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Abstract: Phytoplankton size structure has profound consequences on food-web organization and en-
ergy transfer. Presently, picocyanobacteria (size < 2 µm) represent a major fraction of the autotrophic
plankton of Pampean lakes. Glyphosate is known to stimulate the development of picocyanobacteria
capable of degrading the herbicide. Due to the worldwide adoption of glyphosate-resistant crops,
herbicide usage has increased sharply since the mid-1990s. Unfortunately, there are very few studies
(none for the Pampa region) reporting picocyanobacteria abundance before 2000. The prolifera-
tion of µm sized particles should decrease Secchi disc depth (ZSD). Therefore ZSD, conditional to
chlorophyll-a, may serve as an indicator of picocyanobacteria abundance. We use generalized additive
models (GAMs) to analyze a “validation” dataset consisting of 82 records of ZSD, chlorophyll-a,
and picocyanobacteria abundance from two Pampean lakes surveys (2009 and 2015). In support of
the hypothesis, ZSD was negatively related to picocyanobacteria after accounting for the effect of
chlorophyll-a. We then fitted a “historical” dataset using hierarchical GAMs to compare ZSD condi-
tional to chlorophyll-a, before and after 2000. We estimated that ZSD levels during 2000–2021 were,
on average, only about half as deep as those during 1980–1999. We conclude that the adoption of
glyphosate-resistant crops has stimulated outbreaks of picocyanobacteria populations, resulting in
lower water transparency.

Keywords: underwater light climate; eutrophication; glyphosate; cyanobacteria

1. Introduction

The size structure of phytoplankton has profound consequences on food-web organi-
zation and energy transfer within plankton communities [1]. The dominance of small-sized
algae (picophytoplankton < 2 µm in diameter) would tend to increase the abundance of
smaller grazers (i.e., heterotrophic flagellates and ciliates), promoting the heterotrophic
pathway (picoplankton→ heterotrophic protists→ zooplankton) over the classical trophic
chain (phytoplankton→ zooplankton), therefore decreasing the energy transfer efficiency
toward upper trophic levels [2–4]. Changes in land use might affect aquatic community
composition and processes, altering food-web interaction and ultimately impacting carbon
fluxes in lakes [5].
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The fertile Pampa region of Argentina (33–39◦ S, 57–64◦ W) harbors large numbers of
shallow, eutrophic lakes [6]. Over the last two centuries, the Pampean landscape changed
progressively from natural grasslands into cultivated grasslands and croplands due to
animal production and intensive crops (wheat, corn, sunflower, and, since the mid-1990s,
soybean) [7]. The process of agricultural intensification aggravated the eutrophication
of shallow Pampean lakes through increased nutrients (N, P) and agrochemical inputs
into the aquatic environment [8,9]. Since the last decade of the 20th century, Pampean
lakes have experienced remarkable increases in nutrients (N and P) and chlorophyll-a con-
centration (Chla) and decreases in water transparency, estimated as Secchi disk depth
(ZSD) [10]. Within a historical framework, the eutrophication increase in shallow Pam-
pean lakes was concurrent with the massive conversion to glyphosate-resistant crops
(GRC) technologies, adopted by major grain producer countries [11] including Argentina.
Glyphosate (N-(phosphonomethyl) glycine) is a broad-spectrum, post-emergent herbicide
that is presently among the most widely used agricultural chemicals globally. Usage trends
of this herbicide in Argentina have increased steadily, fueled by the widespread adoption of
transgenic soybean monoculture and no-tillage practices since around the mid-1990s [12].

