and high evaporation during the entire farming season.
To address the issues associated with food security and to stimulate economic growth, the
Saskatchewan Ministry of Agriculture has recommended 400 percent expansion in irrigated
areas [6]. The recent plan to irrigate farmlands in the area requires an assessment of SWC
variability across spatial and temporal scales.

The hydrography of southern Saskatchewan is a product of a dry mid-latitude conti-
nental climate, with strong seasonal and inter-annual variability, and soil landscapes formed
during the most recent advance and retreat of the continental ice sheet [7]. The North and
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South Saskatchewan Rivers account for most of the streamflow in southern Saskatchewan.
These rivers shed water from the Rocky Mountains generated by snowmelt, and, to a lesser
extent, rainfall and glacier runoff. Furthermore, the rivers flow in large valleys created by
meltwater from the continental ice sheet, and, thus, they are largely disconnected from
the prairie runoff in terms of topography and hydrology. These unique features make
hydrological modeling in the region quite complex, especially for the prediction of SWC.

The Soil and Water Assessment Tool (SWAT) is widely used for quantitative hydrolog-
ical modeling [8–12]. This physical model is usually calibrated based on streamflow [13]
but requires measured data for each variable [14,15]. Several studies have implemented re-
motely sensed SWC datasets to calibrate the SWAT model. Narasimhan and Srinivasan. [16]
used SWAT to simulate long-term SWC using NDVI in a semi-arid area. Park et al. [17]
calibrated the SWC simulated by SWAT using three databases of MODIS, Normalized
Difference Vegetation Index (NDVI), and Land Surface Temperature (LST) for a forest
in Spain. Havrylenko et al. [18] used NDVI and Standard Precipitation Index (SPI), and
Nilawar et al. [19] used Advanced Microwave Scanning Radiometer (AMSR2). The pri-
mary limitation of these approaches is that the SWC is a site scale parameter while remote
sensing is a global scale measure. Calibration is further improved through simultaneous de-
termination of two independent variables. Uniyal et al. [2] used Landsat derived indices of
Thermal Vegetation Difference Index (TVDI), NDVI, and brightness temperature (BT) along
with field measurement; Rajib et al. [20] used Advanced Microwave Scanning Radiometer-
Earth Observing System and field measurements. Such studies require high-resolution
remote sensing data to appropriately adapt to field data.

The main objective of this research was to evaluate the reliability of the SWAT model to
estimate SWC for southern Saskatchewan, Canada, using high-resolution satellite data and
field measurements. Initially, sensitivity analyses were conducted to identify the relative
significance of parameters affecting SWC. Next, the SWAT model was calibrated using
Soil Moisture Active Passive Level-4 (SMAP L4_SM) for surface SWC and measured data.
Finally, the SWC output was analyzed using field measurements and SMAP L4_SM daily
and monthly data.

2. Research Methodology

Figure 1 gives the flow chart of the modeling process. The SWC and streamflow were
evaluated for four watersheds in southern Saskatchewan (Figure 2): Lower Qu’Appelle
River basin (17,800 km2) from Craven to the Manitoba border; Upper Qu’Appelle River
basin (14,200 km2) comprising Lanigan-Manitou, Last Mountain Lake, and the Upper
Qu’Appelle sub-basins; Moose Jaw River basin (9300 km2) including Moose Jaw; and
Wascana Creek basin (3900 km2) including Regina. The region is characterized by cold dry
winters and hot humid summers, with most snowmelt occurring in spring. The average
annual temperature ranges from 8 ◦C to −3.5 ◦C. Agriculture is the main land use that
comprises 68% cropland and 16% grassland. Approximately 70% of the area is characterized
by black chernozemic soils with significant organic matter.

