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Abstract: Hydropower plant operation reorganizes the temporal and spatial distribution of water
resources to promote the comprehensive utilization of water resources in the basin. However, a
lot of uncertainties were brought to light concerning cascade hydropower plant operation with the
introduction of the stochastic process of incoming runoff. Therefore, it is of guiding significance
for the practice operation to investigate the stochastic operation of cascade hydropower plants
while considering runoff uncertainty. The runoff simulation model was constructed by taking the
cascade hydropower plants in the lower reaches of the Lancang River as the research object, and
combining their data with the copula joint function and Gibbs method, and a Markov chain was
adopted to construct the transfer matrix of runoff between adjacent months. With consideration
for the uncertainty of inflow runoff, the stochastic optimal operation model of cascade hydropower
plants was constructed and solved by the SDP algorithm. The results showed that 71.12% of the
simulated monthly inflow of 5000 groups in the Nuozhadu hydropower plant drop into the reasonable
range. Due to the insufficiency of measured runoff, there were too many 0 values in the derived
transfer probability, but after the simulated runoff series were introduced, the results significantly
improved. Taking the transfer probability matrix of simulated runoff as the input of the stochastic
optimal operation model of the cascade hydropower plants, the operation diagram containing the
future-period incoming water information was obtained, which could directly provide a reference
for the optimal operation of the Nuozhadu hydropower plant. In addition, taking the incoming
runoff process in a normal year as the standard, the annual mean power generation based on
stochastic dynamic programming was similar to that based on dynamic programming (respectively
305.97 × 108 kW · h and 306.91 × 108 kW · h), which proved that the operation diagram constructed
in this study was reasonable.

Keywords: reservoir operation; copula function; Gibbs; SDP; Lancang River

1. Introduction

The optimal operation of hydropower plant groups is an issue for water conservancy
and hydropower systems based on the theory of the optimal single hydropower plant
operation method and comprehensively considering the water conservancy relationship
between hydropower plants [1,2]. The optimal operation is to reorganize the temporal and
spatial distribution of water resources according to the comprehensive utilization tasks
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assigned to the hydropower plant and based on the allocation capacity of the reservoir,
achieving the target of promoting benefits and eliminating hazards [3,4]. The research
on the optimal operation of hydropower plant groups has a long history. Ponnambalam
et al. [5] showed that an implementation of the Karmarkar’s interior-point LP algorithm
with a newly developed stopping criterion could solve the optimization problems of large-
scale multi-reservoir operations more efficiently than the simplex method. To address the
deficiency of the genetic algorithm in the application of reservoir group operation, Oliveira
and Loucks [6] used an improved genetic optimization algorithm to effectively formulate
the operation rules of reservoir groups. Chandramouli and Raman [7] established and
solved the optimal operation model of reservoir groups by using a dynamic programming
algorithm and neural network. In order to enhance the performance of evolutionary algo-
rithms, Arunkumar and Jothiprakash [8] introduced chaos technology to generate initial
population and applied it to the operation optimization of their reservoir group system.

The optimal operation of a hydropower plant means meeting the requirements of
flood control and benefits on the premise of ensuring the safety of reservoir engineering
facilities and the ecological environment. [9,10] Generally, under the optimization objective,
the hydropower plant operation adopts the historical runoff as the input and obtains the
optimal operation decisions for the hydropower plant for each period through intelligent
algorithm technology [11,12]. However, there is a certain gap between the determined
hydropower plant operation rules and the actual dispatching results [13]. One reason
for this is that the stochastic inflow is not considered. The inflow is uncertain under the
influence of both anthropic and natural factors [14,15], which, in time, has a certain corre-
lation between different periods as well. Dynamic programming (DP) algorithm [16,17]
is a process of searching for the optimal decision step by step, in order, at multiple stages,
but it is difficult to solve the stochastic multi-stage problems. Therefore, the stochastic
dynamic programming (SDP) algorithm [18,19] can be used to effectively work out oper-
ation rules for the runoff uncertainty by combining the probability theory and dynamic
programming principle.