In aquatic environments, glyphosate tolerance is widespread among cyanobacteria [13,14],
particularly within small-sized species [15]. Studies performed in mesocosms [16–18]
demonstrated that additions of glyphosate to experimental vessels stimulated the devel-
opment of picocyanobacteria (Pcy), which reached densities much higher than in con-
trol treatments. More recently, a survey of shallow, eutrophic lakes from Argentina [19]
provided additional, non-manipulative evidence on the stimulatory effect of glyphosate on
Pcy communities in their natural habitats (i.e., Pcy abundance was positively correlated
with glyphosate indicators within the Pampa region). Bullerjahn and coworkers [20,21]
investigated the mechanism of glyphosate tolerance in picocyanobacteria. They reported
that Pcy, isolated from the Laurentian Great Lakes, were able to metabolize glyphosate
and its main degradation product, aminomethylphosphonic acid (AMPA), which allowed
them to grow in cultures with glyphosate or AMPA as the only sources of phosphorus.
Glyphosate tolerance and its utilization by various freshwater Synechococcus strains is medi-
ated by the phosphonate transporter gene phnD, suggesting that detection of phnD gene in
plankton samples is an indication of the capacity of picoplankton to metabolize phospho-
nates, either natural or synthetic (e.g., glyphosate) [20]. We assessed the occurrence of the
phnD gene using primers specific for Synechococcus in lake plankton from the Pampa (highly
impacted by agricultural practices) and Patagonia (not impacted by agriculture activities)
regions of Argentina. Detection of the phnD gene was more frequent and Pcy abundance
much higher in lakes from the Pampean region (29% of lakes, 1.8 × 106 cells mL−1) than in
similarly eutrophic lakes from Patagonia (5% of lakes, 2.0 × 105 cells mL−1) [19]. Along
the same lines, Saxton and coworkers [14] concluded that glyphosate influences the phy-
toplankton community structure in Lake Erie, serving as a nutrient source to microbes
(i.e., heterotrophic bacteria and Pcy) able to tolerate the herbicide effects of the compound,
while killing those less tolerant algal species.

Presently, Pcy represent a major fraction of the autotrophic plankton of Pampean lakes.
Current estimates often exceed 107 cells mL−1 and rank among the highest abundance
reported for lakes worldwide [19,22,23]. Considering such values within the context of the
previous arguments, we suspect that the continued usage of glyphosate-based herbicides
during the last decades may have impacted natural phytoplankton assemblages of shallow
Pampean lakes. More specifically, we hypothesize that by favoring glyphosate-resistant
picocyanobacteria, modern agricultural practices have inadvertently contributed to the
increase in Pcy abundance up to the very high values typical of present-day Pampean
phytoplankton. Unfortunately, epifluorescence microscopy [24] and flow cytometry [25]
techniques, which would later allow routine quantification of Pcy concentrations, were
not readily implemented until around the 2000s. However, rather conveniently for our
purposes, large numbers of small-sized particles, such as Pcy, should produce optical signals
that, at least in principle, can be retrieved from historical records of ZSD measurements.



Water 2022, 14, 159 3 of 12

Although regression models of ZSD vs. Chla (often transformed as reciprocal-log or
log-log) tend to be highly significant within the mesotrophic–eutrophic range [26,27], Chla
usually accounts for only a modest fraction of the total variability in ZSD. The analysis of
the residual variability has been used to explore the effect of additional variables, such as
inorganic turbidity or water color [28]. ZSD is particularly affected by light scattering due
to suspended particles, with small particles having a disproportionately large effect [29].
Stramski and Kiefer [30] estimated that in waters where picophytoplankton concentration
approaches 106 cells mL−1, the microorganisms may dominate light scattering, account-
ing for >50% of its total magnitude. Gallegos et al. [31] reported long-term decreasing
trends in ZSD in Chesapeake Bay associated with changes in phytoplankton size structure.
In their study, increases in picoplankton abundance resulted in greater light scattering
and shallower ZSD. Similarly, analysis of different phytoplankton assemblages differing
in size structure showed that the dominance of small-sized algae resulted in remarkably
shallower ZSD [32,33]. In other words, ZSD, conditional to Chla (i.e., after statistically
removing the effect of Chla), can be expected to bear information on the size structure
of the phytoplankton assemblage in general, and particularly, on the abundance of the
small-sized plankton fraction.