Table 1 summarizes the data used for hydrological modeling in the Arc SWAT interface.
The spatial inputs included a land use map, soil properties description, and digital elevation
model (DEM) to define HRUs. Soil type was obtained from the Soil Landscapes of Canada
(SLC ver. 3.2), whereas topographic data for watershed delineation was derived from a 20 m
resolution Digital Elevation Model (Canadian GeoGratis). We obtained 30 m resolution
land use data for 2015 from Agriculture and Agri-Food Canada. Likewise, weather data
(rainfall, solar radiation, wind speed, relative humidity, and air temperature) from 1985 to
2020 for 15 stations was obtained from Environment and Climate Change Canada. From
the Water Survey of Canada (WSC) hydrometric database (HYDAT), we used daily stream
discharge data for 1995–2004 for calibration and 2005–2010 for validation.
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Figure 1. Flow chart of the modeling program.

Table 1. Input data used in SWAT model.

Data Type Description Information Source

Digital Elevation Model Watershed delineation Raster, 20 m-resolution http://geogratis.gc.ca
accessed on 28 September 2020

Land use Land-use classification Raster, 30 m-resolution http://geogratis.gc.ca
accessed on 30 September 2020

Soil type Soil properties Vector http://www.agr.gc.ca
accessed on 2 October 2020

Weather Precipitation and temperature Daily https://weather.gc.ca
accessed on 15 November 2020

Streamflow Calibration and validation model Daily https://wateroffice.ec.gc.ca
accessed on 16 December 2020

http://geogratis.gc.ca
http://geogratis.gc.ca
http://www.agr.gc.ca
https://weather.gc.ca
https://wateroffice.ec.gc.ca
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Hydrologic simulation in SWAT was based on the following water balance equation:

SWt = SWo + ∑t
i=1 (Rday − Qsur f − Ea − Wseep − Qgw)i (1)

SWt is final soil water content (mm), SWo is initial soil water content (mm), t is time
(days), Rday is the cumulative value of precipitation (mm), Ea is actual evapotranspiration
(mm), Wseep is amount of percolation and bypass flow exiting the soil profile (mm), and
Qgw is amount of return flow on day i (mm). The model calculations were performed at
HRU, sub-basin, and watershed scales so that the water flow and retention variables were
routed from HRUs to the sub-basins and subsequently to the watershed outlet. A total of
1441 HRUs and 27 sub-basins were delineated by defining a 5% level threshold for soil
type, land use, and a uniform slope to optimize the computational time.

To calibrate SWC in the SWAT model, the Soil Moisture Active Passive (SMAP) Level-4
(L4-SM) active–passive soil moisture product was used. Recent research demonstrates
various uses of SMAP in hydrological modeling: Azimi et al. [21] assimilated SMAP data in
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a SWAT model; Breen et al. [22] estimated soil moisture using SMAP data in a SWAT model;
Li et al. [23] calibrated SMAP data in MIKE SHE as a hydrologic model; and Yi et al. [24]
used SMAP data in a TOPX hydrologic model with different precipitation datasets. A
discussion of interactions is beyond the scope of this study because the database is not used
as an input in SWAT.

The radiometer instrument on board the SMAP observes the L-band (1.4 GHz) mi-
crowave radiation emitted from Earth’s surface. Over land, the observed radiances or
brightness temperatures (Tbs) are sensitive to the moisture in the top few centimeters
of the soil, provided the overlying vegetation is not too dense as is the case in southern
Saskatchewan, especially in the warm season. This sensitivity is exploited in the SMAP
Level-4 Soil Moisture (L4-SM) algorithm to obtain estimates of surface (0–5 cm) and root-
zone (0–100 cm) soil moisture. Likewise, previous research confirms that SMAP L4 has
better agreement with in situ soil moisture in croplands when compared with SMAP L3
during non-winter periods [25]. The Level-4 soil moisture and L-band brightness tempera-
ture provided 9-km resolution estimates of land surface conditions. These SWC estimates
at the surface (0–5 cm) were retrieved by the SMAP radiometer at 6:00 a.m. descending
and 6:00 p.m. ascending half-orbit passes [26]. The data were downloaded from NASA’s
Earth Observing System Data and Information System (EOSDIS) for the summer months
(April to September) in 2015–2020.