The runoff process during the process of hydropower plant operation is uncertain,
which limits the traditional algorithms and determined dynamic programming, while the
SDP algorithm fully takes the uncertain factors into consideration [20,21]. Little [22] applied
the Markov theory to construct the SDP model of a hydropower plant. Howard [23] pro-
posed a method coupling the Markov theory with the DP (MDP), which avoids prematurely
falling into the local solutions when compared with the traditional model for the multi-year
issues. Rossment [24] combined the Lagrange multiplier with DP theory to establish a
chance-constrained programming model. Bras et al. [25] applied the SDP method to the
Aswan Dam, and the results showed that the SDP model is effective when considering
runoff prediction information. Saadat M and Asghari K [26] made an improvement of the
SDP algorithm by properly adjusting the interval indices of the reservoir storage capacity,
which resulted in the values of the objective function increasing by 30%. Therefore, it is
critical to explore the issue of operation discission-making for cascade hydropower plants
under the uncertainty of the incoming runoff.

The development of large-number cascade hydropower plants in the whole basin plays
a great role in promoting the economic development of the Southwest of China. In previous
research, most of them were certain operation, and the input used was the observed
runoff [3]. However, in this paper, the distribution of uncertain incoming runoff was
constructed using the copula joint function and Gibbs sampling based on the large number
of simulations of observed runoff data. Moreover, Lancang River, as a transboundary
river, is located in Southwest China, and the water resources are sufficient; while on
the other hand, the incoming runoff in this area is uncertain as well. Therefore, it is of
great significance to investigate the region’s hydropower plant group while taking the
uncertainty of incoming runoff into consideration.
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2. Study Area and Data

The source of the Lancang River is located in the Qinghai Province (Figure 1). Flowing
out of China from Mengla county of Yunnan Province, it goes through five Southeast
Asian countries: Myanmar, Laos, Vietnam, Cambodia, and Thailand. The Lancang River
has a total length of about 2139 km in China, an area of 164,800 km2 and an annual
outbound water volume of 765 × 108 m3 [27]. There are seven cascade hydropower plants
on the Lancang River, including the Gongguoqiao (GGQ), Xiaowan (XW), Manwan (MW),
Dachaoshan (DCS), Nuozhadu (NZD), Jinghong (JH), and Ganlanba (GLB) power plants.
The lower reaches of the Lancang River include three hydropower plants: namely, NZD,
JH, and GLB. The NZD hydropower plant has a multi-year regulation capacity, and its
comprehensive utilization tasks are mainly for power generation, irrigation, flood control,
shipping, ecology, tourism, etc. The JH hydropower plant is located 5 km away from the
northern suburb of Jinghong city, and its main task is power generation, taking shipping,
flood control, tourism, etc. into account. GLB is the reverse regulation power plant of the
JH hydropower plant, and its main task is power generation, taking the needs of shipping
and ecological water into account [28].
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Figure 1. The location of the Lancang River.

In this study, the natural monthly runoff of the NZD and JH hydropower plants
from 1953 to 2013 and the natural daily runoff (1953–2013) collected from the Yunjinghong
hydrological station and the Huaneng Lancang River Hydropower Co., Ltd. (Kunming,
China) were used to investigate and derive the hydropower plant operation. And the
location of hydrological stations and hydropower plants were shown in Figure 2.
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Figure 2. Network of the mainstream hydropower plants in the Lancang River.

3. Methods

In this section, we run through the details of the proposed methodology, including the
copula joint function, Gibbs simulation model, and the constructed stochastic operation
model. Figure 3 demonstrates the framework of the main research content in this paper.
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3.1. Construction of Joint Distribution Model for Monthly Runoff
3.1.1. Marginal Distribution Model of Incoming Runoff

In this paper, generalized extreme value distribution (Gev), logarithmic normal dis-
tribution (Logn), gamma distribution (Gamma), normal distribution (Norm), and weibull
distribution (Weibull) were selected as the candidate marginal distributions of measured
incoming runoff sequence [29–31]. The above probability distributions were chosen because
they have the advantages of strong adaptability and a good fit, and they are widely used
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in the construction of marginal distribution models for frequency analysis of hydrological
events. The probability density functions are listed here as follows:

