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Abstract: The evaluation of the hydrological responses of river basins to land-use and land-cover
(LULC) changes is crucial for sustaining water resources. We assessed the impact of LULC changes
(1990–2018) on three hydrological components (water yield (WYLD), evapotranspiration (ET), and
sediment yield (SYLD)) of the Wami–Ruvu Basin (WRB) in Tanzania, using the Soil and Water
Assessment Tool (SWAT). The 1990 LULC imagery was used for SWAT simulation, and imagery
from 2000, 2010, and 2018 was used for comparison with modelled hydrological parameters. The
model was calibrated (1993–2008) and validated (2009–2018) in the SWAT-CUP after allowing three
years (1990–1992) for the warm-up period. The results showed a decrease in WYLD (3.11 mm) and
an increase in ET (29.71 mm) and SYLD (from 0.12 t/h to 1.5 t/h). The impact of LULC changes
on WYLD, ET, and SYLD showed that the increase in agriculture and built-up areas and bushland,
and the contraction of forest led to the hydrological instability of the WRB. These results were
further assessed with climatic factors, which revealed a decrease in precipitation and an increase in
temperature by 1 ◦C. This situation seems to look more adverse in the future, based on the LULC
of the year 2036 as predicted by the CA–Markov model. Our study calls for urgent intervention by
re-planning LULC and re-assessing hydrological changes timely.

Keywords: hydrological response; LULC change; SWAT model; SWAT-CUP; Wami–Ruvu Basin; Tanzania

1. Introduction

In recent decades, changes in the hydrological processes of a wide range of river
basins have been observed with increasing frequency due to global trends in human
population, climate change, and underlying surface features at global, regional, and local
scales [1–4]. In addition to population, climate, and underlying surface features, land-
use and land-cover changes (LULCC) have a potentially large impact on hydrological
processes [5,6]. These include changes in water and sediment yields [7], surface runoff,
baseflow, streamflow [8–11], soil water content [12], groundwater recharge [13], and annual
river discharge [14]. In most cases, the influence of LULCCs is highly visible due to the
modification of dense vegetation into agriculture that, by 2017, occupied 37% of the global
land surface and employed about 50% of the world population [15,16]. Despite this, in
developing countries (e.g., Tanzania) where arable lands are found in river basins, such
statistics are lower due to lack of land-use planning; agriculture is critical for the livelihood
of more than 70% of the general population in such countries [17,18]. Vegetation can have a
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significant effect on hydrological fluxes due to variations in the physical characteristics of
the soil and land surface, such as the roughness, albedo, infiltration capacity, root depth,
architectural resistance, leaf area index (LAI), and stomatal conductance [19,20].

With respect to the hydrological responses due to LULCCs, Bessah et al. [21] found a
strong relationship between land-use and land-cover (LULC) changes and extreme spatial
variations in water yield in the Pra River Basin, Ghana. Mbungu and Kashaigili [22] found
a decreasing trend in streamflow with the LULC changes associated with deforestation and
inappropriate farming in the Little Ruaha Watershed. Santos et al. [23] reported an increase
in surface runoff due to the reduction in forest areas in the large basins in the Eastern
Amazon. Li et al. [24] and Guzha et al. [25] found a decrease in surface runoff in China and
East African catchments, respectively, due to the increase in forests and other vegetation
covers. These contradictory findings signify that LULC changes impact the hydrology of
river basins differently. According to Pinto et al. [26], such differences are likely due to
the ability of forest cover to retain organic matter, thereby increasing the water-holding
capacity and infiltration rates of the soil. This implies that evaluating and quantifying
LULCC impacts on river basin hydrology is case-specific and thus, would benefit from the
use of specific modelling techniques.

To date, several models, including the Precipitation-Runoff Modelling System (PRMS),
the Soil and Water Assessment Tool (SWAT), the Hydrological Engineering Centre’s Hy-
drologic Modelling System (HEC-HMS), the Hydrological Simulation Program-Fortran
(HSPF) model, the European Hydrological System Model (MIKE-SHE), the Hydrological
Catchment Model (WaSiM-ETH), and the Web-based Hydrograph Analysis Tool (WHAT)
have been used to assess the impacts of LULC changes on small- and large-scale river
basins [14,27–34]. Despite all these models providing outstanding results relative to the
subject and data inputs, SWAT has been widely applied because of its robustness in in-
tegrating topography, soil information, LULC, and climatic variables for water resource
management over wide-reaching river basins [4,35].

For example, Nie et al. [36] used the SWAT model to quantify the impacts of LULCCs
on the river basin hydrology of the Upper San Pedro watershed in Mexico from 1973 to
1997. Their results indicated that the replacement of desert scrub/grassland by a mesquite
invasion was the major contributor to the Upper San Pedro watershed baseflow reduction.
Zhu and Li [37] examined the hydrological impacts of LULCCs in the Little River catchment
in the United States using LULC data from 1984 to 2010. This study revealed that an increase
in the streamflow of the Little River catchment was closely related to the LULCC of urban
expansion, whereas a reduction in sediment loads was mostly related to a decrease in
agricultural activities. Gashaw et al. [38] modelled the hydrological impacts of LULCCs in
the Andassa watershed, part of the headstream areas of the Blue Nile River, Ethiopia, from
1985 to 2015. Their study found that the increase in cultivated land and the withdrawn
forest, shrubland, and grassland areas had different impacts on the groundwater flow,
surface runoff, and water yield of the Andassa watershed for different seasons. Wang
et al. [39], on the other hand, evaluated the individual and combined impacts of climate
and LULCCs on hydrological events in the Xitiaoxi River Basin (XRB), found in the delta
of China’s Yangtze River, and projected future land-use conditions using the CA–Markov
model. Their findings also indicated that the XRB is expected to experience extreme
hydrological events due to the land-use and climatic conditions of the river basin. Another
study by Zhang et al. [40] in Australia simulated hydrological responses to land-use change
using an improved SWAT model in the North Johnstone River catchment and found that
land-use change impacted hydrological variables, with the most notable impact being on
surface runoff. Generally, despite their noteworthy results, these and many other studies
are limited to river sub-catchments/sub-basins (i.e., the small land units of the far river
systems). Thus, they lack the ability to provide insights into cumulative LULCC impacts
on the hydrology of rivers.

A similar problem is also noted in Tanzania, which has a significant watershed called
the Wami–Ruvu Basin (WRB) with multiple land uses. Notwithstanding the increase in
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multiple LULCCs and their impacts, few hydrological studies have been conducted on this
basin. A study by Nobert and Jeremiah [41] focused on the Wami sub-basin to investigate
the hydrological response of LULC change on water yield, surface runoff, and base flow.
Wambura [42] studied the same subject in the same location, but with the one hydrological
parameter of streamflow. At the other end, Natkhin et al. [43] examined discharge regimes
due to LULCCs for the Ngerengere catchment of the Ruvu sub-basin.

Considering the current conditions of the WRB, namely an increasing population, a
poor understanding of hydrological parameters, and insufficient coverage of the entire
basin, this study was designed to investigate and assesses the LULCCs of the WRB between
1990 and 2018 in order to determine the hydrological impacts on water yield (WYLD),
evapotranspiration (ET), and sediment yield (SYLD) using the SWAT model. The selection
of the study years considered the availability and quality of data. We further considered
using Microsoft Excel and Origin Lab for sorting and processing the different hydrological
inputs for the SWAT model. An ANN for LULC classification was also used due to its great
ability to produce more accurate results than others, such as the Maximum Likelihood and
Mahalanobis classifiers [44]. Furthermore, we assessed the future impacts of LULCCs using
the CA–Markov model. The study results are expected to provide useful information for
hydrologists, land-use planners, policymakers, resource managers, and decision-makers in
the WRB and in other river basins that are susceptible to LULCCs.

2. Materials and Methods
2.1. Study Area

The WRB is located between 5◦–7◦ S and 36◦–39◦ E in Tanzania, East Africa, (Figure 1)
and encompasses a total area of approximately 66,820 km2, with an altitudinal gradient
of approximately 2267 m above sea level. The WRB consists of two sub-basins, the Wami
sub-basin (43,946 km2) and the Ruvu sub-basin (22,874 km2), with two estuaries and seven
sub-catchments of the Kinyasungwe, Mkondoa, Wami managed by the Wami sub-basin
and the Upper Ruvu, Ngerengere, Lower Ruvu, and the coast managed by the Ruvu
sub-basin. This basin originates in the Eastern Arc Mountain range in central Tanzania
and flows eastwards across fertile agricultural plains and grassland savannah to the Indian
Ocean coastline. Most of the basin area is composed of low-lying areas and a slightly
elevated hilly area with moderate undulation, except for the most important hotspots of
the basin: the Uluguru Mountains in the upper area of the Ruvu sub-basin (Appendix A,
Figures A1 and A2) and the Nguru Mountains in the upper area of the Wami sub-basin
(Appendix A, Figure A3) [45,46].

The basin climate is characterised by semi-arid conditions in the western areas and
a humid climate with high rainfall along the eastern areas towards the Indian Ocean.
The average rainfall is approximately 500–760 mm per year in the west of the semi-arid
highlands, 900–1000 mm in the central and coastal regions of the Wami sub-basin, and
800–2000 mm in the Ruvu sub-basin. The climate of the Ruvu sub-basin varies according
to the topography. Most of its areas receive rainfall ranging between 800 and 1200 mm,
except for the eastern slopes of the Uluguru Mountains, which have a mean annual rainfall
in excess of 2000 mm, and the Ukaguru Mountains, which receive between 1000–1800 mm
annually, as revealed by Kashaigili [47]. The WRB annual mean temperature ranges from
12 ◦C to 32 ◦C [48]. The basin population was estimated to be 10 million in 2018 [49].
Furthermore, according to the project conducted by the Japan International Cooperation
Agency (JICA) [50], the total population in the WRB is forecasted to increase to 12.58 million
in 2035.
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Figure 1. The location of the study area: the Wami-Ruvu Basin (WRB), Tanzania.
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2.2. SWAT Model Description

The SWAT hydrological model is a continuous time- and spatially-distributed basin-
scale model in which hydrological processes on the surface and subsurface are coupled in
order to simulate the impacts of changes in management practices [35]. It was introduced
in the 1990s to assist water resource managers in assessing hydrological responses for
proper management [51,52]. As a built-in program, SWAT stands for the Soil and Water
Assessment Tool in computing environments. It takes different forms of naming/extension
depending on the key GIS software installed with it, such as ArcSWAT for the ArcGIS
software, MSWAT for Map window software, and QSWAT for QGIS software. Despite the
difference in its extension, this model used the same basic algorithms guided by the water
balance equation (i.e., Equation (1)). Further details can be found in [53].