We used the Calibration and Uncertainty Program (CUP) in SWAT for sensitivity
analysis (identification of parameters affecting output variance due to input variability),
model calibration (parameterizing the model to local conditions to reduce prediction
uncertainty), and model validation (use of calibrated parameters for comparison with
observed data). Automatic calibration and validation were conducted using the Sequential
Uncertainty Fitting algorithm version 2 (SUFI-2) in the SWAT-CUP [27]. The parameter
uncertainty was derived from all input and output sources of uncertainty, such as the
weather data, land use, and soil type.

The calibration period from 1995 to 2004 was simulated using a maximum of two
batches executed with 500 SUFI-2 iterations. We evaluated the SWAT model through
graphical comparison of the simulated and observed outlet streamflow hydrographs and by
concurrently using three statistical criteria for goodness-of-fit: the Nash–Sutcliffe efficiency
(NSE) [28]; the percent bias (PBIAS) [29]; and the Coefficient of Determination (R2) [30]
according to the following equations, respectively:

NSE =

1 − ∑n
i=1 (Q

obs
i − Qsim

i )
2

∑n
i=1 (Q

obs
i − Qobs

mean)
2

 (2)

PBIAS =
∑n

i=1

(
Qobs

i − Qsim
i

)
∑n

i=1 Qobs
i

× 100 (3)

R2 =
(∑n

i=1 (Q
obs
i − Qobs

i )(Qsim
i − Qsim

i ))
2

(∑n
i=1 (Q

obs
i − Qsim

i )(Qobs
i − Qsim

i ))
2 × 100 (4)

where, Qsim
i and Qobs

i are the mean monthly simulated and observed discharges, Qobs
i

is observed discharge on the ith day, Qsim
i is the simulated monthly discharge, n is the

total number of months, and Qobs
mean is the average observed monthly streamflow. After

executing the first batch of calibration iterations (the first day of simulation), ‘relative’
and ‘value’ sensitivity ranking of parameters was performed by the global sensitivity
analysis technique in SWAT-CUP. This allowed the optimization of the parameters by
estimating their ‘relative’ and ‘value’ effect [27]. The measure of relative sensitivity among
the parameters was interpreted through t-stat and p-values. The extent of the sensitivity
measured by t-stat and p-value shows the significance of the sensitivity measured.
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The SWC at the HRU level was extracted from the final model output. The SWC
consists of soil structure elements which determine the permanent wilting point volumetric
water content as a function of the clay content and bulk density in the sub-basin [2]. The
wilting point was estimated according to the following equation:

WPly = 0.4
mc × ρb

100
(5)

where WPly is the water content at wilting point, mc is the percent clay content of the layer
(%) and ρb is the bulk density for the soil layer (mg m−3).

Field capacity was estimated according to the following equation:

FCly = WPly + AWCly (6)

where FCly is the water content at field capacity expressed as a fraction of the total soil vol-
ume, WPly is the water content at wilting point, and AWCly is the available water capacity
of the soil layer. Excess water can percolate or drain, provided the temperature of the soil is
above 0 ◦C. We considered only the warm season because the soil layer is frozen in the other
seasons in the study area. Another limitation was that SWC values in the SWAT model
are not able to directly compare measured and SMAP data. To address this discrepancy,
water held at the wilting point was calculated at each layer of HRU within the time frame
given to the model and added to the SWAT simulated SWC following a similar approach
by Rajib et al. [20] and Musyoka et al. [31]. Furthermore, SWC values in the SWAT model
were spatially averaged over HRUs while field sensors were used to monitor SWC point
data. To overcome this limitation, we used the average measured SWC to simultaneously
compare the field measurement with L4-SM. Therefore, we used a field sensor at surface
depths (0–5 cm) to compare SWC simulated in the SWAT model. Moreover, we considered
the HRU at the location of this field sensor and the corresponding specific pixel of L4-SM
because of the availability of a single measuring station in southern Saskatchewan.

