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Abstract: Phytoplankton size structure has profound consequences on food-web organization and 
energy transfer. Presently, picocyanobacteria (size < 2µm) represent a major fraction of the auto-
trophic plankton of Pampean lakes. Glyphosate is known to stimulate the development of picocya-
nobacteria capable of degrading the herbicide. Due to the worldwide adoption of glyphosate-re-
sistant crops, herbicide usage has increased sharply since the mid-1990s. Unfortunately, there are 
very few studies (none for the Pampa region) reporting picocyanobacteria abundance before 2000. 
The proliferation of µm sized particles should decrease Secchi disc depth (ZSD). Therefore ZSD, 
conditional to chlorophyll-a, may serve as an indicator of picocyanobacteria abundance. We use gen-
eralized additive models (GAMs) to analyze a “validation” dataset consisting of 82 records of ZSD, 
chlorophyll-a, and picocyanobacteria abundance from two Pampean lakes surveys (2009 and 2015). 
In support of the hypothesis, ZSD was negatively related to picocyanobacteria after accounting for 
the effect of chlorophyll-a. We then fitted a “historical” dataset using hierarchical GAMs to compare 
ZSD conditional to chlorophyll-a, before and after 2000. We estimated that ZSD levels during 2000–
2021 were, on average, only about half as deep as those during 1980–1999. We conclude that the 
adoption of glyphosate-resistant crops has stimulated outbreaks of picocyanobacteria populations, 
resulting in lower water transparency. 

Keywords: underwater light climate; eutrophication; glyphosate; cyanobacteria 
 

1. Introduction 
The size structure of phytoplankton has profound consequences on food-web organ-

ization and energy transfer within plankton communities [1]. The dominance of small-
sized algae (picophytoplankton < 2 µm in diameter) would tend to increase the abundance 
of smaller grazers (i.e., heterotrophic flagellates and ciliates), promoting the heterotrophic 
pathway (picoplankton → heterotrophic protists → zooplankton) over the classical trophic 
chain (phytoplankton → zooplankton), therefore decreasing the energy transfer efficiency 
toward upper trophic levels [2–4]. Changes in land use might affect aquatic community 
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composition and processes, altering food-web interaction and ultimately impacting car-
bon fluxes in lakes [5]. 

The fertile Pampa region of Argentina (33–39° S, 57–64° W) harbors large numbers of 
shallow, eutrophic lakes [6]. Over the last two centuries, the Pampean landscape changed 
progressively from natural grasslands into cultivated grasslands and croplands due to 
animal production and intensive crops (wheat, corn, sunflower, and, since the mid-1990s, 
soybean) [7]. The process of agricultural intensification aggravated the eutrophication of 
shallow Pampean lakes through increased nutrients (N, P) and agrochemical inputs into 
the aquatic environment [8,9]. Since the last decade of the 20th century, Pampean lakes 
have experienced remarkable increases in nutrients (N and P) and chlorophyll-a concentra-
tion (Chla) and decreases in water transparency, estimated as Secchi disk depth (ZSD) 
[10]. Within a historical framework, the eutrophication increase in shallow Pampean lakes 
was concurrent with the massive conversion to glyphosate-resistant crops (GRC) technol-
ogies, adopted by major grain producer countries [11] including Argentina. Glyphosate 
(N-(phosphonomethyl) glycine) is a broad-spectrum, post-emergent herbicide that is pres-
ently among the most widely used agricultural chemicals globally. Usage trends of this 
herbicide in Argentina have increased steadily, fueled by the widespread adoption of 
transgenic soybean monoculture and no-tillage practices since around the mid-1990s [12]. 