Summarizing, the accumulated evidence consistently suggests that glyphosate-based
herbicides stimulate Pcy populations, resulting in higher abundance of small-sized phy-
toplankton cells. On the other hand, based on previous theoretical and empirical stud-
ies, it is expected that larger numbers of small-sized (~1 µm) particles would decrease
ZSD. The question that lingers is whether, under the complex optical climate of Pampean
lakes [34], the decrease in ZSD would be sufficiently pronounced, i.e., not masked by
confounding factors. Our first objective was to assess this hypothesis. For this purpose,
we assembled a “validation” dataset combining two relatively recent (2009 and 2015) sur-
veys of Pampean lakes, reporting data on ZSD, Chla, and Pcy abundance, among other
variables. Using statistical tools, we asked whether, at comparable Chla, ZSD was nega-
tively related to Pcy abundance—the practical implication being that ZSD, conditional to
Chla, could then be used as an indicator of Pcy abundance. Our second objective was to
compare ZSD measurements before and after the massive adoption of glyphosate-based
herbicides in Argentina. If confirmed, this would provide a lacking piece of evidence
supporting our main hypothesis that the continued use of glyphosate has impacted the
phytoplankton size spectrum of shallow Pampean lakes by favoring pico-sized cyanobacte-
ria populations, as previously observed in mesocosms experiments [16,17]. For achieving
the second objective, we compiled a “historical” dataset (combining a bibliographic search
with our own data).

2. Materials and Methods

The Argentine Pampa region is a large fertile plain in the center-east part of the country.
The climate is temperate, with warm summers and mild winters. Precipitation ranges from
1000 mm year−1 in the northeast to 400 mm year−1 in the southwest. Shallow lakes are
the most important freshwater ecosystems in the region. Only in Buenos Aires Province,
there are roughly 14,000 large (>10 ha) and 146,000 small (0.05–10 ha) shallow lakes ([6],
and references therein).

Our first objective was to evaluate whether, at comparable Chla, ZSD was negatively
related to Pcy abundance. For testing this hypothesis, we assembled a “validation” dataset
combining two relatively recent (2009 and 2015) surveys of Pampean lakes that report
data on ZSD, Chla, and Pcy abundance, among other variables [19,23]. The combined
dataset totaled 82 observations from 60 Pampean shallow lakes (22 lakes visited twice and
38 lakes visited once), ranging from mesotrophic to hypertrophic (see Table 1). For assessing
whether Pcy abundance and Chla (i.e., the predictor variables) significantly contributed to
explain the variability in ZSD (i.e., response variable), we used generalized additive models
(GAMs) [35]. GAMs allow one to model flexible functions among the response and predictor
variables without imposing an a priori specified functional form (e.g., linear, quadratic, etc.).
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Rather conversely, the shape of the relationship between the response and the predictors
arises from the data analysis itself. GAMs were fitted to log10 transformed data to comply
with the assumption of normality. We used REML (restricted maximum likelihood) to
estimate model coefficients and smoothing parameters and thin plate regression splines
(TPRS) as the smoother. The initial basis dimension was checked for adequacy and increased
whenever necessary. The model was then refitted according to [36]. We evaluated the
uncertainty of the fitted trends under a Bayesian formulation, using 10,000 simulations of
the trend from the posterior distribution of the fitted GAM. Model selection was based
on Akaike’s Information Criterion (AIC). We estimated GAMs using the mgcv package
(version 1.8–36) [35] and uncertainty in the adjusted trends using the gratia package (version
0.6.0) [37]. Graphical outputs were obtained using the ggplot2 package [38] for R [39].

Table 1. Median and range of limnological variables corresponding to the “validation” dataset (i.e.,
82 shallow Pampean lakes sampled during spring and summer surveys performed in 2009 and 2015).

Limnological Parameter Median Range

ZSD (cm) 14 2–191
Chla (µg L−1) 64.28 1.58–1549.79

Pcy (cells mL−1) 9.60 × 105 3.3 × 103–7.72 × 107

Total phosphorus (µg L−1) 620 124.2–4538
Total nitrogen (µg L−1) 5051 1702–12,846

pH 8.9 8–10.2
ZSD: Secchi disk depth; Chla: chlorophyll-a concentration; Pcy: picocyanobacteria abundance.