The integrated quantities comparison of field observation with SWAT and SMAP
outputs depends on the correlation coefficient (r). Generally, the relationship between two
variables is considered to be strong when their r value is more than 0.7. The value of r was
used to evaluate the level of correlation between two variables, i.e., SMAP and SWAT soil
water content products with field measurements (Equation (7)):

r =
E((θSMAP,SWAT(t)− E(θSMAP,SWAT(t))·(θtrue(t)− E(θtrue(t)))

σSAMP,SWAT ·σtrue
(7)

where σSAMP,SWAT , and σtrue are the standard deviations of SMAP, SWAT, and field mea-
surement soil moisture, respectively. The correlations among the SWC databases were
examined based on Pearson correlation coefficient and bivariate correlation methods using
daily and monthly data from 2015 to 2020.

3. Results and Discussion

Table 2 shows the results of the sensitivity analysis. Results are rank ordered for the
most sensitive (high t- values) and most significant (closer to zero for p-values) parameters
affecting SWC out of a total of 30 inputs based on a batch of iterations. Among all input
parameters, we selected 14 that heavily depend on observed streamflow and SWC. The
data indicate that the base flow alpha factor (ALPHA_BF) has the most sensitivity among
all parameters (p-value = 0). If the ALPHA_BF value is between 0.1 and 0.3, there is a slow
recharge response in the region [13]. The optimal value of ALPHA_BF ranges between the
values of 0.1 to 0.3. Previous research [32,33] had similar findings in southern Saskatchewan.
The sensitivity of ALPHA_BF indicates the rapid infiltration and groundwater recharge in
the semi-arid region. The high ALPHA_BF value shows a quick base flow recession and
hence, this parameter plays a vital role in the low regional flow [34].
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Table 2. Parameters used for calibration with optimum values.

Parameter Description Type Initial Range Optimal Value p-Value t-State Rank

ALPHA_BF Base flow alpha factor v 0.0–1.0 0.1–0.241 0.000 −36.26 1

GW_REVAP Ground water re-evaporation coefficient v −0.2–0.2 0.1–0.17 0.000 16.89 2

CH_K2 Effective hydraulic conductivity in main
channel alluvium (mm/h) v 0.0–500 154–642 0.001 14.73 3

CN2 Curve number at moisture condition II r −0.2–0.2 −0.13–0.038 0.008 13.21 4

GWQMN Threshold depth of water in the shallow
aquifer required for return flow (mm) r 0.0–0.2 0.64–1.94 0.074 10.9 5

SOL_ALB Moist soil albedo r 0–0.25 0.08–0.139 0.08 −10.7 6

ESCO Soil evaporation compensation factor v 0.0–1.0 0.241–0.832 0.354 9.26 7

CH_N2 Manning’s “n” value for the channel v 0.0–0.3 0.09–0.272 0.382 −8.74 8

GW_DELAY Groundwater delay (days) v 0–500 181–272 0.533 −0.623 9

SOL_BD Saturated hydraulic conductivity
of first layer r −0.1–1.0 −0.005–0.183 0.551 0.596 10

SURLAG Surface runoff lag coefficient (day) v 0.0–24 2.68–23.04 0.787 0.272 11

SOL_AWC Soil water available capacity r −0.1–1.0 −0.061–0.357 0.796 0.257 12

SOL_K Saturated hydraulic
conductivity (mm/h) r −0.1–1.0 −0.011–0.027 0.803 −0.248 13

SOL_Z Depth from the soil surface
to layer bottom r −0.1–1.0 −0.03–0.021 0.842 −0.198 14

The next sensitive parameter is the groundwater re-evaporation coefficient (GW_REVAP)
and effective hydraulic conductivity in the main channel alluvium (CH_K2). Southern
Saskatchewan has mostly low slopes, and, thus, rainfall accumulates and infiltrates, leading
to higher groundwater levels and, subsequently, to more base flow contribution to discharge.
Moreover, during the dry summer months, there is relatively little runoff from the semi-arid
landscape, and prairie streams are maintained by groundwater discharge.