In aquatic environments, glyphosate tolerance is widespread among cyanobacteria 
[13,14], particularly within small-sized species [15]. Studies performed in mesocosms [16–
18] demonstrated that additions of glyphosate to experimental vessels stimulated the de-
velopment of picocyanobacteria (Pcy), which reached densities much higher than in con-
trol treatments. More recently, a survey of shallow, eutrophic lakes from Argentina [19] 
provided additional, non-manipulative evidence on the stimulatory effect of glyphosate 
on Pcy communities in their natural habitats (i.e., Pcy abundance was positively correlated 
with glyphosate indicators within the Pampa region). Bullerjahn and coworkers [20,21] 
investigated the mechanism of glyphosate tolerance in picocyanobacteria. They reported 
that Pcy, isolated from the Laurentian Great Lakes, were able to metabolize glyphosate 
and its main degradation product, aminomethylphosphonic acid (AMPA), which allowed 
them to grow in cultures with glyphosate or AMPA as the only sources of phosphorus. 
Glyphosate tolerance and its utilization by various freshwater Synechococcus strains is me-
diated by the phosphonate transporter gene phnD, suggesting that detection of phnD 
gene in plankton samples is an indication of the capacity of picoplankton to metabolize 
phosphonates, either natural or synthetic (e.g., glyphosate) [20]. We assessed the occur-
rence of the phnD gene using primers specific for Synechococcus in lake plankton from the 
Pampa (highly impacted by agricultural practices) and Patagonia (not impacted by agri-
culture activities) regions of Argentina. Detection of the phnD gene was more frequent 
and Pcy abundance much higher in lakes from the Pampean region (29% of lakes, 1.8 × 106 
cells mL−1) than in similarly eutrophic lakes from Patagonia (5% of lakes, 2.0 × 105 cells 
mL−1) [19]. Along the same lines, Saxton and coworkers [14] concluded that glyphosate 
influences the phytoplankton community structure in Lake Erie, serving as a nutrient 
source to microbes (i.e., heterotrophic bacteria and Pcy) able to tolerate the herbicide ef-
fects of the compound, while killing those less tolerant algal species. 

Presently, Pcy represent a major fraction of the autotrophic plankton of Pampean 
lakes. Current estimates often exceed 107 cells mL−1 and rank among the highest abun-
dance reported for lakes worldwide [19,22,23]. Considering such values within the context 
of the previous arguments, we suspect that the continued usage of glyphosate-based herb-
icides during the last decades may have impacted natural phytoplankton assemblages of 
shallow Pampean lakes. More specifically, we hypothesize that by favoring glyphosate-
resistant picocyanobacteria, modern agricultural practices have inadvertently contributed 
to the increase in Pcy abundance up to the very high values typical of present-day Pam-
pean phytoplankton. Unfortunately, epifluorescence microscopy [24] and flow cytometry 
[25] techniques, which would later allow routine quantification of Pcy concentrations, 
were not readily implemented until around the 2000s. However, rather conveniently for 
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our purposes, large numbers of small-sized particles, such as Pcy, should produce optical 
signals that, at least in principle, can be retrieved from historical records of ZSD measure-
ments. 

Although regression models of ZSD vs. Chla (often transformed as reciprocal-log or 
log-log) tend to be highly significant within the mesotrophic–eutrophic range [26,27], Chla 
usually accounts for only a modest fraction of the total variability in ZSD. The analysis of 
the residual variability has been used to explore the effect of additional variables, such as 
inorganic turbidity or water color [28]. ZSD is particularly affected by light scattering due 
to suspended particles, with small particles having a disproportionately large effect [29]. 
Stramski and Kiefer [30] estimated that in waters where picophytoplankton concentration 
approaches 106 cells mL−1, the microorganisms may dominate light scattering, accounting 
for >50% of its total magnitude. Gallegos et al. [31] reported long-term decreasing trends 
in ZSD in Chesapeake Bay associated with changes in phytoplankton size structure. In 
their study, increases in picoplankton abundance resulted in greater light scattering and 
shallower ZSD. Similarly, analysis of different phytoplankton assemblages differing in 
size structure showed that the dominance of small-sized algae resulted in remarkably 
shallower ZSD [32,33]. In other words, ZSD, conditional to Chla (i.e., after statistically 
removing the effect of Chla), can be expected to bear information on the size structure of 
the phytoplankton assemblage in general, and particularly, on the abundance of the small-
sized plankton fraction. 