SWt = SWo +
t

∑
i=1

(
Ri − Qsur f ,i − ETi − Pi − Qgw,i

)
(1)

Notes: SWt is the final soil water content (mm), SWo is the initial soil water content on
day i (mm), t is the time in days, Ri is the amount of precipitation on day i (mm), Qsurf,i is
the amount of surface runoff on day i (mm), ETi is the amount of evapotranspiration on
day i (mm), Pi is the amount of water entering the vandose zone from the soil profile on
day i (mm), and Qgw,i is the amount of return flow on day i (mm). In this study, we used
ArcSWAT extension in the ArcGIS software.

2.3. Data Requirements for the Model Input

Four types of data were required to build up the SWAT model: topography; soils;
LULC data; and basic climatic data. These data were acquired from different sources and
were fit for the appropriate model inputs; each was pre-processed as explained below.

2.3.1. Topography and Soil Data

The topographical data were extracted from the digital elevation model, mapped by
the Advanced Land Observing Satellite (ALOS) using the Panchromatic Remote-sensing
Instrument for Stereo Mapping (PRISM) with a horizontal resolution of 30 m [54]. The
choice of the ALOS DEM was made because of its highly accuracy results that have been
tested in many countries such as Russia [55], Argentina [56], the Philippines [57], and
Cameroon [58], which is close to the case study area. The topographic data were used to
generate the stream networks of the WRB, including river length, slope, and width.

The soil data were retrieved from the Agricultural Organization (FAO) and used to
determine soil parameters, such as texture, hydrologic soil group, and the available water
content of the soil, as needed to run the SWAT model [59]. These data were available in
the GIS shapefile form covering all over the world, and its soil codes matched the MSWAT
extension. Thus, we added a new column to the ArcSWAT database for the soil data
with names similar to those from the downloaded shapefile and used it when defining
the hydrological response units (HRUs). In general, the soil data used in this study were
chosen due to their high accuracy and wide use in many studies, such as in the Karnali
River Basin of Nepal’s Himalaya [60], Giba catchment, Tigray, Ethiopia [61], and in the
Wami sub-basin—A part of the WRB in Tanzania by [62]. Figure 2 shows the topographical
and soil data used for the model input. Table 1 provides a detailed description of the soil
data types in the WRB.
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Figure 2. The topography and soil data used for the modelling of the Wami–Ruvu Basin.
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Figure 2. The topography and soil data used for the modelling of the Wami–Ruvu Basin.
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Table 1. The major soil types existing in the WRB and their descriptions.

SN/Value Soil Codes Soil Definition

1 Af3-1-2a-407 Sandy clay loam
2 Af33-1-2a-414 Sandy loam
3 Af38-1-2a-420 Sandy loam
4 Af40-2b-422 Sandy clay loam
5 Af43-1-2b-426 Sandy loam
6 Ao65-1-2a-428 Sandy loam
7 Ao67-2bc-430 Sandy clay loam
8 Ao68-1-2a-432 Sandy loam
9 Bc14-2bc-440 Loam
10 Bc18-c-446 Loam
11 Bk25-2a-467 Loam
12 Bk28-2b-471 Loam
13 Fo77-2b-539 Sandy clay loam
14 Je51-2-3a-688 Clay loam
15 Lf75-1-2a-760 Sandy clay loam
16 Lf78-1-2a-763 Sandy loam
17 Ne40-1-2a-833 Sandy clay loam
18 Qc30-1a-877 Sandy loam
19 Qf31-1ab-909 Sandy loam
20 Qf35-1b-914 Sandy loam
21 Vp49-3a-966 Clay
22 Vp50-3a-968 Clay
23 We8-1-2a-980 Sandy clay loam

2.3.2. LULC Data

The data for LULCs were obtained from Landsat satellite imagery, shared by the
United States Geological Survey [63]. The data were downloaded at https://glovis.usgs.gov
(accessed on 18 July 2021) from six Landsat scenes along WRS-2 paths 166 to 168 and rows
64 and 65 for 1990, 2000, 2010, and 2018. These datasets were retrieved from three different
sensors of TM, ETM, and OLI during the dry season and with the threshold of less than
10% for cloud cover. The choice of this source of imagery was based on their availability
that covers the full length of the studied time, the same spatial resolution of 30 m, and
common Red–Green–Blue bands, enhancing the visual interpretation during classification.
The 1990 imagery was used as a direct input for the simulation of the SWAT model for
29 years and hence, to provide a better understanding, we used the rest of the imagery
for the comparative analysis of the modelled hydrological parameters, as detailed in the
subsequent sections. The details of the dates, Landsat, and sensors of the downloaded data
are presented in Table 2. All Landsat scenes were atmospherically corrected using FLAASH
in ENVI 5.3 software through radiometric calibration and dark subtraction processes, and
their digital numbers were converted into the top of atmosphere reflectance before being
mosaicked into a single composite image cropped to the study area for LULC classification.
To determine the LULC types, we identified training datasets and used a classifier selection
tool to encode the sampling data for the classification process. The training datasets were
randomly divided into two subsets: 60% was used for the training of the classifier and 40%
was used for the accuracy assessment. Finally, the images were classified using artificial
neural networks (ANNs). An ANN is a supervised classification method composed of
several small processing units imitated with artificial neurons, and it is widely applied in
recognition processes, such as LULC classification [64]. Eight LULC types were obtained
from this process, as shown in Table 3. The classified imagery was further assessed for
accuracy using Kappa coefficient analysis by comparing the pixel information to Google
Earth and sentinel−2 at 10 m spatial resolution. The overall accuracy assessment was 80.8%
for the LULC images in 1990, 78.9% in 2000, 88.4% in 2010, and 86% in 2018. These results
are similar to those obtained in other studies, such as those by Abineh and Bogale [65]
and Rwanga and Ndambuki [66]. For the use of the LULC imagery in the model, the

https://glovis.usgs.gov
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LULC types were required to match the SWAT code database. Thus, we encoded them
accordingly, as shown in Figure 3.

Table 2. The Landsat satellite imageries used in the WRB.

Date Satellite Sensor Path/Row Date Satellite Sensor Path/Row

30 July 1990 Landsat 5 TM 168/64 1 July 2010 Landsat 5 TM 166/64
1 August 1990 Landsat 5 TM 167/64 6 July 2010 Landsat 5 TM 167/65
4 August 1990 Landsat 5 TM 166/64 27 June 2010 Landsat 5 TM 166/65
5 August 1990 Landsat 5 TM 168/65 29 June 2010 Landsat 5 TM 167/64
7 August 1990 Landsat 5 TM 167/65 15 July 2010 Landsat 5 TM 168/64
8 August 1990 Landsat 5 TM 166/65 20 July 2010 Landsat 5 TM 168/65

26 July 2000 Landsat 7 ETM+ 168/65 16 August 2018 Landsat 8 OLI 168/64
19 July 2000 Landsat 7 ETM+ 168/64 17 August 2018 Landsat 8 OLI 167/64
15 June 2000 Landsat 7 ETM+ 167/64 19 August 2018 Landsat 8 OLI 166/64
21 June 2000 Landsat 7 ETM+ 166/64 20 August 2018 Landsat 8 OLI 168/65
30 June 2000 Landsat 7 ETM+ 166/65 1 September 2018 Landsat 8 OLI 167/65
7 July 2000 Landsat 7 ETM+ 167/65 2 September 2018 Landsat 8 OLI 166/65

Table 3. The land-cover types targeted for mapping.

SN Land-Cover Type Description Sample Area Recognition

1 Agriculture Crop fields and fallow lands Light green colour
2 Bare soil Exposed soil and barren lands Brown colour
3 Built-up areas Housing, industries, transportation, and mixed urban Purple/silver colour
4 Bushland Land mainly comprised plants and open bush Moderate green colour
5 Forest Tree crown cover, woodland, and thickets Dark green colour
6 Grassland Mainly composed of grass Brown/Light green colour
7 Water Rivers, open water, lakes, ponds, and water reservoirs Blue colour
8 Wetland Stagnant water bodies, swamps, and marshes Light blue colour

Furthermore, to understand the patterns of LULC under future hydrological impacts,
we used the CA–Markov model in the Land Change Modeller in the Terrset 18.31. The
choice of the CA–Markov model was considered based on its wide application in the
modelling, simulation, and prediction of the different dimensions of LULC change [67–69].
Overall, the process of predicting LULC involved three steps: (1) carrying out a CA–
Markovian chain analysis of the 2000 and 2010 LULC maps to generate transition area
matrices; (2) generating transitional area maps of LULC; (3) validating and calibrating the
accuracy of the model by simulating the 2018 LULC map based on Kappa indices. Finally,
with the calibrated and validated CA–Markov model, the 2018 LULC map (reference map)
was used to simulate the future patterns of the year 2036. This prediction was simulated
based on the number of interactions between 2000 and 2018 (18 years).



Water 2022, 14, 184 9 of 32

Water 2022, 14, x 9 of 35 
 

 

 
Figure 3. The LULC data of the WRB used for the SWAT model: (a) Classification according to the ANN technique; (b) Reclassified based on the SWAT land-use 
database.

39°0'0"E

39°0'0"E

38°0'0"E

38°0'0"E

37°0'0"E

37°0'0"E

36°0'0"E

36°0'0"E

5°
0'

0"
S

6°
0'

0"
S

7°
0'

0"
S

8°
0'

0"
S

0 130 26065
Km

39°0'0"E

39°0'0"E

38°0'0"E

38°0'0"E

37°0'0"E

37°0'0"E

36°0'0"E

36°0'0"E

5°
0'

0"
S

6°
0'

0"
S

7°
0'

0"
S

8°
0'

0"
S

0 130 26065
Km

Classified 8 LULC types

Wetland
Water

Grassland
Forest

Bushland
Built up

Bare Soil
Agriculture

Re-classified 5 LULC types for SWAT

(a) (b)

WATR–Water
FRST–Forest

FRSE–Bushland
AGRL–Agriculture

BARR–Built up

Figure 3. The LULC data of the WRB used for the SWAT model: (a) Classification according to the ANN technique; (b) Reclassified based on the SWAT land-use
database.