Probability density function for Gev distribution:

f (x/µ, σ, ξ) = σ−1[1 + ξ(
x− µ

σ
)]
− 1

ξ−1
exp

{
[1 + ξ(

x− µ

σ
)]
− 1

ξ

}
(1)

Probability density function for Logn distribution:

f (x/µ, σ) =
1

σ
√

2π
exp(− (ln x− µ)2

2σ2 ) (2)

Probability density function for Gamma distribution:

f (x/α, β) =
1

βαΓ(α)
xα−1 exp(

−x
β

) (3)

Probability density function for Norm distribution:

f (x/µ, σ) =
1

σ
√

2π
exp(− (x− µ)2

2σ2 ) (4)

Probability density function for Weibull distribution:

f (x/λ, k) =
k
λ
(

x
λ
)

k−1
e−(x/λ)k

, x ≥ 0 (5)

where µ is average, σ is standard deviation, ξ, α, and k represent shape parameters, β and
λ represent scale parameters, and x is the independent variable.

3.1.2. Joint Distribution Model of Adjacent Monthly Incoming Runoff

The introduction of the copula function caused a technological innovation in the field
of hydrology, which could solve the multivariate frequency problem [32–34].

Supposing X, Y represent the adjacent monthly incoming runoff, the corresponding
designed values are x, y, and the marginal distributions are FX (x), FY (y). According to
Sklar’s theorem, the joint distribution of X, Y can be described by the 2-D copula function C:

F(x, y) = Cθ(FX(x), FY(y)) (6)

where, F(x,y) is the joint distribution of X, Y; θ is the parameter of the copula function.
There are a great many types of copula functions, among which the Archimedean cop-

ula is widely used in the field of hydrology. In this chapter, 3 commonly used Archimedean
copula functions (Gumbel copula, Clayton copula, and Frank copula) were selected to
construct the joint distribution model of the monthly runoff in the NZD reservoir [35–37],
the function is described as follows:

Gumbel copula:

C(u, v) = exp
{
−[(− ln u)θ + (−lnv)θ ]

1/θ
}

(7)

Clayton copula:

C(u, v) = (u−θ + v−θ − 1)
−1/θ

(8)

Frank copula:

C(u, v) = −1
θ

ln[1 +
e−θu − 1)(e−θv − 1)

(e−θ − 1)
] (9)

where u and v represent marginal distribution function, namely u = FX(x), v = FY(y).
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3.2. Stochastic Simulation Model of Runoff

Gibbs sampling is a kind of Markov method, and the sampling process is as follows:
each variable is sampled from the conditional distribution of other variables in a fixed
order, a Markov chain converging to the target probability distribution is constructed, and
samples are extracted from the chain [38,39].

Calculating conditional distribution by copula function:

Fi(xi+1/xi) = ∂Ci,i+1(xi, xi+1)/∂xi, i = 1, 2 · · · , 12 (10)

The Gibbs sampling method is used for random simulation of the monthly runoff, and
the steps are as follows:

(1) Generate 2 random numbers, a0, a1 ∈ (0, 1).
(2) P(X1,1 ≤ x1,1/X2,1 = a0) = ∂C(x1,1, x2,1)/∂x2,1 = a1, Xi,j represents the monthly

runoff in the i month of the j year, according to the formula of conditional distribution,
derive v, namely x1,1.

(3) Generate 12 random numbers a2, a3, · · · , a13 ∈ (0, 1) and solve the
following equations:

P(X2,1 ≤ x2,1/X1,1 = x1,1) = ∂C(x1,1, x2,1)/∂x1,1 = a2,
P(X3,1 ≤ x3,1/X2,1 = x2,1) = ∂C(x2,1, x3,1)/∂x2,1 = a3,

...
P(X12,1 ≤ x12,1/X11,1 = x11,1) = ∂C(x11,1, x12,1)/∂x11,1 = a12,
P(X1,2 ≤ x1,2/X12,1 = x12,1) = ∂C(x12,1, x1,2)/∂x12,1 = a13,

(11)

The monthly runoff in all 12 months of the first year and January of the second year
are obtained (x1,1, x2,1, · · · , x12,1, x1,2).