Summarizing, the accumulated evidence consistently suggests that glyphosate-based 
herbicides stimulate Pcy populations, resulting in higher abundance of small-sized phy-
toplankton cells. On the other hand, based on previous theoretical and empirical studies, 
it is expected that larger numbers of small-sized (~1 µm) particles would decrease ZSD. 
The question that lingers is whether, under the complex optical climate of Pampean lakes 
[34], the decrease in ZSD would be sufficiently pronounced, i.e., not masked by confound-
ing factors. Our first objective was to assess this hypothesis. For this purpose, we assem-
bled a “validation” dataset combining two relatively recent (2009 and 2015) surveys of 
Pampean lakes, reporting data on ZSD, Chla, and Pcy abundance, among other variables. 
Using statistical tools, we asked whether, at comparable Chla, ZSD was negatively related 
to Pcy abundance—the practical implication being that ZSD, conditional to Chla, could 
then be used as an indicator of Pcy abundance. Our second objective was to compare ZSD 
measurements before and after the massive adoption of glyphosate-based herbicides in 
Argentina. If confirmed, this would provide a lacking piece of evidence supporting our 
main hypothesis that the continued use of glyphosate has impacted the phytoplankton 
size spectrum of shallow Pampean lakes by favoring pico-sized cyanobacteria popula-
tions, as previously observed in mesocosms experiments [16,17]. For achieving the second 
objective, we compiled a “historical” dataset (combining a bibliographic search with our 
own data). 

2. Materials and Methods 
The Argentine Pampa region is a large fertile plain in the center-east part of the coun-

try. The climate is temperate, with warm summers and mild winters. Precipitation ranges 
from 1000 mm year−1 in the northeast to 400 mm year−1 in the southwest. Shallow lakes are 
the most important freshwater ecosystems in the region. Only in Buenos Aires Province, 
there are roughly 14,000 large (>10 ha) and 146,000 small (0.05–10 ha) shallow lakes ([6], 
and references therein). 

Our first objective was to evaluate whether, at comparable Chla, ZSD was negatively 
related to Pcy abundance. For testing this hypothesis, we assembled a “validation” dataset 
combining two relatively recent (2009 and 2015) surveys of Pampean lakes that report data 
on ZSD, Chla, and Pcy abundance, among other variables [19,23]. The combined dataset 
totaled 82 observations from 60 Pampean shallow lakes (22 lakes visited twice and 38 lakes 
visited once), ranging from mesotrophic to hypertrophic (see Table 1). For assessing 
whether Pcy abundance and Chla (i.e., the predictor variables) significantly contributed 
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to explain the variability in ZSD (i.e., response variable), we used generalized additive 
models (GAMs) [35]. GAMs allow one to model flexible functions among the response 
and predictor variables without imposing an a priori specified functional form (e.g., lin-
ear, quadratic, etc.). Rather conversely, the shape of the relationship between the response 
and the predictors arises from the data analysis itself. GAMs were fitted to log10 trans-
formed data to comply with the assumption of normality. We used REML (restricted max-
imum likelihood) to estimate model coefficients and smoothing parameters and thin plate 
regression splines (TPRS) as the smoother. The initial basis dimension was checked for 
adequacy and increased whenever necessary. The model was then refitted according to 
[36]. We evaluated the uncertainty of the fitted trends under a Bayesian formulation, using 
10,000 simulations of the trend from the posterior distribution of the fitted GAM. Model 
selection was based on Akaike’s Information Criterion (AIC). We estimated GAMs using 
the mgcv package (version 1.8–36) [35] and uncertainty in the adjusted trends using the 
gratia package (version 0.6.0) [37]. Graphical outputs were obtained using the ggplot2 
package [38] for R [39]. 

Table 1. Median and range of limnological variables corresponding to the “validation” dataset (i.e., 
82 shallow Pampean lakes sampled during spring and summer surveys performed in 2009 and 
2015). 

Limnological Parameter Median Range 
ZSD (cm) 14 2–191 

Chla (µg L−1) 64.28 1.58–1549.79 
Pcy (cells mL−1) 9.60 × 105 3.3 × 103–7.72 × 107 

Total phosphorus (µg L−1) 620 124.2–4538 
Total nitrogen (µg L−1) 5051 1702–12846 

pH 8.9 8–10.2 
ZSD: Secchi disk depth; Chla: chlorophyll-a concentration; Pcy: picocyanobacteria abundance. 