Water 2022, 14, 184 10 of 32

2.3.3. Hydroclimatic Data

The observed climatic data used in this study include the daily precipitation, temper-
ature, wind speed, relative humidity, and solar radiation, which were obtained from the
Tanzania Meteorological Agency (TMA), the University of Dar es Salaam-Water Resources
Engineering Department database, and the Ministry of Water, Dodoma. All these data
were sorted and processed in Excel for use in the SWAT model and, in order to obtain
prior knowledge of the basin hydrology, the basic data of precipitation and temperature
were assessed to determine their trends using OriginLab. For calibration and validation
purposes, the flow data at the outlets of the sub-basin (1H8 and IG2) with 37% of missing
data [70] were used in this study. These data cover a period of 29 years (1990–2018) and
were collected from the WRB office in the Morogoro region. The choice of the use of the IG2
and 1H8 outlets was due to the quality of their data as indicated in many previous studies,
such as [41,70], and to topography, as they are both found downstream. Thus, they are the
main collectors of the entire streamflow of the basin. Detailed information on the outlets is
presented in Table 4. Figure 4 is a flowchart used for processing all data used in this study.

Table 4. The station-outlets used for the SWAT model calibration and validation.

Station-Outlet
Number

Station-Outlet
Name Data Variable Latitude Longitude Elevation (m)

IG2 Wami River, Mandera Flow −6.2464 38.3874 75.0
1H8 Ruvu River, Morogoro Road Bridge Flow −6.6929 38.7081 229
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2.4. Model Set-Up and Evaluation Approach
2.4.1. SWAT Model Input

The SWAT modelling process began with watershed delineation based on digital
elevation models (DEMs) using ArcSWAT in ArcGIS software. The watershed delineation
involved five stages: DEM setup; stream definition; outlet and inlet definition; watershed
outlet (s) selection; and the definition and calculation of the sub-basin parameters. Based
on the topographical nature of the basin, both delineated stream and sub-stream networks
were composed within the Wami and Ruvu sub-basins. Their outlets were also the same,
coded as FLOW_OUT_13 and FLOW_OUT_24 for IG2 and 1H8, respectively (Figure 5).
Subsequently, the slope information obtained from the delineation process and the other
soil and land-use data allowed us to define and compute the HRUs of the WRB. This step
yielded 40 HRUs, which were, in principle, the result of the overlays of the identified data
characteristics [71]. It is worth noting that in each HRU, water balance was the driving
force behind all processes, such as surface and groundwater flow, the interception of
precipitation, and the distribution of water in different soil profiles, and could impact the
movement of sediments. Moreover, as defined by the HRUs, the SWAT model required
critical threshold values for land-use, soil type, and slope, and the default values for most
applications were 20% for land-use, 10% for soil, and 20% for slope [72]. The default values
were applied sequentially during the definition of the HRUs to limit the number of HRUs
in the WRB. Finally, before we ran the model, the SWAT model required the input of the
climatic data that we imported to work with the HRU information in order to obtain the
final results.
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2.4.2. Model Performance and Evaluation

After the simulation, the SWAT model was calibrated and validated using monthly
flow data for the two gauging stations IG2 and 1H8 for FLOW_OUT_13 and FLOW_OUT_24,
respectively. The flow data at the outlets of sub-basins IG2 and 1H8 were considered be-
cause this was the only hydrological data available from the WRB from 1990 to 2018. The
model calibration (1993–2008) and validation (2009–2018) periods were carried out by
comparing the simulated and measured flow data, with the period of (1990–1992) left out
as a warm-up period. Manual and auto-calibration routines [73] were performed. Manual
calibration was performed to reduce the acceptable parameter ranges at each station [4].
The optimised parameter ranges suggested by the SWAT user’s manual and other studies,
such as those conducted by [74,75], were incorporated into a recently developed semi-
auto-calibration approach, SUFI-2, in the SWAT-CUP [76]. The sequential uncertainty
fitting II (SUFI-2) [77] method calibration and uncertainty program [73] was used, with the
Nash–Sutcliffe efficiency (NSE) [78], as the objective function to identify the most sensitive
parameters to be calibrated in the WRB. The details of the statistical evaluation methods
that include the NSE, the ratio of the root, mean square error to the standard deviation of
measured data (RSR), and the percent bias (PBIAS) are presented in Table 5, and further
details can be obtained from Moriasi et al. [79] and Moriasi et al. [80].

Table 5. The SWAT statistical equations used for calibration and validation processes and their level
of performance.

Statistical Equation Value Rating Performance

NSE = 1 −
[

∑n
1=1 (Xob(1)−Ymodel(1))2

∑n
1=1 (Xobs(1)−Xobs)2

] >0.65 Very good

0.54 to 0.65 Adequate

RSR =

√
∑n

1=1 (Xobs(1)−Ymode(1))2√
∑n

1=1 (Xobs(1)−Xobs)2

>0.50 Satisfactory

0.00 < RSR < 0.50 Very good

0.50 < RSR < 0.60 Good

0.60 < RSR < 0.70 Satisfactory

RSR > 0.70 Unsatisfactory

PBIAS =
[

∑n
i =1(Xobs(1)−Ymode(1))

∑n
i =1(Xobs(1)) × 100

] >0.50 Satisfactory

<±20% Good

±20% to ±40% Satisfactory

>±40% Unsatisfactory

3. Results

The results of this research are presented in three phases: one for the LULCCs that
are real and simulated based on the CA–Markov model, and two for the identified trends
of the basic climatic data and the hydrological components modelled in the SWAT model.
The results of the first and second phases are presented in a straightforward manner, as
described in the methodology. The SWAT model results for each hydrological component
were generated annually for the entirety of the study period; thus, for a better understand-
ing, we chose the years 1990, 2000, 2010, and 2018 to compare the detected land-use and
land-cover changes.

3.1. Trends of LULCCs

Tables 6 and 7 summarise the temporal trends of the LULCC analysis from 1990 to
2018 based on eight targeted LULC types. The spatial representation of each LULC from
1990 to 2018 is shown in Figure 6. Initially, the temporal trend of LULC in 1990, as indicated
by the percentage of the total area of the WRB, was dominated by forest (58.1), followed
by bushland (16.7), grassland (13.6), agriculture (10.6), water and wetland (0.6), bare soil
(0.4), and built-up areas (0.1). This trend varied significantly for all LULC types in the years
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2000, 2010, and 2018, as highlighted by the land covered by grassland and bushland areas
(Table 6). Grassland areas increased tremendously in 2000 and declined tremendously in
2018. In contrast, bushland was the only natural area that increased from 16.7% in 1990 to
24.9% in 2018, despite a decrease in 2000 (Table 7).

Table 6. The overall areas of individual LULC classification in the years 1990, 2000, 2010, and 2018 in
the WRB.

LULC Types 1990
ha %

2000
ha %

2010
ha %

2018
ha %

Agriculture 705,415 10.6 772,034 11.5 990,486 14.8 1,482,554 22.2
Bare Soil 25,179 0.4 8083 0.1 25,179 0.4 135,736 2.0
Bushland 1,116,020 16.7 575,409 8.6 617,091 9.2 1,665,843 24.9

Forest 3,885,749 58.1 3,236,114 48.4 2,980,920 44.6 2,857,658 42.7
Grassland 908,883 13.6 2,029,882 30.4 2,002,217 30.0 464,219 6.9

Built-up Areas 7226 0.1 34,371 0.5 48,499 0.7 60,560 0.9
Water 19,435 0.3 17,527 0.3 13,634 0.2 13,220 0.2

Wetland 17,114 0.3 11,601 0.2 6995 0.1 5231 0.1
Total 6,685,021 100 6,685,021 100 6,685,021 100 6,685,021 100

Table 7. The yearly interval results of the LULC classification images for 1990–2000, 2000–2010,
2010–2018, and 1990–2018, showing area change (+Gain and -Loss) in hectares (ha) and percentage
(%) in the WRB.

LULC Type 1990–2000
ha %

2000–2010
ha %

2010–2018
ha %

1990–2018
ha %

Agriculture 66,619 1.0 218,452 3.3 492,068 7.4 777,139 +11.6
Bare Soil −17,096 −0.3 17,096 0.3 110,557 1.7 110,557 +1.7
Bushland −540,611 −8.1 41,682 0.6 1,048,752 15.7 549,823 +8.2

Forest −649,635 −9.7 −255,194 −3.8 −123,262 −1.8 −1,028,091 −15.4
Grassland 1,120,999 16.8 −27,665 −0.4 −1,537,998 −23.0 −444,664 −6.7

Built-up Areas 27,145 0.4 14,128 0.2 12,061 0.2 53,334 +0.8
Water −1908 0.0 −3893 −0.1 −414 0.0 −6215 −0.1

Wetland −5513 −0.1 −4606 −0.1 −1764 0.0 −11,883 −0.2

Moreover, the trend of LULCC indicates a general decrease in natural areas, including
forests (15.4%), grasslands (6.7%), and water and wetland cover (0.3%) (Table 7). On the
other hand, the land uses supporting economic activities and population development
increased, as indicated by agriculture and built-up areas (Figure 6). Taken altogether,
agriculture is the LULC with the highest gain (11.6%) and forest is the LULC with the
highest loss (15.4%) over the yearly intervals from 1990 to 2018 (Table 7). These LULC
results agree with the results of a previous study conducted by Twisa and Buchroithner [81]
in the Wami sub-basin.

On the other hand, the trends of LULC simulated by the CA–Markov model show that
the main land-use classes of agriculture, built-up areas, and forest agree with real land-use
changes observed previously (Table 8). These results were confirmed based on the relative
accuracy (Kno = 0.8425, Klocation = 0.8357, Kstandard = 0.7987) between the classified map
of 2018 and the modelled maps of 2036, as shown in in Figure 7.
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Table 8. The CA–Markov model LULCC results for the year 2018, 2036 (projected), and 2018–2036,
showing area change (+Gain and −Loss) in the WRB.

LULC Types 2018
ha %

2036
ha %

2018–2036
ha %

Agriculture 1,482,554 22.2 2,071,244 31.0 +588,690 8.8
Bare Soil 135,736 2.0 122,170 1.8 −13,566 −0.2
Bushland 1,665,843 24.9 1,814,294 27.1 +148,451 2.2

Forest 2,857,658 42.7 2,229,228 33.3 −628,430 −9.4
Grassland 464,219 6.9 343,206 5.1 −121,013 −1.8

Built-up Areas 60,560 0.9 92,674 1.4 +79,454 0.5
Water 13,220 0.2 8348 0.1 −4872 −0.1

Wetland 5231 0.1 3857 0.1 +148,451 2.2
Total 6,685,021 100.0 6,685,021 100.0 −1374 0.0

Water 2022, 14, x 16 of 35 
 

 

On the other hand, the trends of LULC simulated by the CA–Markov model show 
that the main land-use classes of agriculture, built-up areas, and forest agree with real 
land-use changes observed previously (Table 8). These results were confirmed based on 
the relative accuracy (Kno = 0.8425, Klocation = 0.8357, Kstandard = 0.7987) between the 
classified map of 2018 and the modelled maps of 2036, as shown in in Figure 7. 