(4) Repeat step (3) for n times to obtain n-year simulated monthly runoff.

3.3. Construction of Stochastic Operation Model and Solution
3.3.1. Objective Function

Using 5000 groups of stochastic simulated runoff of the NZD hydropower plant, the
stochastic optimal operation model of cascade hydropower plants in the lower reaches of
the Lancang River was constructed with the objective of maximizing the power generation.

F = max{φt + Et+1,n} (12)

where F is the generation expectation from time t to time n; φt is the power generation
at time t; Et+1,n is the generation expectation from t + 1 to n, namely, the generation
expectation in the remaining period.

3.3.2. Constraint Condition

The main constraints of these models are described as follows [3,26]:

a. Water balance constraint:

Vt = Vt−1 + (qt −Qt) · ∆t− St (13)

b. Discharge constraint:
Qt,min ≤ Qt ≤ Qt,max (14)

c. Water level constraint:
Zt,min ≤ Zt ≤ Zt,max (15)

d. Output constraint:
Nmin ≤ Nt ≤ Nmax (16)
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e. The minimum ecological flow constraints:

Qt ≤ base(i,t) (17)

f. The minimum shipping flow constraints:

Qt ≤ Qt
e (18)

where Vt−1 is the initial storage capacity, and Vt is the final storage capacity; qt represents
incoming runoff, Qt represents the discharge, and St represents waste water; Qtmin and
Qtmax are the minimum and the maximum discharge; Zt, Zt,min, and Zt,max are, respectively,
the hydropower plant’s water level at month t, dead water level, and the highest water
level of hydropower plant i; Nt, Nmin, and Nmax are, respectively, the hydropower plant
output at month t, firm output, and the installed capacity; base(i,t) is the ecological base
flow at month t of hydropower plant i; and Qt is the minimum flow for shipping.

3.3.3. Solution Algorithm

The SDP algorithm [40–42] was used to solve the stochastic operation model. When
the SDP is applied to reservoir optimal operation, the runoff process is described by
Markov chain, combined with the runoff forecast in the current period, and the incoming
runoff in the future period is expressed by transfer probability. Therefore, the power
generation in the current period can only be calculated according to the forecast runoff in
the current period, and the power generation in the future period is represented by the
power generation expectation.

The operation period (monthly) was taken as the stage variable, the water level of the
NZD reservoir was divided with the accuracy of 1 m, the water level Zb.t at the beginning
of the month was taken as the state variable, and the water level Ze,t at the end of the
month was taken as the decision variable. The water balance equation was used as the state
transition equation.

Setting the runoff in period t as qt,1, qt,2, · · · qt,n (n = 10), and the transfer probability
matrix from period t to period t + 1 is as follows:

Pijt =


P11t P12t · · · P1nt
P21t P22t · · · P2nt

...
...

...
Pn1t Pn2t · · · Pnnt

 (19)

Assuming that the incoming runoff qt,i at k period has been given, the formula of
optimal power generation expectation is as follows:

f ∗t (Zb ,t, qt,i) = max

{
Φt(Zb,t, Ze ,t, qt,i) +

n

∑
j=1

pijt f ∗t+1(Ze,t, qt+1,j)

}
(t = 1, 2, · · · n) (20)

where f ∗t (Zb ,t, qt,i) represents the generation expectation at time t; Φt(Zb,t, Ze ,t, qt,i) rep-
resents the power generation at time t; Zb ,t is the water level at the beginning of the
month; Ze ,t is the water level at the end of the month; qt,i is the amount of runoff at
time t; i ∈ (1, 10), pijt represents the transfer probability matrix from period t to period
t + 1;j ∈ (1, 10), f ∗t+1(Ze,t, qt+1,j) represents the generation expectation at time t + 1; and
qt+1,j is the amount of runoff at time t + 1.