For our second objective (i.e., using ZSD, conditional to Chla, to infer changes in Pcy
abundance after the adoption of glyphosate resistant crops in Argentina), we analyzed
a “historical” data set consisting of 534 observations of shallow Pampean lakes, covering
the period from 1984 to 2021. The database included published records, unpublished
data collected by us, and unpublished data provided by colleagues. The full database,
including its sources, has been published elsewhere [10]. For the present analyses, only
data corresponding to the spring and summer seasons were included. In recent times,
a few individual lakes were sampled on many occasions and they were therefore overrep-
resented. To avoid this potential bias, we randomly subsampled the set of data, leaving
5 observations per lake at most after the year 2000. The final working subset totaled
207 observations and included information from 1984 to 1999 (referred to as 20th century)
and from 2000 to 2021 (21st century). We assessed the significance of the relationship
between ZSD and Chla and evaluated whether such relationship differed between the two
above mentioned periods. For these analyses, we used hierarchical GAM (HGAM) [40],
which allows modeling nonlinear functional relationships between the predictor and re-
sponse variables. Moreover, the model can handle different functional shapes for each
grouping level (different centuries, in our case). Model selection involves the analysis of
different degrees of intergroup (i.e., between centuries) variability in functional response.
The model structure must be specified according to the hypothesis to be tested. Briefly, one
must decide (i) whether each group should have its own smoother, or whether a common
smoother would suffice; (ii) whether the group-specific smoothers should have the same
wiggliness, or whether each group should have its own smoothing; and (iii) whether the
smoothers for each group should have a similar shape to one another (i.e., a shared global
smoother). Depending on the answers to the above questions, there are five possible model
structures: a single common smoother for all observations (model G), a global smoother
plus group-level smoothers with the same wiggliness (model GS), a global smoother plus
group-level smoothers with different wiggliness (model GI), group-specific smoothers,
but all of them having the same wiggliness (model S), and group-specific smoothers with
different wiggliness (model I) [40]. Given that our interest was to assess the significance
of inter-group (i.e., between centuries) variability, rather than investigating the functional
form of the relationship between predictor and response variables, the suitable model
structures are either S or I. The performance of these two models was compared based on
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AIC, which is a robust approach for comparing different model structures [40]. According
to this criterion, the model with the lowest AIC should be preferred, and as a rule of thumb,
the performance of models differing by less than 2 units are equivalent [41]. We used mgcv
package to fit HGMs and estimate the confidence interval of the fitted trends, and ggplot2
to illustrate plots.

3. Results

The validation dataset included lakes in eutrophic–hypereutrophic status, which is
the dominant condition in shallow Pampean lakes. In general, they are characterized by
high nutrient and Chla concentrations, high Pcy abundance, and alkaline waters (Table 1).
Despite the wide range in ZSD, most of them had shallow ZSD (median = 14 cm, Table 1).
In order to assess whether Pcy abundance negatively affects ZSD at comparable Chla
(objective 1), we fitted two models relating ZSD to either Chla or Pcy abundance separately
and a model evaluating the combined effect of Chla and Pcy abundance (Table 2). The first
two models significantly explained a percentage of the deviance (Pcy: 24.70%, Chla: 31.30%).
However, the best fitting model included both predictor variables (explained deviance:
Pcy + Chla: 38.70%). Moreover, the combined model had the lowest AIC, and the difference
in AIC to the next best model (i.e., delta AIC) was greater than 4 units. The combined
model indicates additive negative effects of Pcy and Chla on ZSD, i.e., increases in either
Chla concentration and/or Pcy abundance result in decreased ZSD (Figure 1).