Table 8. The CA–Markov model LULCC results for the year 2018, 2036 (projected), and 2018–2036, 
showing area change (+Gain and −Loss) in the WRB. 

LULC Types 
2018 
ha % 

2036 
ha % 

2018–2036 
ha % 

Agriculture 1,482,554 22.2 2,071,244 31.0 +588,690 8.8 
Bare Soil 135,736 2.0 122,170 1.8 −13,566 −0.2 
Bushland 1,665,843 24.9 1,814,294 27.1 +148,451 2.2 

Forest 2,857,658 42.7 2,229,228 33.3 −628,430 −9.4 
Grassland 464,219 6.9 343,206 5.1 −121,013 −1.8 

Built-up Areas 60,560 0.9 92,674 1.4 +79,454 0.5 
Water 13,220 0.2 8348 0.1 −4872 −0.1 

Wetland 5231 0.1 3857 0.1 +148,451 2.2 
Total 6,685,021 100.0 6,685,021 100.0 −1374 0.0 

 
Figure 7. The LULC maps of the Wami–Ruvu Basin, (a) for 2018 and (b) projected by the CA–Markov
model for the year 2036.



Water 2022, 14, 184 16 of 32

3.2. Precipitation and Temperature Trends

The results of the precipitation and temperature studies from the Wami and Ruvu
sub-basins showed an increase in temperature and a decrease in precipitation (Figure 8).
The Wami sub-basin temperature varied between 30.5 ◦C and 32 ◦C from the 1990s to
2018. However, the Ruvu sub-basin increased from 28.5 ◦C to 29.5 ◦C. The variations
in the temperature in these sub-basins demonstrate that the WRB temperature increased
by approximately 1 ◦C from the 1990s to 2018 (Figure 8). Similarly, there was a sharp
decrease in precipitation for both sub-basins during the study period. These trends were
punctuated with concurrent events, such as in 1997, when both sub-basins recorded the
highest precipitation, and in 2003 and 2010, when the same sub-basins recorded the lowest
precipitation over the entire study period.
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3.3. SWAT Simulated Outputs
3.3.1. Spatio-Temporal Water Yield (WYLD) Distribution

Spatially, the results of the WYLD distribution show an annual variation between
the four years specified by the study methods (Figure 9). These results also comprise the
temporal trends for each sub-basin, which indicates a reduction in WYLD from 169.38 mm
to 166.27 mm, and from 173.59 mm to 170.54 mm for the Wami and Ruvu sub-basins,
respectively (Table 9). The SWAT-defined WYLD was the aggregate sum of water leaving
the HRU and entering the principle channel during the time step, i.e., including surface
runoff and ground water flow [82]. The WYLD results also comprise the major components
of surface flow and groundwater recharge, which revealed the increase in surface flow and
decrease in groundwater flows for both sub-basins (Table 9). Similar results were obtained
in previous studies by Nobert and Jeremiah [41] and Twisa [75], who used a section of the
Wami sub-basin to study the effects of LULCCs on hydrology. In general, the results for the
spatial pattern of WYLD in Figure 9 show that most of the agricultural areas in the western
areas of the WRB have low water yields. These results indicate that the significant increase
in LULCCs associated with expanding agricultural areas that draw water for irrigation
has an impact on the changes in WYLD in the WRB (see Figures 6 and 9 for comparison).
Correspondingly, our study associated the WYLD reductions with the semi-arid climatic
conditions in western areas of the WRB.
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Figure 9. The spatial WYLD distribution in the WRB for (a) 1900, (b) 2000, (c) 2010, and (d) 2018.
Note: The numbers 1–40 are sub-catchments from the delineation process.

Table 9. The long-term simulation results of WYLD and its major components in the WRB.

Hydrological Component
Wami Sub-Basin Ruvu Sub-Basin

1990 2018 1990 2018

WYLD (mm) 169.38 166.27 173.59 170.54
Surface runoff (mm) 67.61 70.84 73.63 77.74

Groundwater flow (mm) 89.45 87.76 102.83 99.92

3.3.2. Simulated Evapotranspiration Trend (ET)

The SWAT-simulated results for ET show fluctuations from 1990, with a gradual in-
crease in 2018 (Figure 10). From 1990 to 2018, the trends of ET increased by 29.71 mm,
from 95.01 mm to 124.72 mm. This increase indicates the impact of LULC on ET, mainly
resulting from the physical changes of the WRB land surface, which affects the efficiency
of ET as a process (also see Figures 6 and 10). Furthermore, Figure 11, which indicates
the spatial distribution of ET in the basin, shows that ET in the far western areas is sub-
stantially lower than the eastern parts and towards the coastal areas of the WRB. This
variation could be attributed to the bushland, which has expanded toward the coastal
areas (Figures 6 and 11). Similarly, the climatic conditions of the river basin, especially in
the coastal and estuarine environments, are also likely to have contributed towards this
variation. In general, the variation in ET, as shown in Figure 10, is largely consistent with
previous studies, such as Wambura [83] who used a Moderate Resolution Imaging Spectro-
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radiometer (MODIS) imagery program to study ET and potential evapotranspiration (PET)
in the Ruvu sub-basin.
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Figure 10. The temporal trends of simulated ET in the WRB.
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Figure 11. The simulated spatial pattern of ET in the WRB for the years (a) 1990, (b) 2000, (c) 2010,
and (d) 2018.
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3.3.3. Spatio-Temporal Sediment Yield (SYLD) Distribution

Considerable changes in sediment yield in tons per hectare (SYLD t/h) occurred in
the WRB from 1990 to 2018. The main change was a significant increase from 0.12 t/h
to 1.5 t/h from 1990 to 2018 (Figure 12). Figure 13 shows the spatial distribution in the
SYLD simulated from 1990 to 2018. In the starting year of the simulation, 1990, SYLD
was more exposed in HRU 34 of the Ruvu sub-basin. In 2000, most SYLDs were imitated
in HRUs 30, 33, and 37 of the same Ruvu sub-basin. In contrast, for the year 2010, the
simulated results indicated that both sub-basins of the WRB were affected by the SYLD,
with the Wami sub-basin being affected most at the downstream area (HRU 13). The
Ruvu sub-basin affected both upstream and downstream, mostly in HRUs 30 and 37.
Subsequently, for the last simulated year of 2018, the Wami sub-basin was the only area
in the WRB affected by the SYLD, particularly in the upstream areas (HRUs 10 and 2). In
general, the spatial distribution of the SYLD from 1990 to 2018 is characterised by notable
features, such as in 1990, 2000, and 2010, where the Ruvu sub-basin was the only area
simulated with the significant SYLD; in 2018, the situation changed to the Wami sub-basin, a
situation that corresponds to the expansion of agricultural land cover (see Figures 6 and 13
for comparison).
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3.4. Calibration and Validation of the SWAT Model

According to [84], a hydrological model should be calibrated to estimate the model
parameter values that provide the best possible hydrological results of interest. Hence,
in this study, the SWAT model was calibrated using two gauging stations IG2 and 1H8
for FLOW_OUT_13 and FLOW_OUT_24. The calibration (1993–2008) and validation
(2009–2018) were performed using the monthly flow data and the process started with a
sensitivity analysis that identified seven key sensitive parameters governing the calibrated
and validated outputs (Table 10). These parameters were manually adjusted iteratively
to suit the satisfactory range before the auto-calibration was ran. The parameter ranges
(minimum, maximum, and the fitted value) used for the model sensitivity analysis were
found within the suggested ranges of the SWAT user’s manual and based on other studies,
such as those conducted by [74,75]. Of the seven parameters, the four most sensitive
parameters in our study were R_CN2.mgt, SURLAG.bsn, SOL.AWC.sol, and V_ALPHA-
BF.gw.
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Figure 13. The simulated spatial pattern of SYLD in the WRB for the years (a) 1990, (b) 2000, (c) 2010
and (d) 2018.

Table 10. The ranking of the seven most sensitive parameters and their final values.

Rank Parameter Parameter Description Min
Value Max Value SWAT

Fitted Value

1 R_CN2.mgt SCS runoff curve number −0.3 0.3 −0.210000
2 SURLAG.bsn Surface runoff lag time 5.54 14 8.501000
3 SOL.AWC.sol Available water capacity of the soil layer −0.8 0.8 0.550000
4 V_ALPHA-BF.gw Baseflow alpha-factor 0 1.011 0.252750
5 V_GW-DELAY.gw Groundwater delay 0 600 150.0000

6 GWQMN.gw Threshold depth of water in the shallows
Aquifer required for return flow to occur 0 2000 1700.000

7 ESCO.hru Soil evaporation compensation factor 0 1 0.711777

Figure 14 shows the comparative results of the observed and simulated flows for
the outlets FLOW_OUT_13 and /FLOW_OUT_24 of IG2 and 1H8 during the calibration
(1993–2008) and validation periods (2009–2018). The graphical comparison between the
observed and simulated annual river flow exhibits good agreement between the simulated
and observed flows for both the calibration and validation periods (Figure 14). Table 11
presents the statistical values that govern the SWAT-WRB model, the NSE, RSR, and PBIAS,
which were found to be satisfactory for both the calibrated and simulated periods; these
results also comply with others in the literature, such as in [79,80]. Therefore, our results
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indicate that the SWAT model performed well in simulating the hydrological conditions of
the WRB.

Table 11. The model performance statistics for calibration and validation in the two outlets of
the WRB.