Regardless of the initial state and initial decision, for the state formed by the previous
decision, the other decisions must constitute the optimal strategy: that is, the n-dimensional
optimization problem must be transferred into n 1-dimensional problems. Compared with
the DP algorithm, the difference of the SDP is that the incoming runoff is a stochastic process.
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4. Results and Discussion
4.1. Stochastic Simulation of Runoff
4.1.1. Marginal Distribution for Incoming Runoff

It was concluded from the cumulative frequency (in Figure 4) that the 5 selected
distribution curves (Weibull, Log-normal, Gamma, Normal and Gev) fit well with the curve
of the experience frequency. The K-S test, AIC, and RSME were adopted to quantitatively
evaluate the fitting effect of the marginal distribution, and the results are shown in Table 1
(the optimal marginal distribution is bolded). It is clearly found from Table 1 that for
the K-S test, there were 8 months where the corresponding optimal distribution was
Logn distribution (the optimal distribution of January, February, and April was GEV
distribution, and that of May was Gamma distribution); similarly, for the AIC and EMSE
there were 7 months and 9 months, respectively, where the optimal distribution was Logn
distribution. Overall, the Logn was the best distribution of the five distributions. Therefore,
the Logn distribution was selected as the monthly marginal distribution of the incoming
runoff sequence.

4.1.2. Copula Joint Distribution for Incoming Runoff

The copula function is used to derive the joint function between adjacent monthly
runoff. The parameters of three candidate copula functions were estimated by the maximum
likelihood method, and the copula function was selected using AIC criterion. The results are
shown in Table 2. The bold AIC values in the table indicate the optimal copula function. The
Frank copula was selected in January–February, February–March, and December–January;
the Gumbel copula was selected in March–April, May–June, June–July, and July–August;
and the Clayton copula was selected for other months.
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Figure 4. Cumulative frequency and probability density for runoff of the NZD hydropower plant.

Table 1. K-S, AIC, and RMSE of incoming runoff in the NZD reservoir.

Index Distribution January February March April May June

K-S test

Weibull 0.240 0.749 0.314 0.854 0.539 0.420
Logn 0.449 0.895 0.369 0.774 0.954 0.975

Gamma 0.531 0.958 0.315 0.888 0.970 0.954
Norm 0 0 0 0 0 0
Gev 0.602 0.999 0.235 0.994 0.863 0.598

AIC

Weibull 296.555 257.53 275.016 303.779 397.945 493.377
Logn 286.587 255.956 262.653 300.312 392.247 483.081

Gamma 286.931 255.069 263.75 299.536 391.855 484.338
Norm 288.843 254.317 266.92 299.446 393.985 490.282
Gev 288.81 256.575 263.048 301.98 394.265 485.293

RMSE

Weibull 0.062 0.035 0.054 0.029 0.038 0.044
Logn 0.04 0.029 0.038 0.037 0.025 0.022

Gamma 0.041 0.025 0.039 0.032 0.021 0.025
Norm 0.046 0.02 0.045 0.024 0.025 0.038
Gev 0.306 0.316 0.302 0.302 0.275 0.262
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Table 1. Cont.

Index Distribution July August September October November December

K-S test

Weibull 0.364 0.229 0.471 0.373 0.15 0.104
Logn 0.535 0.915 0.697 0.977 0.85 0.67

Gamma 0.431 0.722 0.624 0.907 0.606 0.498
Norm 0 0 0 0 0 0
Gev 0.291 0.293 0.547 0.517 0.216 0.23

AIC

Weibull 531.949 588.492 560.242 516.981 472.988 371.753
Logn 523.338 578.995 547.004 505.39 451.806 351.651

Gamma 524.208 580.171 548.8 506.957 455.697 354.275
Norm 527.805 586.518 555.915 513.035 468.245 361.636
Gev 525.192 581.272 548.725 507.028 451.248 350.342

RMSE

Weibull 0.052 0.05 0.051 0.056 0.074 0.075
Logn 0.038 0.021 0.027 0.024 0.031 0.033

Gamma 0.041 0.028 0.033 0.032 0.041 0.04

Norm 0.049 0.047 0.047 0.049 0.064 0.056
Gev 0.281 0.255 0.266 0.269 0.265 0.29

Table 2. Parameters and AIC of joint distribution of inflow in the NZD reservoir.