For our second objective (i.e., using ZSD, conditional to Chla, to infer changes in Pcy 
abundance after the adoption of glyphosate resistant crops in Argentina), we analyzed a 
“historical” data set consisting of 534 observations of shallow Pampean lakes, covering 
the period from 1984 to 2021. The database included published records, unpublished data 
collected by us, and unpublished data provided by colleagues. The full database, includ-
ing its sources, has been published elsewhere [10]. For the present analyses, only data 
corresponding to the spring and summer seasons were included. In recent times, a few 
individual lakes were sampled on many occasions and they were therefore overrepre-
sented. To avoid this potential bias, we randomly subsampled the set of data, leaving 5 
observations per lake at most after the year 2000. The final working subset totaled 207 
observations and included information from 1984 to 1999 (referred to as 20th century) and 
from 2000 to 2021 (21st century). We assessed the significance of the relationship between 
ZSD and Chla and evaluated whether such relationship differed between the two above 
mentioned periods. For these analyses, we used hierarchical GAM (HGAM) [40], which 
allows modeling nonlinear functional relationships between the predictor and response 
variables. Moreover, the model can handle different functional shapes for each grouping 
level (different centuries, in our case). Model selection involves the analysis of different 
degrees of intergroup (i.e., between centuries) variability in functional response. The 
model structure must be specified according to the hypothesis to be tested. Briefly, one 
must decide (i) whether each group should have its own smoother, or whether a common 
smoother would suffice; (ii) whether the group-specific smoothers should have the same 
wiggliness, or whether each group should have its own smoothing; and (iii) whether the 
smoothers for each group should have a similar shape to one another (i.e., a shared global 
smoother). Depending on the answers to the above questions, there are five possible 
model structures: a single common smoother for all observations (model G), a global 
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smoother plus group-level smoothers with the same wiggliness (model GS), a global 
smoother plus group-level smoothers with different wiggliness (model GI), group-specific 
smoothers, but all of them having the same wiggliness (model S), and group-specific 
smoothers with different wiggliness (model I) [40]. Given that our interest was to assess 
the significance of inter-group (i.e., between centuries) variability, rather than investigat-
ing the functional form of the relationship between predictor and response variables, the 
suitable model structures are either S or I. The performance of these two models was com-
pared based on AIC, which is a robust approach for comparing different model structures 
[40]. According to this criterion, the model with the lowest AIC should be preferred, and 
as a rule of thumb, the performance of models differing by less than 2 units are equivalent 
[41]. We used mgcv package to fit HGMs and estimate the confidence interval of the fitted 
trends, and ggplot2 to illustrate plots. 

3. Results 
The validation dataset included lakes in eutrophic–hypereutrophic status, which is 

the dominant condition in shallow Pampean lakes. In general, they are characterized by 
high nutrient and Chla concentrations, high Pcy abundance, and alkaline waters (Table 
1). Despite the wide range in ZSD, most of them had shallow ZSD (median = 14 cm, Table 
1). In order to assess whether Pcy abundance negatively affects ZSD at comparable Chla 
(objective 1), we fitted two models relating ZSD to either Chla or Pcy abundance sepa-
rately and a model evaluating the combined effect of Chla and Pcy abundance (Table 2). 
The first two models significantly explained a percentage of the deviance (Pcy: 24.70%, 
Chla: 31.30%). However, the best fitting model included both predictor variables (ex-
plained deviation: Pcy + Chla: 38.70%). Moreover, the combined model had the lowest 
AIC, and the difference in AIC to the next best model (i.e., delta AIC) was greater than 4 
units. The combined model indicates additive negative effects of Pcy and Chla on ZSD, 
i.e., increases in either Chla concentration and/or Pcy abundance result in decreased ZSD 
(Figure 1). 

 
Figure 1. GAM results for spring–summer ZSD in shallow Pampean lakes, showing the fitted trend, 
confidence intervals, and observed values. Plots are partial plots of the smooth term in the model, 
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and the y axis is the intercept plus the partial effect of the individual smooth. Data are log10 trans-
formed, Chla was originally expressed in µg L−1 (a); picocyanobacterial abundance in cells mL−1; and 
ZSD in cm (b). 