Figure 3 compares observed and simulated streamflow during the calibration (1995–2004)
and validation (2005–2010) periods. In both periods, the Nash–Sutcliffe efficiency (NSE)
values (0.616 and 0.784, respectively) were more than 0.5, indicating satisfactory model
performance. Similarly, higher values of R2 (0.82 and 0.8 for calibration and validation,
respectively) confirmed the good correlation between observed and simulated streamflow.
Moreover, results on a monthly timescale (Figure 3) were found to be similar between
the calibration and validation periods. The SWAT model was able to simulate the rela-
tive contributions of precipitation and snowmelt to the streamflow to produce seasonal
streamflow and lead time results [35]; although model performance was lower in the warm
season than in the cold season. Peak flow in some months is underestimated, especially
for April and May, while the model performs well for low and intermediate flow. These
results are subject to uncertainties in the input data and structure of the model during
snowmelt and runoff season. The accuracy and resolution of rainfall and temperature
data significantly affected peak flow simulations, especially during snowmelt and runoff
season [36]. Calibration in the SWAT model is based on a batch form whereby parameters
are adjusted to corresponding input by modifying simulations with observations. There-
fore, underestimation is due to an abrupt increase in streamflow during snowmelt months
(April and May). Moreover, the validation of the batch form calibration is based on two
assumptions, namely: the hydrological system is steady and devoid of abrupt changes and
the calibrated model is robust enough [37], which is why the calibrated model does not
perform well during snowmelt months.
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Figure 3. Simulated and observed stream flows and precipitation.

Table 3 summarizes the correlations among daily SWAT and SMAP output and mea-
sured SWC based on three error metrics (i.e., RMSE, Bias, and R). The correlation coefficients
between field measurement with SMAP and the SWAT product are 0.698 and 0.633, respec-
tively. The RMSE values for SMAP and SWAT are 0.052 and 0.046, respectively.

Table 3. Daily calibration of SWAT model with field measurement data and SMAP.

Data RMSE Bias R p-Value N

Measurement
SWAT 0.046 0.012 0.633 0.000 703

SMAP 0.052 −0.035 0.698 0.000 703

SWAT SMAP 0.106 −0.096 0.373 0.000 703

Figure 4 depicts a time series of simulated SWC. The agreement of measurement data
with SMAP and SWAT validates the ability of the SWAT to model SWC. The measurement
data are a better fit with SMAP products compared with SWAT output. However, the
measured range of SMAP data is higher than that of SWAT output and field measurement,
while the range of SWAT SWC is lower than SMAP and field measurement. By using the
brightness temperature and the radar backscatter, L4-SM data was found to be more prone
to vegetation and surface roughness when this condition led to a reduced sensitivity to soil
moisture in comparison to passive brightness temperature. Therefore, it makes a better
soil moisture product than SWAT SWC. Another reason for the better performance is that
L4_SM incorporates an algorithm that combines the information between the L-band Tb
observations, the water and energy balance constraints captured in the land-surface model,
and the information in the surface meteorological data. This function is derived from
gauge-based precipitation observations and several atmospheric observations [38]. Various
studies have emphasized the better performance of L4_SM products compared with ground
measurements [26,39,40]. The good fit among all SWC products in the vegetation growing
season (from May to September) reflects the SWAT model estimation of SWC based on
the root system. Thus, the best correlation occurred when vegetation had reached its peak
growth rate. This finding is consistent with the sensitivity analysis where the groundwater
re-evaporation coefficient (GW_REVAP) shows high sensitivity. In this region, the saturated
zone is not deep and deep-rooted plants can take up water directly from the water table.
This is consistent with the reported observation [16,18,41], suggesting that correlations
must be based on the growth period.
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The direct relationship between rainfall and SWC was not symmetric. The SWC
change in SWAT indicates a gradual increase and decrease, particularly after wetting and
drying processes by rainfall and evapotranspiration. Soil texture in southern Saskatchewan
is dominated by clay, which retains SWC, thereby resulting in slower rates of wetting and
drying than in silt and sand. SWAT model and SMAP estimated SWC is noisy in the surface
layer where there is the most interaction with the atmosphere [20,42,43].