Monthly Parameters
Copula

Clayton Frank Gumbel

January–February θ 2.84 12.11 2.99
AIC −74.30 −94.26 −85.33

February–March θ 1.04 4.95 1.68
AIC −24.75 −29.79 −25.47

March–April θ 0.94 4.93 1.78
AIC −19.82 −29.76 −32.66

April–May θ 0.72 3.54 1.45
AIC −15.08 −15.07 −11.72

May–June θ 0.60 2.07 1.29
AIC −6.74 −4.90 −7.35

June–July θ 0.74 2.92 1.40
AIC −10.76 −12.24 −12.72

July–August θ 0.78 2.61 1.37
AIC −7.86 −9.88 −11.78

August–September θ 1.09 3.60 1.50
AIC −20.51 −16.76 −18.56

September–October θ 0.87 2.94 1.34
AIC −13.81 −11.10 −9.92

October–November
θ 1.65 3.78 1.26

AIC −34.69 −17.03 −3.12

November–December
θ 5.13 12.59 2.49

AIC −109.38 −91.74 −62.23

December–January θ 0.13 0.55 1.04
AIC 1.43 1.55 1.62

The contour map of the cumulative distribution function of the optimal copula func-
tion for each adjacent month is shown in Figure 5. In Figure 5, it is easy to obtain the
probability that the incoming water in a certain month is within a certain magnitude and
that the adjacent month’s incoming water is within a certain magnitude. Through the joint
distribution, the corresponding joint probability of the two adjacent months’ incoming
water can be obtained. It should work as well.

4.1.3. Stochastic Simulation of Incoming Runoff

Combined with the lognormal distribution and copula function, the Gibbs method
was used to simulate monthly runoff. The simulated and measured runoff of the NZD
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reservoir are shown in Figure 6. It can be seen from the figure that the simulated monthly
runoff distribution was highly consistent with the measured runoff distribution. The
maximum value appeared in August and the minimum value appeared in March. The
maximum value of the simulated runoff in each month was higher than the measured
value, and the months with the largest deviation occurred in the wet season, especially
in August. However, from the median value, it could be found that the median value
of the simulated runoff and measured runoff were basically consistent. The multi-year
average of the simulated runoff (537.2 108 m3/s) was 0.7 108 m3/s less than the measured
runoff (537.9 108 m3/s). The standard deviation of the simulated runoff (73.27 108 m3/s)
was reduced by 4.71 108 m3/s compared with the standard deviation of the measured
runoff (77.98 108 m3/s). According to the measured annual mean runoff of ±1 standard
deviation as a reasonable range, the simulated annual runoff was statistically analyzed (in
Figure 7). The proportion of the simulated annual runoff exceeding this range was 13.98%,
and the proportion lower than this range was 14.9%. Most of the simulated runoff values
were within this range, accounting for 71.12%, showing the uncertainty of the incoming
water process.
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Figure 6. Observed and simulated monthly inflow of the NZD hydropower plant.
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Figure 7. Simulated annual runoff of the NZD hydropower plant.

4.2. Process of Incoming Runoff
4.2.1. Transfer Probability Matrix Based on Measured Runoff

The monthly runoff of the NZD hydropower plant was sorted in descending order,
10 representative runoff QR (QR1 representing the average of the runoff in P ∈ (0, 10%],
QR2 representing for the average of runoff in P ∈ (10%, 20%], etc.) were selected, and the
runoff in each month under the same QR was plotted on the same curve (Figure 8).
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Figure 8. Representative runoff of each month.

Based on the monthly representative flow of the NZD hydropower plant (Table 3),
the one-step transfer probability matrix of monthly runoff is derived. It could be seen
from the transfer probability matrix (Figure 9) that because the measured runoff was
limited (only 61 years from 1953 to 2013), the derived transfer probability matrix did
not have obvious statistical regularity. For example, when the incoming runoff in June
dropped into QR1, there were only three representative runoffs in July (QR1, QR4, and
QR5), while the probability of incoming runoff for other representative runoffs was 0. The
transfer probability matrix of runoff was the important input of the stochastic optimal
operation model. However, the transfer probability matrix based on measured runoff had
the phenomenon of too many 0 values, which made it difficult to obtain reasonable optimal
operation results. Therefore, the Gibbs method was used to generate a large number of
samples to deal with the impacts of insufficient data on the transfer probability matrix.
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Table 3. Representative runoff in each month for measured runoff of the NZD hydropower plant
(108 m3).