Performance Periods WRB Outlets
Average Monthly Flow (m3/s) SWAT Evaluation Statistics

Observed Simulated NSE RSR PBIAS

Calibration (Janaury 1993–December 2008) FLOW_OUT_13 65.09 66.50 0.85 0.39 1.90

Validation (Janaury 2009–December 2018) FLOW_OUT_13 70.84 71.26 0.83 0.37 1.70

Calibration (Janaury 1993–December 2008) FLOW_OUT_24 109.96 110.72 0.68 0.49 1.40

Validation (Janaury 2009–December 2018) FLOW_OUT_24 101.54 103.92 0.65 0.46 1.10Water 2022, 14, x 23 of 35 
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4. Discussion
4.1. Impacts of LULCC on River Basin Hydrology over 29 Years (1990 to 2018)

LULC changes in the WRB have already been reported. The results for the studied
years (1990, 2000, 2010, and 2018) on the different types of LULC indicate that most of
the WRB natural areas, including forests and grasslands, were intensively converted into
agricultural land from 1990 to 2018; further, these changes are anticipated to continue
towards 2036 (Table 8). For example, agricultural land doubled from 10.6% in 1990 to
22.2% in 2018 and is predicted to continue to increase to 31.0% by 2036 (Tables 6 and 8).
Similarly, built-up areas increased between 1990 and 2018 (0.1% to 0.9%) and are expected
to increase to 1.4% by 2036. Moreover, bushland increased from 16.7% in 1990 to 24.9% in
2018, despite a decrease in 2000, but is expected to increase to 27.1% by 2036. This land-use
pattern reflects the influence of the population increase from 3.5 to 10 million people in
the basin area from 1988 to 2018 [49]. This LULC pattern also highlights the common
influence of economic forces that reinforce anthropogenic stimulus on LULC change in
the river basin [85,86], and this is the main reason that the hydrological conditions of the
wide-ranging river basins, including the WRB, have changed due to the transformation of
natural vegetation, as substantiated by the SWAT hydrological model.

The observed LULC pattern is well established in the scientific literature—the defor-
estation of native vegetation influences several hydrological processes, resulting in changes
in water and sediment yields [87], surface runoff [88], base and streamflow [33,89], river
discharge [90], and latent heat fluxes to the hydrological cycle, including transpiration,
interception loss, and evapotranspiration [91]. In the WRB, an increased conversion of
the largest areas of natural vegetation into agriculture cover has played a great role in
the increase in sediment yields generation from 0.12 t/h to 1.5 t/h, and the changes in
WRB hydrological processes including WYLD, which decreased by 3.11 mm from 1990 to
2018. These results are in agreement with a previous study in the basin, particularly in the
Wami sub-basin [41]. Spatially, the changes in WYLD and SYLD were consistent with the
land-use pattern associated with agricultural expansion, which seems to intensively affect
the western areas of the WRB, especially in recent years (Figure 15).

Other studies, including [92–95], have also noted similar LULC impacts on sediment
loads. When sediments are eroded from their original places, some are deposited on the
way while others continue to river basin streams [96]. Both transported and deposited
sediments alter the basin’s hydrological components, such as the total WYLD, which was
found to decrease in the WRB, particularly in the western part (Figure 14). Recalling
statistically, the change in WYLD was observed from its components that indicated a
decrease in groundwater flow with an increase in surface flow by 3.23 mm and 4.11 mm for
Wami and Ruvu sub-basins, respectively (Table 9). The results suggest that the decrease of
about 1,028,091 ha in forest cover within the basin area from 1990 to 2018 might also have
caused a decrease in WYLD due to the decline in interception, which leads to more surface
runoff in most cases. In addition, we associated the decrease in WYLD with the decrease in
rainfall that was studied over the sub-basins of the WRB from 1990 to 2018 (Figure 8).

On the other hand, from the SWAT-simulated hydrograph for the observed and
simulated water flow for both calibrated (1993–2008) and validated periods (2009–2018),
the LULCC impacts that occurred from the 1990s to 2018 led to a decrease in annual
flow, especially in 2018 (Figure 14). This is despite the good agreement between the
simulated and observed discharges for both the calibration and validation periods, as
revealed by the model performance statistics of FLOW_OUT_13 for the Wami sub-basin
during calibration (NSE = 0.0.85, RSR = 0.39, PBIAS = 0.90) and validation (NSE = 0.83,
RSR = 0.37, PBIAS = 1.70), and for the FLOW_OUT_24 for the Ruvu sub-basin during cali-
bration (NSE = 0.68, RSR = 0.49, PBIAS = 1.40) and validation (NSE = 0.65, RSR = 0.46,
PBIAS = 1.10). Furthermore, a comparison of the two hydrographs showed that the
FLOW_OUT_13 for the Wami sub-basin had a lower flow (observed = 65.09 m3/s, simulated
= 66.50 m3/s) than the FLOW_OUT_24 for the Ruvu sub-basin (observed = 109.96 m3/s,
simulated = 110.72 m3/s), recorded during the calibration period (1993–2008). The same
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trend also occurred during the validation period (2009–2018), as shown in Table 11. Apart
from the clear impacts of LULCCs associated with agriculture in the two sub-basins, the
difference in the annual average flow observed in our study might have been caused by the
difference in the climatic conditions of the two sub-basins: the semi-arid conditions of the
far western areas of the FLOW_OUT_13 and the humidity and high rainfall of most areas
covered by the FLOW_OUT_24. In addition, the high sensitivity of the R_CN2 parameter,
which ranked first in the sensitivity analysis and governed the curve number of surface
flow in the river basin (Table 10), could also contribute to the observed flow difference for
the two sub-basin outlets. The high sensitivity of CN2 to streamflow has been reported in
other studies, such as those conducted by Ndomba et al. [97], Mulungu and Munishi [98],
Birhanu and Zemadim [99] in Tanzania river basins, and Baker and Miller [52] in East
African watersheds.

Parallel to the sensitivity of the streamflow parameters and the LULCCs and their
impacts on river flow, the rise and substantial variation in the spatial pattern of ET found in
our study from 1990 to 2018 (Figures 10 and 11) could be attributed to the same source. As
noted in Figures 6 and 11, the variation in ET seems to be mostly attributed to the increase
in bushland. These results strongly agree with the SWAT model, which computes the ET
based on the plant transpiration rate, maximum soil evaporation rate, and canopy water
evaporation interception [74]. Moreover, as our study revealed an increase in temperature
in the basin by 1 ◦C from 1990 to 2018, this could also be the reason for the observed increase
in ET. Based on the comparison with the spatial LULC distribution (Figures 6 and 11), the
ET decreased more from the far west to the central and lower land areas. A study by
FIU-GLOWS [46] reported similar findings of an increase in evaporative water loss in the
lower streams of the WRB. It is worth noting that, as the lower land areas were also highly
populated as indicated by the rapid increase in built-up areas (Figure 6), the increase in ET
to the lower areas of the WRB might further lead to hydrological complications in the WRB
rivers, tributaries, and reservoirs and affect the amount of water resources needed by the
populations residing in those areas.

Therefore, based on the results of this study and those drawn from other research,
including Wambura [42] and Wambura [35], it is clear that the LULC changes contributed
to modifications in the basin land and hydrological parameters. The trends of the increase
in all tested parameters signify the instability of the WRB hydrology. It is worth noting
that the future trends of the modelled parameters depend on the good practice of the
LULC in the river basin. For this reason, the researchers investigated and identified the
land-use plan (LUP) currently being implemented in the basin (Appendix A, Figure A4)
and predicted the LULC change of the river basin up to 2036 in order to determine the
future of the LULC and its anticipated impacts on the identified hydrological parameters.
In the first case, the existing LUP has six main land uses. In comparison with the current
LULC of 2018, land-use with high hydrological effects (i.e., agriculture and built-up areas)
is allocated more space (>50%). This implies that the current plan favours the hydrological
instability of the WRB. The predicted LULC change up to 2036 is consistent with current
patterns (Figure 7). The anticipated increase in agricultural land, bushland, and built-up
areas and reduction in natural forest and water and wetlands follows the current LULC
trend in the region; if this trend continues without remedial measures, its impacts on the
hydrological components will increase considerably in the future, as simulated in our study.
Furthermore, this will become more complicated with climate change, rapid population
growth, and the need to achieve economic growth within the basin [49].



Water 2022, 14, 184 24 of 32Water 2022, 14, x 25 of 35 
 

 

 
Figure 15. (a) The LULC distribution and its associated impacts on (b) SYLD and (c) WYLD in 2018. 
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Figure 15. (a) The LULC distribution and its associated impacts on (b) SYLD and (c) WYLD in 2018.
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4.2. Hydrological Stability of the WRB

The SWAT results demonstrate that the LULC types considered in this study are
significant and, therefore, important in affecting the hydrological components of the WRB.
As statistically shown, the decrease in WYLD and the increase in SYLD and ET clearly
define the instability of the WRB. On this basis, the detected changes in natural forests,
built-up areas, and agricultural areas should be regulated in order to decrease the related
impacts on the hydrological components and to obtain the hydrological stability of the
basin. In this course, the land-use plan, which is in practice in the basin, is among the key
areas for intervention since it has awarded a high priority to agricultural development.
Generally, agriculture is one of the major income sources [45,95,100] and is supported with
several strategies, such as Kilimo Kwanza (Agricultural First) and the Southern Agriculture
corridor of Tanzania [101,102]. Such initiatives are implemented more in the arable lands of
river basins, including the WRB [102]. Despite its significance, if not controlled by rationing
as in the current LUP, its adverse impacts on basin hydrology are expected, as evidenced
by the predicted LULC changes up to the year 2036.

Parallel to these observations, the specific hydrological response results showed that
the far western areas of the WRB significantly reduced WYLD and increased SYLD. In
contrast, the north-eastern and low-land areas also showed the same hydrological com-
plexities due to indicators such as the rapid increase in built-up land and the significant
increase in ET. Thus, to reverse this situation, our study proposes re-planning the river basin
land-use and re-assessing the hydrologic changes to sustain the hydrological stability of
the WRB. For the first case, we think that performing suitability analyses before allocating
land-use could provide a better way of maintaining the hydrological conditions of the WRB.
The latter should consider assessing the hydrological responses of the WRB using more
parameters and with different models, including SWAT, in order to better understand the
ecological conditions of the basin. Taken together, proper LUP and the regular monitoring
of LULCCs and climatic factors are essential for the stability of the WRB.