Table 4 gives the results of monthly statistical analysis of SWC data based on Pearson
correlation coefficient and bivariate correlation methods from 2015 to 2020 for the warm
season (April to September). The highest r value occurred in July and June when mean r
values in SWAT and SMAP were 0.87 to 0.84. Moreover, the mean value indicates that June
has the highest r (0.96) value compared to other months. In contrast, the lowest values were
in April and May (mean r values of 0.07 and 0.04, respectively) at the beginning and end of
the growing season. The root system reaches its optimal extent after May. Most of the land
cover consists of the annual crops and perennial pasture, which use SWC available in the
top part of the soil profile [16]. Therefore, the highest correlation occurs when vegetation
has reached its maximum growth rate. SWC is estimated in the SWAT model based on the
actual root system (0–30 cm) and, thus, the best correlation between SWC and SMAP with
field measurement was during the growing season.

Table 4. Monthly statistical analysis between SWC databases.

Statistical Indices Data April May June July August September

R
Measurement

SWAT −0.055 0.063 0.725 0.864 0.6 0.605
SMAP 0.091 0.02 0.966 0.877 0.782 0.762

SWAT SMAP −0.036 0.107 0.748 0.152 0.306 0.247

Figure 5 gives the monthly comparison of SWC between SWAT, SMAP, and measure-
ment data along with the difference of potential evapotranspiration and precipitation. The
results indicate that the highest difference between rainfall and evapotranspiration was
130 mm in August 2017, while the mean SWC has the lowest value (12.4%, 14%, and 8.8%
in field measurement, SMAP, and SWAT, respectively) in the same month.
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While SWC is directly connected to ET, heterogeneity in daily PET-precipitation and
SWC is due to small rainfalls of short duration (for high PET and low SWC). Two factors
play a vital role in such cases. Firstly, evaporation from soil and leaf surfaces are sufficient
to prevent wetting below the surface soil. Secondly, relatively heavy rainfall when potential
evapotranspiration demand remains low and soil recharge become rapid [44–47]. In such
cases, the lowest difference between rainfall and evapotranspiration (21.78 mm) was in
May 2016. In contrast, the average SWC had high values (14.4%, 18.5%, and 18% in field
measurement, SMAP, and SWAT, respectively) in this month.

4. Summary and Conclusions

The SWAT-CUP model was calibrated and validated by the SUFI-2 algorithm over
the 1995–2004 and 2005–2010 periods, respectively. Sensitivity analysis was conducted to
adjust the most sensitive input parameters in the ArcSWAT model that were then given
more attention in the calibration process. The ArcSWAT model obtained good simulation
results for the mean monthly river discharge of in southern Saskatchewan, with BIAS less
than 10% and NSE and R higher than 0.8 in the region. Further results can be enhanced
using model runs on daily weather and SWC data along with satellite SWC data over a
more extended period. Therefore, the reliability of SWC derived from the SWAT model
was tested by correlating SMAP and field measure data with SWAT output. The results
indicate this correlation depends on the depth of the root zone and variability of local
conditions so that July and June have the highest r-value when vegetation has reached
its maximum growth rate. However, the local conditions and short intense precipitation
events have an effective role in SWC fluctuations. Soil water content in the SWAT model can
reasonably simulate the spatiotemporal variations and trend of regional SWC in shallow
soil layers. Moreover, there is a strong correlation between SWC measurement and SMAP
data. Level 4 in the SMAP mission product uses the brightness temperature and, thus,
is more prone to the combined effects of vegetation and surface roughness when this
condition leads to a reduced sensitivity to soil moisture in comparison to passive brightness
temperature. Therefore, it could be a better SWC product than the performance of SWC
in SWAT. Moreover, SWAT tended to overestimate SWC in the surface layer after rainfall
events and snowmelt season in the cold region. This is because calibration in the SWAT
model is based on batch form and the validation of the batch form calibration is according
to the assumption that the hydrological system is a steady system without abrupt changes
and the calibrated model is robust enough. Therefore, underestimation is found due to an
abrupt increase in streamflow during snowmelt months (April and May).
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