Month
Representative Runoff QR

1 2 3 4 5 6 7 8 9 10

June 67.2 60.9 53.1 51.5 48.1 44.9 41.5 37.3 34.1 27.6
July 112.9 102.4 95.3 88.0 82.7 75.9 74.3 70.1 64.9 56.2

August 141.6 122.4 112.9 104.5 96.9 91.4 84.6 75.6 71.2 53.3
September 119.0 106.1 94.6 89.0 83.8 77.0 71.4 68.0 60.4 49.6
October 89.8 74.6 69.3 65.1 62.0 57.5 54.1 49.6 45.7 35.5
November 54.1 43.6 40.4 38.1 37.3 34.7 31.0 29.2 27.6 20.4
December 28.9 26.5 24.2 23.2 22.6 21.5 20.8 19.5 18.4 16.0
January 21.1 19.3 18.1 17.4 16.9 16.8 16.4 15.1 14.2 12.0

February 17.4 16.0 15.4 14.9 14.5 14.2 13.7 13.0 11.9 10.5
March 16.8 16.2 15.0 14.4 14.0 12.9 12.6 12.1 11.7 10.8
April 20.7 19.7 18.8 18.3 17.5 17.0 16.1 15.3 13.5 11.8
May 35.5 30.7 29.7 27.6 26.5 25.3 23.5 21.6 19.0 15.3

4.2.2. Transfer Probability Matrix based on Simulated Runoff

In this paper, 5000 groups of stochastic runoff of the NZD hydropower plant were
simulated based on the Gibbs method to derive the transfer probability matrix. The repre-
sentative runoff in each month is shown in Table 4, and the one-step transfer probability
matrix from June to May of the next year was obtained (Figure 10). Moreover, the phe-
nomenon of centralized probability distribution and the transfer probability of 0 did not
appear during the process of deriving the transfer probability matrix based on the sim-
ulated runoff. It was concluded that the transfer probability matrix based on simulated
runoff could solve the problem of deficiency in measured runoff data.

4.3. Result of Hydropower Plants Operation

In this paper, the transfer probability matrix of the simulated runoff of the NZD
reservoir was used as the input of the reservoir operation model, and the SDP algorithm
was used to solve the model to obtain the operation results of the NZD reservoir under
10 representative runoffs. At the same time, taking the incoming runoff of a normal year as
an example, the operation results of the hydropower plant operation model based on the
DP and SDP algorithms were compared and analyzed to verify the rationality of the SDP.
In order to show the water level process of the NZD hydropower plant under different
incoming runoff in the current period after being dispersed, the corresponding water levels
at the beginning and end of the month of the same representative flow were drawn on the
same curve to obtain the yearly optimal operation water level diagram (Figure 11).
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Figure 9. Cont.
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Figure 9. Transfer probability of the NZD hydropower plant for measured runoff.

Table 4. Representative flow in each month for simulated runoff of the NZD hydropower plant (108 m3).

Month
Representative Runoff QR

1 2 3 4 5 6 7 8 9 10

June 65.9 59.5 54.5 51.0 47.9 44.8 41.7 38.6 34.4 20.0
July 108.7 99.3 92.9 87.8 83.3 79.0 75.1 70.5 64.1 39.8

August 139.0 122.4 112.7 104.9 97.7 91.1 84.7 77.7 68.7 36.2
September 114.6 103.0 94.9 88.4 82.8 77.8 72.9 67.5 60.8 36.6
October 83.7 75.4 70.0 65.5 61.6 57.9 54.4 50.3 45.5 28.3
November 51.4 45.5 42.1 39.1 36.7 34.4 32.0 29.4 26.4 15.9
December 29.0 26.7 25.1 23.9 22.9 21.9 20.8 19.6 18.0 12.6
January 20.6 19.4 18.5 17.9 17.2 16.6 16.0 15.2 14.3 10.0

February 17.3 16.3 15.6 15.0 14.5 14.0 13.5 13.0 12.2 8.4
March 16.8 15.8 15.0 14.5 13.9 13.4 12.9 12.3 11.5 8.1
April 21.1 19.6 18.7 17.9 17.2 16.5 15.8 15.1 14.1 9.6
May 34.9 31.6 29.5 27.8 26.2 24.8 23.4 21.7 19.6 10.2
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Figure 10. Transfer probability of the NZD hydropower plant for simulated runoff.