Table 2. Statistics from fitted GAMs to the “validation” dataset; grey shadow represents the best 
fitted model based on AIC and the percentage of deviation explained; edf, estimated degrees of 
freedom; p-value < 0.05 is statistically significant; AIC, Akaike Information Criterion; deltaAIC is 
the difference with respect to the lowest AIC value. 

Model edf p-Value Deviation AIC DeltaAIC 
Secchi ~ Pcy 1.4 2.75 × 10−5 24.70% 47.68 16.18 
Secchi ~ Chla 1 <2 × 10−16 31.30% 38.8 7.3 

Secchi ~ Pcy + Chla 1 0.00288 38.70% 31.5 0 
 1 3.82 × 10−5    

To assess whether ZSD (conditional to Chla) decreased after the adoption of glypho-
sate-resistant crops (objective 2), we compared measurements from 1984 to 1999 (20th cen-
tury) vs. those from 2000 to 2021 (21st century). For this comparison, we used hierarchical 
GAM (HGAM) to assess whether the functional relationship between ZSD and Chla con-
centration varied between groups (here referred to as centuries for simplicity). Two 
HGAM, with slightly different model structures, were evaluated: S and I. Both models 
allowed for group-specific smooth terms, but model S imposed the same wiggliness to the 
smooth, while model I allowed different groups to differ in wiggliness. In both cases, 
model fits were significant, indicating not only a decreasing trend of ZSD with Chla but 
also significant intergroup differences (i.e., a significant “century” effect: ZSD20 > ZSD21). 
Both models explained a similar percentage of the deviation (46.2–46.4, Table 3), with 
model I having the lowest AIC. Model I, in addition to demonstrating significant trends 
for both centuries, showed a significant random effect for centuries to model century-spe-
cific intercepts. According to the rule of thumb, there was no ground to prefer one model 
over the other (i.e., they differed in less than AIC units) (Table 3). We prefer model I since 
it imposes fewer restrictions to the smoother function (i.e., each century has its own indi-
vidual smoother) and shows in the best overall fit (higher explained deviation and higher 
estimated degrees of freedom for smooth terms) (Figure 2). To illustrate intergroup dif-
ferences in ZSD over the last 40 years, we estimated ZSD for each century using the se-
lected model I for three Chla levels (i.e., low, moderate, and high) (Table 4). This exercise 
showed that for the same Chla, ZSD corresponding to the 21st century was only about 
50% of the corresponding levels of ZSD in the 20th century, regardless of the Chla level 
considered. 

Table 3. HGAM results from the “historical” dataset exploring the functional relationship between 
ZSD and Chla. The two periods contrasted are: 1984–199 (20th century) and 2000–2001 (21st cen-
tury). Two slightly different model structures are presented (S and I, see Materials and Methods 
section). p-values associated with each term are listed in their order of appearance in the mathemat-
ical function; p-values < 0.05 are statistically significant; AIC, Akaike Information Criterion; delta 
AIC is the difference between a given model AIC with respect to the lowest AIC model; edf, esti-
mated degrees of freedom for *, 20th century, 21st century. 

Model edf p-Value % Deviation AIC Delta 
AIC 

S:logZSD = ƒcentury(logChla) +ε 4.34 <2 × 10−16 46.2 71.52 1.4 
I: logZSD = ƒ((logChla):century) + 1 * 5.22 × 10−6 46.4 70.12 0 

ζ century +ε 2.36· <2 × 10−16    
 0.97 5.51 × 10−7    
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Table 4. Estimated ZSD from shallow Pampean lakes according to model I, before (20th century) 
and after (21st century) the adoption of GR crops. 

Chla  
Concentration Predicted Secchi Disc Depth (cm) 

(µg L−1) 
20th Century 

ZSD 
21st Century 

ZSD 
21st Century ZSD as % of 20th 

Century ZSD 
7 79.4 40.7 51.3 

50 38.0 18.2 47.9 
200 23.4 12.9 55.0 

 
Figure 2. HGAM results for model I, showing fitted trends, confidence intervals, and observed val-
ues for data corresponding to the period 1984–1999 (red) and 2000–2021 (blue). Plots are partial plots 
of the smooth term in the model, and the y axis is the intercept plus the effect of the individual 
smooth for each group (century). Data are log10 transformed; chlorophyll-a (Chla) was originally 
expressed in µg l−1 and Secchi disc depth (ZSD) in cm. 