5. Conclusions

This study assessed the impact of LULC changes on the hydrology of the WRB over
29 years (1990 to 2018) using SWAT in ArcGIS software and predicted its future trends using
the CA–Markov model up to the year 2036. Landsat data were used to acquire land-use
and land-cover changes and, together with hydro-meteorological, topological, and global
soil data, to model the hydrology of the WRB. The substantial LULCCs are mainly due to
the conversion of natural forests into agricultural areas. The rapid decrease in the forest
areas, from 58.1% in 1990 to 42.7% in 2018, is primarily caused by the inefficient land-use
plans drawing substantial land for agricultural use, which grew from 10.6% in 1990 to
22.2% in 2018 and is expected to increase to 31.0% by 2036. Parallel to these findings, the
hydrological response to the LULC changes included a decrease in WYLD by 3.11 mm,
an increase in ET by 29.71 mm, and an increase in SYLD from 0.12 t/h to 1.5 t/h, which
define the hydrological instability of the WRB. Following this observation and examination
of the causes, we advise possible mitigation measures that may be used to improve the
current conditions of the river basin. Generally, the findings of this study provide baseline
information for hydrologists, land-use planners, policymakers, resource managers, and
decision-makers to elicit better planning and management decisions in the Wami–Ruvu
Basin. Future studies should focus on investigating the hydrological conditions of the
WRB by considering other key drivers of change besides LULCCs. They should be further
extended to evaluate other hydrological parameters in order to better understand the
hydrology of the WRB for the optimal use of water resources.
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Figure A4. The land-use plan of the Wami–Ruvu Basin modified from [49]. 
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11. Wojkowski, J.; Młyński, D.; Lepeška, T.; Wałęga, A.; Radecki-Pawlik, A. Link between hydric potential and predictability of
maximum flow for selected catchments in Western Carpathians. Sci. Total Environ. 2019, 683, 293–307. [CrossRef] [PubMed]

12. Zhang, Y.-W.; Shangguan, Z.-P. The Change of Soil Water Storage in Three Land Use Types after 10 Years on the Loess Plateau.
Catena 2016, 147, 87–95. [CrossRef]

http://doi.org/10.1007/s11269-015-1185-6
http://doi.org/10.1016/j.atmosres.2016.04.018
http://doi.org/10.1080/02626667.2017.1319063
http://doi.org/10.1016/j.scitotenv.2019.136449
http://www.ncbi.nlm.nih.gov/pubmed/32050376
http://doi.org/10.1016/j.scitotenv.2018.07.017
http://www.ncbi.nlm.nih.gov/pubmed/29990901
http://doi.org/10.3390/su11226415
http://doi.org/10.3390/environments2010032
http://doi.org/10.1007/s11430-006-1098-6
http://doi.org/10.4236/eng.2018.109045
http://doi.org/10.1016/j.jhydrol.2018.12.055
http://doi.org/10.1016/j.scitotenv.2019.05.159
http://www.ncbi.nlm.nih.gov/pubmed/31132709
http://doi.org/10.1016/j.catena.2016.06.036


Water 2022, 14, 184 29 of 32

13. Pan, Y.; Gong, H.; Zhou, D.; Li, X.; Nakagoshi, N. Impact of Land Use Change on Groundwater Recharge in Guishui River Basin,
China. Chin. Geogr. Sci. 2011, 21, 734–743. [CrossRef]

14. Younis, S.M.Z.; Ammar, A. Quantification of Impact of Changes in Land Use-Land Cover on Hydrology in the Upper Indus Basin,
Pakistan. Egypt. J. Remote Sens. Space Sci. 2018, 21, 255–263. [CrossRef]

15. World Bank. World Development Indicators. Agricultural Inputs. 2017. Available online: http://wdi.worldbank.org/table/3.2
(accessed on 19 October 2021).

16. World Bank. World Development Indicators. Employment by Sector. 2017. Available online: http://wdi.worldbank.org/table/2.3
(accessed on 19 October 2021).

17. Tumbo, S.; Kahimba, F.; Mbilinyi, B.; Rwehumbiza, F.; Mahoo, H.F.; Mbungu, W.; Enfors, E. Impact of Projected Climate Change
on Agricultural Production in Semi-Arid Areas of Tanzania: A Case of Same District. Afr. Crop Sci. J. 2012, 20, 453–463.

18. URT. Accelerating Pro-Poor Growth in the Context of Kilimo Kwanza; URT: Dar es Salaam, Tanzania, 2009; pp. 13–23.
19. Näschen, K.; Diekkrüger, B.; Evers, M.; Höllermann, B.; Steinbach, S.; Thonfeld, F. The Impact of Land Use/Land Cover Change

(LULCC) on Water Resources in a Tropical Catchment in Tanzania under Different Climate Change Scenarios. Sustainability 2019,
11, 7083. [CrossRef]

20. Srivastava, A.; Kumari, N.; Maza, M. Hydrological Response to Agricultural Land Use Heterogeneity Using Variable Infiltration
Capacity Model. Water Resour. Manag. 2020, 34, 3779–3794. [CrossRef]

21. Bessah, E.; Raji, A.O.; Taiwo, O.J.; Agodzo, S.K.; Ololade, O.O.; Strapasson, A. Hydrological Responses to Climate and Land Use
Changes: The Paradox of Regional and Local Climate Effect in the Pra River Basin of Ghana. J. Hydrol. Reg. Stud. 2020, 27, 100654.
[CrossRef]

22. Mbungu, W.B.; Kashaigili, J.J. Assessing the Hydrology of a Data-Scarce Tropical Watershed Using the Soil and Water Assessment
Tool: Case of the Little Ruaha River Watershed in Iringa, Tanzania. Open J. Mod. Hydrol. 2017, 7, 65–89. [CrossRef]

23. Santos, V.; Laurent, F.; Abe, C.; Messner, F. Hydrologic Response to Land Use Change in a Large Basin in Eastern Amazon. Water
2018, 10, 429. [CrossRef]

24. Li, Z.; Liu, W.-Z.; Zhang, X.-C.; Zheng, F.-L. Impacts of Land Use Change and Climate Variability on Hydrology in an Agricultural
Catchment on the Loess Plateau of China. J. Hydrol. 2009, 377, 35–42. [CrossRef]

25. Guzha, A.C.; Rufino, M.C.; Okoth, S.; Jacobs, S.; Nóbrega, R.L.B. Impacts of Land Use and Land Cover Change on Surface Runoff,
Discharge and Low Flows: Evidence from East Africa. J. Hydrol. Reg. Stud. 2018, 15, 49–67. [CrossRef]

26. Pinto, L.; de Mello, C.; Owens, P.; Darrell, N.; Curi, N. Role of Inceptisols in the Hydrology of Mountainous Catchments in
Southeastern Brazil. J. Hydrol. Eng. 2015, 21, 05015017. [CrossRef]

27. Bormann, H.; Elfert, S. Application of WaSiM-ETH Model to Northern German Lowland Catchments: Model Performance in
Relation to Catchment Characteristics and Sensitivity to Land Use Change. Adv. Geosci. 2010, 27, 1–10. [CrossRef]

28. Golmohammadi, G.; Prasher, S.; Madani, A.; Rudra, R. Evaluating Three Hydrological Distributed Watershed Models: Mike-SHE,
APEX, SWAT. Hydrology 2014, 1, 20–39. [CrossRef]

29. Neupane, R.P.; Kumar, S. Estimating the Effects of Potential Climate and Land Use Changes on Hydrologic Processes of a Large
Agriculture Dominated Watershed. J. Hydrol. 2015, 529, 418–429. [CrossRef]

30. Zhang, J.; Ross, M. Hydrologic Modeling Impacts of Post-Mining Land Use Changes on Streamflow of Peace River, Florida. Chin.
Geogr. Sci. 2015, 25, 728–738. [CrossRef]

31. Shivhare, N.; Dikshit, P.K.S.; Dwivedi, S.B. A Comparison of SWAT Model Calibration Techniques for Hydrological Modeling in
the Ganga River Watershed. Engineering 2018, 4, 643–652. [CrossRef]

32. Leavesley, G.H.; Litchy, R.W.; Troutman, B.M.; Saindon, L.G. Precipitation-Runoff Modeling System: User’s Manual. In US
Geological Survey Water Resources Investigative Report; U.S. Geological Survey, Water Resources Division: Reston, VA, USA, 1983.
[CrossRef]

33. Aboelnour, M.A.; Engel, B.A.; Frisbee, M.D.; Gitau, M.W.; Flanagan, D.C. Impacts of Watershed Physical Properties and Land Use
on Baseflow at Regional Scales. J. Hydrol. Reg. Stud. 2021, 35, 100810. [CrossRef]

34. Legesse, D.; Abiye, T.A.; Vallet-Coulomb, C.; Abate, H. Streamflow Sensitivity to Climate and Land Cover Changes: Meki River,
Ethiopia. Hydrol. Earth Syst. Sci. 2010, 14, 2277–2287. [CrossRef]

35. Wambura, F.J.; Dietrich, O.; Lischeid, G. Improving a Distributed Hydrological Model Using Evapotranspiration-Related
Boundary Conditions as Additional Constraints in a Data-Scarce River Basin. Hydrol. Processes 2018, 32, 759–775. [CrossRef]

36. Nie, W.; Yuan, Y.; Kepner, W.; Nash, M.S.; Jackson, M.; Erickson, C. Assessing Impacts of Landuse and Landcover Changes on
Hydrology for the Upper San Pedro Watershed. J. Hydrol. 2011, 407, 105–114. [CrossRef]

37. Zhu, C.; Li, Y. Long-Term Hydrological Impacts of Land Use/Land Cover Change from 1984 to 2010 in the Little River Watershed,
Tennessee. Int. Soil Water Conserv. Res. 2014, 2, 11–21. [CrossRef]

38. Gashaw, T.; Tulu, T.; Argaw, M.; Worqlul, A.W. Modeling the Hydrological Impacts of Land Use/Land Cover Changes in the
Andassa Watershed, Blue Nile Basin, Ethiopia. Sci. Total Environ. 2018, 619–620, 1394–1408. [CrossRef] [PubMed]

39. Wang, Q.; Xu, Y.; Wang, Y.; Zhang, Y.; Xiang, J.; Xu, Y.; Wang, J. Individual and Combined Impacts of Future Land-Use and
Climate Conditions on Extreme Hydrological Events in a Representative Basin of the Yangtze River Delta, China. Atmos. Res.
2020, 236, 104805. [CrossRef]