Taking the measured data as the input of the operation model, the optimal operation
rules of power generation and the corresponding stage power generation expectation
under the discrete water level and the incoming runoff at the beginning of each month
were solved (Figure 11). Since the starting and ending period of annual operation of the
NZD hydropower plant was from June to May of the next year, and the decision water
level of May was fixed (dead water level), the operation rule was a vertical line. Similarly,
in June of the next year, because the initial water level was fixed, the decision water level
was a horizontal line. For other months, as the water level at the beginning of the month of
the NZD hydropower plant increased, the increase trend of the water level at the end of the
month was obvious; and as the range changed from QR1 to QR10, the corresponding water
levels at the end of the month of the same water level at the beginning of the month showed
an increase tendency, which proved the rationality of the water level operation diagram.
The incoming runoff of the NZD hydropower plant in flood season (July to September) was
large and unstable, so the curves of the July, August, and September operation diagrams
were scattered and irregular. In the dry season, the curve of the corresponding water
level in the operation diagram was denser, the curve space was closer and closer, and the
curves even overlapped together, which was regular. The optimal operation diagram was
used to obtain the corresponding end water level of a certain beginning water level by
determining the representative range of any incoming runoff, which was convenient for
operation in practice.

In order to examine the rationality of the operation rules formulated by the SDP, the
deterministic dynamic programming (DP) was selected to obtain the operation results as
a compared case. Taking the incoming runoff process of the NZD hydropower plant in
a normal water year as an example, the SDP and DP algorithms were used to solve the
operation model. The operation processes of the SDP and DP are shown in Figure 12.
The annual power generation based on the SDP and DP were 305.97 × 108 kW · h and
306.91 × 108 kW · h, respectively. The total power generation and operation process of the
SDP was same as those of the DP, which proved to be reliable for the SDP.
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Figure 12. Results for operation of the NZD hydropower plant based on DP and SDP.

5. Conclusions

There are many uncertain factors faced during the actual operation of hydropower
plants, among which the uncertainty of incoming runoff contributes the most. Therefore,
taking into consideration the randomness of incoming runoff, more risk information about
the actual operation of hydropower plants would be provided for decision-makers to make
reasonable decisions. In this paper, the copula joint function was selected to construct the
joint distribution of adjacent monthly runoff of the NZD hydropower plant, and the runoff
simulation model was constructed based on the Gibbs method. While considering the
randomness of incoming runoff, the stochastic optimal operation model was constructed
and solved by the SDP algorithm.

The monthly incoming runoff of 5000 groups of the NZD hydropower plant were
simulated based on the copula function and the Gibbs method. Setting the measured
annual mean runoff as ±1 standard deviation as a reasonable range, the simulated runoff
dropping into this range accounted for 71.12%, and those exceeding this range accounted
for 13.98% and lower than this range was 14.9%, which showed the uncertainty of the
incoming runoff.

The monthly runoff of the NZD hydropower plant was sorted, and 10 representative
flows (frequency of 10%~100% with range of 10%) were selected. Due to the insufficiency
of measured runoff, there were too many 0 values in the derived transfer probability, but
after the simulated runoff series were introduced, the results significantly improved.

Taking the transfer probability matrix of simulated runoff as the input of the stochastic
optimal operation model of cascade hydropower plants, the operation diagram containing
the future-period incoming water information was obtained, which could directly provide
a reference for the optimal operation of the Nuozhadu hydropower plant. In addition,
taking the incoming runoff process in a normal year as the standard, the annual mean
power generation based on stochastic dynamic programming was similar to that based on
dynamic programming (respectively 305.97 × 108 kW · h and 306.91 × 108 kW · h), which
proved that the operation diagram constructed in this study was reasonable.
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