4. Discussion 
Due to their small size, Pcy cells are expected to absorb and scatter light more 

strongly on a mass-specific basis than larger cells [29,31]. Therefore, after accounting for 
the effect of Chla, the depth of disappearance of the Secchi disc (ZSD) should decrease, in 
theory, with the concentration of Pcy. This effect, in turn, should be more apparent at high 
Pcy concentrations (>106 cells mL−1) [30]. The analysis of the “validation” dataset con-
firmed this prediction, proving that the theoretical expectation holds true, even for highly 
complex waters, such as those typical of shallow Pampean lakes [42]. Our findings rein-
force the importance of water clarity as an ecosystem indicator of eutrophication. Alt-
hough there are several measures of water transparency, ZSD has been the most consistent 
and frequent measure employed over time [43]. 
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Previous experiments [16,17] and field surveys of shallow Pampean lakes [19] 
demonstrated that exposure to glyphosate stimulates the development of Pcy popula-
tions. On the other hand, we have reported that the ZSD levels, conditional to Chla, in 
glyphosate-impacted Pampean lakes are significantly shallower (~50–60%) than the val-
ues reported for shallow lakes worldwide, within the low temperate latitudinal range (de-
fined as two belts from 23.6° to 44.5° North or South) [6]. Considering the steady increase 
in glyphosate use in Argentina and the very high Pcy concentrations reported for Pam-
pean lakes in recent years [19,23,44], we suspect the shallower ZSD reported for Pampean 
lakes in recent times represents an unforeseen result of the adoption of glyphosate-re-
sistant crops. The analysis of the “historical” dataset revealed that ZSD values, conditional 
to Chla, during the 21st century (i.e., after the adoption of GR-crops) are significantly lower 
than the values reported for the 20th century. In fact, current ZSD values are only about 
50% of the values reported during the 1980s and 1990s, which were therefore similar to 
those reported for other lakes worldwide. All in all, the collected evidence suggests a sce-
nario in which the massive use of glyphosate in the Pampean region has shifted the phy-
toplankton size structure (increased Pcy abundance), which in turn translated into lower 
water transparency (decreased ZSD). 

As already mentioned, Pcy abundance in shallow Pampean lakes was not quantified 
by epifluorescence microscopy or cytometry before 2005. However, the increase in the 
abundance of tiny cells resembling Pcy over the last decades was apparent while quanti-
fying nano- and micro-phytoplankton under the inverted microscope (I. Izaguirre, per-
sonal communication). On the other hand, Pcy cells often aggregate to form microcolonies 
in response to different stimuli [45,46], and there is typically a positive relationship be-
tween the abundance of microcolonies and that of single Pcy cells. Our historical records 
of microcolonies abundance for a few Pampean lakes from 1987 [47] to 2015 [48,49] show 
remarkable abundance increases. For example, in Lake Chascomús, microcolonies abun-
dance increased from 710 to 16,379 ind. mL−1 in 1987–1989 to 7396 to 182,297 ind. mL−1 in 
2005–2015. Moreover, since Pcy began to be quantified by epifluorescence and flow cy-
tometry [19,23,44,48,50], Pcy abundances have increased by an order of magnitude in sev-
eral lakes over the period 2005–2015. Presently, dominant Pcy in Pampean lakes belong to 
many different OTUs affiliated with the genera Synechococcus and Cyanobium, within the 
order Synechococcales [49,51]. 

Optical signals similar to those observed in the Pampean region have been reported 
in other agriculture-impacted areas. The use of glyphosate is widespread in the Chesa-
peake Bay watershed [52]. Long-term increases in light scattering in Chesapeake Bay have 
been inferred from ZSD, light attenuation, and remote sensing measurements [53]. 
Gallegos and co-workers [31] suggested that these long-term trends could be explained 
by decreases in the size structure of plankton populations. Independently, Wang et al. [54] 
reported high densities of picoplanktonic Synechococcus (106 cells mL−1) throughout the 
Bay, contributing 20% to 40% of total phytoplankton chlorophyll-a. In Lake Erie, Burns and 
coworkers [55] reported decreasing trends in ZSD during the period 1983–2002. Accord-
ing to these authors, the observed reduction in ZSD by 7 ± 3 cm year−1 was unrelated to 
variation in Chla. Moreover, Barbiero and Tuchman [56] observed decreases in Chla of 
50% in the western basin of Lake Erie, but despite these decreases in phytoplankton abun-
dance, they actually observed an increase in turbidity in the western basin [57]. Sugges-
tively, the cyanobacteria community of Lake Erie is persistently dominated by small, sin-
gle-celled species consistent with Synechococcus spp. And Cyanobium spp. [58]. 