40. Zhang, H.; Wang, B.; Liu, D.L.; Zhang, M.; Leslie, L.M.; Yu, Q. Using an Improved SWAT Model to Simulate Hydrological
Responses to Land Use Change: A Case Study of a Catchment in Tropical Australia. J. Hydrol. 2020, 585, 124822. [CrossRef]

http://doi.org/10.1007/s11769-011-0508-7
http://doi.org/10.1016/j.ejrs.2017.11.001
http://wdi.worldbank.org/table/3.2
http://wdi.worldbank.org/table/2.3
http://doi.org/10.3390/su11247083
http://doi.org/10.1007/s11269-020-02630-4
http://doi.org/10.1016/j.ejrh.2019.100654
http://doi.org/10.4236/ojmh.2017.72004
http://doi.org/10.3390/w10040429
http://doi.org/10.1016/j.jhydrol.2009.08.007
http://doi.org/10.1016/j.ejrh.2017.11.005
http://doi.org/10.1061/(ASCE)HE.1943-5584.0001275
http://doi.org/10.5194/adgeo-27-1-2010
http://doi.org/10.3390/hydrology1010020
http://doi.org/10.1016/j.jhydrol.2015.07.050
http://doi.org/10.1007/s11769-015-0745-2
http://doi.org/10.1016/j.eng.2018.08.012
http://doi.org/10.3133/wri834238
http://doi.org/10.1016/j.ejrh.2021.100810
http://doi.org/10.5194/hess-14-2277-2010
http://doi.org/10.1002/hyp.11453
http://doi.org/10.1016/j.jhydrol.2011.07.012
http://doi.org/10.1016/S2095-6339(15)30002-2
http://doi.org/10.1016/j.scitotenv.2017.11.191
http://www.ncbi.nlm.nih.gov/pubmed/29734616
http://doi.org/10.1016/j.atmosres.2019.104805
http://doi.org/10.1016/j.jhydrol.2020.124822


Water 2022, 14, 184 30 of 32

41. Nobert, J.; Jeremiah, J. Hydrological Response of Watershed Systems to Land Use/Cover Change. A Case of Wami River Basin.
Open Hydrol. J. 2012, 6, 78–87. [CrossRef]

42. Wambura, F. Stream Flow Response to Skilled and Non-Linear Bias Corrected GCM Precipitation Change in the Wami River
Sub-Basin, Tanzania. Br. J. Environ. Clim. Chang. 2014, 4, 389–408. [CrossRef]

43. Natkhin, M.; Dietrich, O.; Schäfer, M.P.; Lischeid, G. The Effects of Climate and Changing Land Use on the Discharge Regime of a
Small Catchment in Tanzania. Reg. Environ. Chang. 2015, 15, 1269–1280. [CrossRef]

44. Aziz, N.; Minallah, N.; Junaid, A.; Gul, K. Performance analysis of artificial neural network based land cover classification. Int. J.
Mar. Environ. Sci. 2017, 11, 422.

45. IUCN. IUCN Eastern and Southern Africa Programme. In The Ruvu Basin: A Situation Analysis; IUCN—ESARO Publications
Service Unit: Nairobi, Kenya, 2010.

46. FIU-GLOWS, Water Atlas of the Wami/Ruvu Basin, Tanzania. 2014. Available online: http://dpanther.fiu.edu/sobek/FIGW000
010/00001 (accessed on 20 September 2021).

47. Kashaigili, J.J. Rapid Environmental Flow Assessment for the Ruvu River, A Consultancy Report Submitted to iWASH, 2011.
Available online: http://www.suaire.sua.ac.tz/bitstream/handle/123456789/1481/Kashaigili17.pdf (accessed on 18 November
2021).

48. WRBWO. Wami/Ruvu Basin Annual Hydrological Report; WRB-Water Office: Morogoro, Tanzania, 2008.
49. Ngondo, J.; Mango, J.; Liu, R.; Nobert, J.; Dubi, A.; Cheng, H. Land-Use and Land-Cover (LULC) Change Detection and the

Implications for Coastal Water Resource Management in the Wami–Ruvu Basin, Tanzania. Sustainability 2021, 13, 4092. [CrossRef]
50. JICA. The Study on Water Resources Management and Development in Wami/Ruvu Basin in the United Republic of Tanzania.

2013. Available online: https://www.jica.go.jp/tanzania/english/index.html (accessed on 17 August 2021).
51. Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part I: Model.

Development1. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [CrossRef]
52. Baker, T.J.; Miller, S.N. Using the Soil and Water Assessment Tool (SWAT) to Assess Land Use Impact on Water Resources in an

East African Watershed. J. Hydrol. 2013, 486, 100–111. [CrossRef]
53. TAMU. 2021. Available online: https://swat.tamu.edu/ (accessed on 10 May 2021).
54. ALOSW3D. Digital Elevation Model. 2021. Available online: https://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm

(accessed on 10 May 2021).
55. Florinsky, I.V.; Skrypitsyna, T.N.; Luschikova, O.S. Comparative Accuracy of the AW3D30 DSM, ASTER GDEM, and SRTM1

DEM: A Case Study on the Zaoksky Testing Ground, Central European Russia. Remote Sens. Lett. 2018, 9, 706–714. [CrossRef]
56. Purinton, B.; Bookhagen, B. Validation of Digital Elevation Models (DEMs) and Comparison of Geomorphic Metrics on the

Southern Central Andean Plateau. Earth Surf. Dynam. 2017, 5, 211–237. [CrossRef]
57. Santillan, J.; Makinano-Santillan, M. Vertical Accuracy Assessment of 30-m Resolution Alos, Aster, AND SRTM Global DEMS

over Northeastern Mindanao, Philippines. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI, 149–156. [CrossRef]
58. Yap, L.; Kandé, L.H.; Nouayou, R.; Kamguia, J.; Ngouh, N.A.; Makuate, M.B. Vertical Accuracy Evaluation of Freely Available

Latest High-Resolution (30 m) Global Digital Elevation Models over Cameroon (Central Africa) with GPS/Leveling Ground
Control Points. Int. J. Digit. Earth 2019, 12, 500–524. [CrossRef]

59. FAO. Digital Soil Map of the World. 2021. Available online: http://www.fao.org/geonetwork/srv/en/metadata.show%3Fid=14
116 (accessed on 11 September 2020).

60. Dahal, P.; Shrestha, M.L.; Panthi, J.; Pradhananga, D. Modeling the future impacts of climate change on water availability in the
Karnali River Basin of Nepal Himalaya. Environ. Res. 2020, 185, 109430. [CrossRef]

61. Aredehey, G.; Mezgebu, A.; Girma, A. The effects of land use land cover change on hydrological flow in Giba catchment, Tigray,
Ethiopia. Cogent Environ. Sci. 2020, 6, 1785780. [CrossRef]

62. Wambura, F.J.; Dietrich, O.; Lischeid, G. Evaluation of Spatio-Temporal Patterns of Remotely Sensed Evapotranspiration to Infer
Information about Hydrological Behaviour in a Data-Scarce Region. Water 2017, 9, 333. [CrossRef]

63. USGS. Global Geographacal Datasets. 2020. Available online: https://glovis.usgs.gov (accessed on 18 October 2020).
64. Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University Press: New York, NY, USA, 1995.
65. Tilahun, A.; Bogale, T. Accuracy Assessment of Land Use Land Cover Classification Using Google Earth. Am. J. Environ. Prot.

2015, 4, 193–198. [CrossRef]
66. Rwanga, S.S.; Ndambuki, J.M. Accuracy Assessment of Land Use/Land Cover Classification Using Remote Sensing and GIS. Int.

J. Geosci. 2017, 8, 611–622. [CrossRef]
67. Palmate, S.S.; Pandey, A.; Mishra, S.K. Modelling Spatiotemporal Land Dynamics for a Trans-Boundary River Basin Using

Integrated Cellular Automata and Markov Chain Approach. Appl. Geogr. 2017, 82, 11–23. [CrossRef]
68. de Oliveira Barros, K.; Alvares Soares Ribeiro, C.A.; Marcatti, G.E.; Lorenzon, A.S.; Martins de Castro, N.L.; Domingues,

G.F.; Romário de Carvalho, J.; Rosa dos Santos, A. Markov Chains and Cellular Automata to Predict Environments Subject to
Desertification. J. Environ. Manag. 2018, 225, 160–167. [CrossRef]

69. Guan, D.; Li, H.; Inohae, T.; Su, W.; Nagaie, T.; Hokao, K. Modeling Urban Land Use Change by the Integration of Cellular
Automaton and Markov Model. Ecol. Modell. 2011, 222, 3761–3772. [CrossRef]

70. Wambura, F.J.; Ndomba, P.M.; Kongo, V.; Tumbo, S.D. Uncertainty of Runoff Projections under Changing Climate in Wami River
Sub-Basin. J. Hydrol. Reg. Stud. 2015, 4, 333–348. [CrossRef]

http://doi.org/10.2174/1874378101206010078
http://doi.org/10.9734/BJECC/2014/13457
http://doi.org/10.1007/s10113-013-0462-2
http://dpanther.fiu.edu/sobek/FIGW000010/00001
http://dpanther.fiu.edu/sobek/FIGW000010/00001
http://www.suaire.sua.ac.tz/bitstream/handle/123456789/1481/Kashaigili17.pdf
http://doi.org/10.3390/su13084092
https://www.jica.go.jp/tanzania/english/index.html
http://doi.org/10.1111/j.1752-1688.1998.tb05961.x
http://doi.org/10.1016/j.jhydrol.2013.01.041
https://swat.tamu.edu/
https://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm
http://doi.org/10.1080/2150704X.2018.1468098
http://doi.org/10.5194/esurf-5-211-2017
http://doi.org/10.5194/isprs-archives-XLI-B4-149-2016
http://doi.org/10.1080/17538947.2018.1458163
http://www.fao.org/geonetwork/srv/en/metadata.show%3Fid=14116
http://www.fao.org/geonetwork/srv/en/metadata.show%3Fid=14116
http://doi.org/10.1016/j.envres.2020.109430
http://doi.org/10.1080/23311843.2020.1785780
http://doi.org/10.3390/w9050333
https://glovis.usgs.gov
http://doi.org/10.11648/j.ajep.20150404.14
http://doi.org/10.4236/ijg.2017.84033
http://doi.org/10.1016/j.apgeog.2017.03.001
http://doi.org/10.1016/j.jenvman.2018.07.064
http://doi.org/10.1016/j.ecolmodel.2011.09.009
http://doi.org/10.1016/j.ejrh.2015.05.013


Water 2022, 14, 184 31 of 32

71. Abbaspour, K.C.; Vaghefi, S.A.; Srinivasan, R. A Guideline for Successful Calibration and Uncertainty Analysis for Soil and Water
Assessment: A Review of Papers from the 2016 International SWAT Conference. Water 2018, 10, 6. [CrossRef]

72. Winchell, M.R.; Srinivasan, M.D.; Arnold, J.; Arc, S.W.A.T. Interface for SWAT 2005–Users’ Guide. Blackland Research Center,
Texas Agricultural Experiment Station and Grassland, Soil and Water Research Laboratory; United States Department of Agriculture
Agricultural Research Service: Temple, TX, USA, 2007.

73. Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling Hydrology and
Water Quality in the Pre-Alpine/Alpine Thur Watershed Using SWAT. J. Hydrol. 2007, 333, 413–430. [CrossRef]

74. Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation, version 2009. In
Texas Water Resources Institute Technical Report No. 406; Texas A&M University: College Station, TX, USA, 2011; Volume 2009.

75. Twisa, S.; Kazumba, S.; Kurian, M.; Buchroithner, M.F. Evaluating and Predicting the Effects of Land Use Changes on Hydrology
in Wami River Basin, Tanzania. Hydrology 2020, 7, 17. [CrossRef]

76. Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven,
A.; Van Liew, M.W.; et al. SWAT: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [CrossRef]

77. Abbaspour, K.C.; Johnson, C.A.; van Genuchten, M.T. Estimating Uncertain Flow and Transport Parameters Using a Sequential
Uncertainty Fitting Procedure. Vadose Zone J. 2004, 3, 1340–1352. [CrossRef]

78. Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting through Conceptual Models Part I—A Discussion of Principles. J. Hydrol. 1970,
10, 282–290. [CrossRef]

79. Moriasi, D.; Arnold, J.; Van Liew, M.; Bingner, R.; Harmel, R.D.; Veith, T. Model Evaluation Guidelines for Systematic Quantifica-
tion of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [CrossRef]

80. Moriasi, D.; Gitau, M.; Pai, N.; Daggupati, P. Hydrologic and Water Quality Models: Performance Measures and Evaluation
Criteria. Trans. ASABE (Am. Soc. Agric. Biol. Eng.) 2015, 58, 1763–1785.

81. Twisa, S.; Buchroithner, M.F. Land-Use and Land-Cover (LULC) Change Detection in Wami River Basin, Tanzania. Land 2019, 8,
136. [CrossRef]

82. Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. Soil and Water Assessment Tool Input-Output
File Documentation. Soil and Water Research Laboratory, Agricultural Research Service, Grassland, 808 East Black Land Road,
Temple, Texas. 2011. Available online: https://swat.tamu.edu/media/19754/swat-io-2009.pdf (accessed on 14 November 2021).

83. Wambura, F.J. Sensitivity of the Evapotranspiration Deficit Index to Its Parameters and Different Temporal Scales. Hydrology 2021,
8, 26. [CrossRef]

84. Huang, S.; Shah, H.; Naz, B.S.; Shrestha, N.; Mishra, V.; Daggupati, P.; Ghimire, U.; Vetter, T. Impacts of hydrological model
calibration on projected hydrological changes under climate change—A multi-model assessment in three large river basins. Clim.
Chang. 2020, 163, 1143–1164. [CrossRef]

85. Wang, X.; Zheng, D.; Shen, Y. Land Use Change and Its Driving Forces on the Tibetan Plateau During 1990–2000. Catena 2008, 72,
56–66. [CrossRef]

86. Butt, A.; Shabbir, R.; Ahmad, S.S.; Aziz, N. Land Use Change Mapping and Analysis Using Remote Sensing and GIS: A Case
Study of Simly Watershed, Islamabad, Pakistan. Egypt. J. Remote Sens. Space Sci. 2015, 18, 251–259. [CrossRef]

87. Mendonça dos Santos, F.; Proença de Oliveira, R.; Augusto Di Lollo, J. Effects of Land Use Changes on Streamflow and Sediment
Yield in Atibaia River Basin—SP, Brazil. Water 2020, 12, 1711. [CrossRef]

88. Wang, F.; Ge, Q.; Yu, Q.; Wang, H.; Xu, X. Impacts of Land-Use and Land-Cover Changes on River Runoff in Yellow River Basin
for Period of 1956–2012. Chin. Geogr. Sci. 2017, 27, 13–24. [CrossRef]

89. Zhang, Y.-K.; Schilling, K.E. Increasing Streamflow and Baseflow in Mississippi River since the 1940s: Effect of Land Use Change.
J. Hydrol. 2006, 324, 412–422. [CrossRef]

90. Costa, M.H.; Botta, A.; Cardille, J.A. Effects of Large-Scale Changes in Land Cover on the Discharge of the Tocantins River,
Southeastern Amazonia. J. Hydrol. 2003, 283, 206–217. [CrossRef]

91. Kim, W.; Kanae, S.; Agata, Y.; Oki, T. Simulation of Potential Impacts of Land Use/Cover Changes on Surface Water Fluxes in the
Chaophraya River Basin, Thailand. J. Geophys. Res. 2005, 110. [CrossRef]

92. Ngoye, E.; Machiwa, J.F. The Influence of Land-Use Patterns in the Ruvu River Watershed on Water Quality in the River System.
Phys. Chem. Earth Parts A B C 2004, 29, 1161–1166. [CrossRef]

93. Yanda, P.Z.; Munishi, P. Hydrologic and Land Use/Cover Change Analysis for the Ruvu River (Uluguru) and Sigi River (East
Usambara) Watersheds. For WWF/CARE Dar es Salaam; Tanzania. 2007. Available online: https://scholar.google.com/scholar?
hl=en&as_sdt=0%2C5&q=Hydrologic+and+Land+Use%2FCover+Change+Analysis+for+the+Ruvu+River+%28Uluguru%29
+and+Sigi+River+%28East+Usambara%29+Watersheds&btnG= (accessed on 19 August 2021).

94. Msaghaa, J.J.; Melesse, A.M.; Ndomba, P.M. Modeling Sediment Dynamics: Effect of Land Use, Topography, and Land Manage-
ment in the Wami-Ruvu Basin, Tanzania. In Nile River Basin:Ecohydrological Challenges, Climate Change and Hydropolitics; Melesse,
A.M., Abtew, W., Setegn, S.G., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 165–192.

95. Mbungu, W.B. Impacts of Land Use and Land Cover Changes, and Climate Variability on Hydrology and Soil Erosion in the Upper Ruvu
Watershed, Tanzania [Diss.]; Virginia Tech: Blacksburg, Virginia, 2017.

96. Gao, P.; Puckett, J. A New Approach for Linking Event-Based Upland Sediment Sources to Downstream Suspended Sediment
Transport. Earth Surf. Processes Landf. 2012, 37, 169–179. [CrossRef]

http://doi.org/10.3390/w10010006
http://doi.org/10.1016/j.jhydrol.2006.09.014
http://doi.org/10.3390/hydrology7010017
http://doi.org/10.13031/2013.42256
http://doi.org/10.2136/vzj2004.1340
http://doi.org/10.1016/0022-1694(70)90255-6
http://doi.org/10.13031/2013.23153
http://doi.org/10.3390/land8090136
https://swat.tamu.edu/media/19754/swat-io-2009.pdf
http://doi.org/10.3390/hydrology8010026
http://doi.org/10.1007/s10584-020-02872-6
http://doi.org/10.1016/j.catena.2007.04.003
http://doi.org/10.1016/j.ejrs.2015.07.003
http://doi.org/10.3390/w12061711
http://doi.org/10.1007/s11769-017-0843-3
http://doi.org/10.1016/j.jhydrol.2005.09.033
http://doi.org/10.1016/S0022-1694(03)00267-1
http://doi.org/10.1029/2004JD004825
http://doi.org/10.1016/j.pce.2004.09.002
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hydrologic+and+Land+Use%2FCover+Change+Analysis+for+the+Ruvu+River+%28Uluguru%29+and+Sigi+River+%28East+Usambara%29+Watersheds&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hydrologic+and+Land+Use%2FCover+Change+Analysis+for+the+Ruvu+River+%28Uluguru%29+and+Sigi+River+%28East+Usambara%29+Watersheds&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hydrologic+and+Land+Use%2FCover+Change+Analysis+for+the+Ruvu+River+%28Uluguru%29+and+Sigi+River+%28East+Usambara%29+Watersheds&btnG=
http://doi.org/10.1002/esp.2229


Water 2022, 14, 184 32 of 32

97. Ndomba, P.; Mtalo, F.; Killingtveit, A. SWAT Model Application in a Data Scarce Tropical Complex Catchment in Tanzania. Phys.
Chem. Earth Parts A B C 2008, 33, 626–632. [CrossRef]

98. Mulungu, D.M.M.; Munishi, S.E. Simiyu River Catchment Parameterization Using SWAT Model. Phys. Chem. Earth Parts A B C
2007, 32, 1032–1039. [CrossRef]

99. Birhanu, Z.; Zemadim, B. Hydrological Modeling of the Kihansi River Catchment in South Central, Tanzania Using SWAT Model.
Water Resour. Environ. Eng. 2009, 1, 001–010.

100. Lopa, D.; Mwanyoka, I.; Jambiya, G.; Massoud, T.; Harrison, P.; Ellis-Jones, M.; Blomley, T.; Leimona, B.; van Noordwijk, M.;
Burgess, N.D. Towards Operational Payments for Water Ecosystem Services in Tanzania: A Case Study from the Uluguru
Mountains. Oryx 2012, 46, 34–44. [CrossRef]

101. URT. The Kilimo Kwanza Resolution; URT: Dar es Salaam, Tanzania, 2009.
102. Seeteram, N.A.; Hyera, P.T.; Kaaya, L.T.; Lalika, M.C.S.; Anderson, E.P. Conserving Rivers and Their Biodiversity in Tanzania.

Water 2019, 11, 2612. [CrossRef]

http://doi.org/10.1016/j.pce.2008.06.013
http://doi.org/10.1016/j.pce.2007.07.053
http://doi.org/10.1017/S0030605311001335
http://doi.org/10.3390/w11122612

	Introduction 
	Materials and Methods 
	Study Area 
	SWAT Model Description 
	Data Requirements for the Model Input 
	Topography and Soil Data 
	LULC Data 
	Hydroclimatic Data 

	Model Set-Up and Evaluation Approach 
	SWAT Model Input 
	Model Performance and Evaluation 


	Results 
	Trends of LULCCs 
	Precipitation and Temperature Trends 
	SWAT Simulated Outputs 
	Spatio-Temporal Water Yield (WYLD) Distribution 
	Simulated Evapotranspiration Trend (ET) 
	Spatio-Temporal Sediment Yield (SYLD) Distribution 

	Calibration and Validation of the SWAT Model 

	Discussion 
	Impacts of LULCC on River Basin Hydrology over 29 Years (1990 to 2018) 
	Hydrological Stability of the WRB 

	Conclusions 
	Appendix A
	References