Changes in plankton composition might alter the trophic interactions, and conse-
quently the flow of matter and energy through the food web. For instance, certain species 
of zooplankton mediate the phenotypic plasticity of Pcy, promoting their aggregation into 
colonies [44–46]. The decrease in the average cell size of phytoplankton would enhance 
the relative importance of intraguild predators at intermediate trophic levels of the food 
web, favoring the heterotrophic microbial pathway through small protists with the in-
crease in complexity and consequent reduction in trophic efficiency, as it occurs in large 
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tropical lakes [4]. The increase in the relative importance of Pcy affects the underwater 
light climate, promoting more turbid conditions that might have a negative impact on 
primary production in light-limited turbid shallow lakes [59,60], reducing carbon fixation. 
Both processes—the increment of microbial heterotrophic activity and the reduction of 
photosynthesis—tend to occur in more heterotrophic environments. 

Cultural eutrophication is a long-recognized phenomenon. Although at local scales 
it might have been similar or even more significant in the past than at present, it was only 
recently that it attained a true global dimension [61]. In its wider definition, anthropogenic 
eutrophication refers to the overproduction of organic material induced by anthropogenic 
inputs of phosphorus and nitrogen, and the concept of syndrome (i.e., a set of symptoms) 
has been introduced to refer to the myriad of biogeochemical and biological responses to 
increased nitrogen and phosphorus inputs [62]. Modern agricultural packages, however, 
involve the utilization of a large and diverse mixture of natural and synthetic chemicals 
whose effects go beyond those of traditional fertilizers. For example, the usage of glypho-
sate in the Pampa region not only resulted in increased abundance of small-sized Pcy, as 
argued in the present study, but also resulted in higher abundance of the smallest species 
within each major algal class [49], in clear contrast with the conventional pattern of in-
creasing phytoplankton cell size with trophic state ([63], p. 275) [64,65]. Paleolimnological 
evidence also relates eutrophication with the shift in the phytoplankton community to-
ward cyanobacteria dominance, along with a shift in zooplankton community towards 
small-bodied zooplankton, such as Bosmina and rotifers [66]. These findings suggest that 
agriculture, through non-point contamination of nutrients and glyphosate, impacts the 
composition of the phytoplankton and zooplankton communities and their size structure, 
with multiple ecological consequences. We therefore concur with the editors of this Spe-
cial Issue (https://www.mdpi.com/si/water/lake_eutrophications#info, accessed on 16 
June 2021) in that new types of water pollution continuously impose new challenges, re-
quiring recurring reexamination of the eutrophication phenomenon. Our results highlight 
the relevance of adopting sustainable practices and restoring buffering areas in shallow 
lakes (e.g., riparian wetland zone at lake margins) to prevent contaminants from reaching 
the water bodies. 

5. Conclusions 
In this study, we first demonstrated that ZSD (conditional Chla) decreases with the 

abundance of Pcy. Next, we demonstrated a significant decrease in ZSD (conditional Chla) 
in Pampean lakes. Such a decrease, which roughly occurred at the turn of the century, was 
therefore contemporaneous with the sharp increase in glyphosate usage due to the adop-
tion of GR-crops. Previous studies have experimentally demonstrated that the exposure 
to glyphosate stimulates the development of large Pcy populations, while recent lakes 
surveys revealed that the abundance of Pcy in Pampean lakes is, on average, remarkably 
higher than the world average. We conclude that this cumulus of evidence strongly sug-
gests that the increase in glyphosate usage in recent decades has resulted in increased Pcy 
abundance in Pampean lakes and suggest that the same phenomenon may have also oc-
curred in other agricultural areas of the World. 
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