Table 2. Statistics from fitted GAMs to the “validation” dataset; grey shadow represents the best fitted
model based on AIC and the percentage of deviance explained; edf, estimated degrees of freedom;
p-value < 0.05 is statistically significant; AIC, Akaike Information Criterion; deltaAIC is the difference
with respect to the lowest AIC value.

Model edf p-Value Deviance AIC DeltaAIC

Secchi ~ Pcy 1.4 2.75 × 10−5 24.70% 47.68 16.18
Secchi ~ Chla 1 <2 × 10−16 31.30% 38.8 7.3

Secchi ~ Pcy + Chla 1 0.00288 38.70% 31.5 0
1 3.82 × 10−5

To assess whether ZSD (conditional to Chla) decreased after the adoption of glyphosate-
resistant crops (objective 2), we compared measurements from 1984 to 1999 (20th century)
vs. those from 2000 to 2021 (21st century). For this comparison, we used hierarchical GAM
(HGAM) to assess whether the functional relationship between ZSD and Chla concentra-
tion varied between groups (here referred to as centuries for simplicity). Two HGAM,
with slightly different model structures, were evaluated: S and I. Both models allowed for
group-specific smooth terms, but model S imposed the same wiggliness to the smooth,
while model I allowed different groups to differ in wiggliness. In both cases, model fits were
significant, indicating not only a decreasing trend of ZSD with Chla but also significant
intergroup differences (i.e., a significant “century” effect: ZSD20 > ZSD21). Both models
explained a similar percentage of the deviance (46.2–46.4, Table 3), with model I having
the lowest AIC. Model I, in addition to demonstrating significant trends for both centuries,
showed a significant random effect for centuries to model century-specific intercepts. Ac-
cording to the rule of thumb, there was no ground to prefer one model over the other (i.e.,
they differed in less than AIC units) (Table 3). We prefer model I since it imposes fewer
restrictions to the smoother function (i.e., each century has its own individual smoother)
and shows in the best overall fit (higher explained deviance and higher estimated degrees
of freedom for smooth terms) (Figure 2). To illustrate intergroup differences in ZSD over
the last 40 years, we estimated ZSD for each century using the selected model I for three
Chla levels (i.e., low, moderate, and high) (Table 4). This exercise showed that for the same
Chla, ZSD corresponding to the 21st century was only about 50% of the corresponding
levels of ZSD in the 20th century, regardless of the Chla level considered.
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Figure 1. GAM results for spring–summer ZSD in shallow Pampean lakes, showing the fitted
trend, confidence intervals, and observed values. Plots are partial plots of the smooth term in the
model, and the y axis is the intercept plus the partial effect of the individual smooth. Data are
log10 transformed, Chla was originally expressed in µg L−1 (a); picocyanobacterial abundance in
cells mL−1; and ZSD in cm (b).

Table 3. HGAM results from the “historical” dataset exploring the functional relationship between
ZSD and Chla. The two periods contrasted are: 1984–1999 (20th century) and 2000–2001 (21st century).
Two slightly different model structures are presented (S and I, see Materials and Methods section).
p-values associated with each term are listed in their order of appearance in the mathematical
function; p-values < 0.05 are statistically significant; AIC, Akaike Information Criterion; delta AIC
is the difference between a given model AIC with respect to the lowest AIC model; edf, estimated
degrees of freedom for *, 20th century, 21st century.

Model edf p-Value % Deviance AIC Delta AIC

S: logZSD = ƒcentury(logChla) +ε 4.34 <2 × 10−16 46.2 71.52 1.4
I: logZSD = ƒ((logChla):century) + 1 * 5.22 × 10−6 46.4 70.12 0

ζ century +ε 2.36· <2 × 10−16

0.97 5.51 × 10−7
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Figure 2. HGAM results for model I, showing fitted trends, confidence intervals, and observed values
for data corresponding to the period 1984–1999 (red) and 2000–2021 (blue). Plots are partial plots of
the smooth term in the model, and the y axis is the intercept plus the effect of the individual smooth
for each group (century). Data are log10 transformed; chlorophyll-a (Chla) was originally expressed in
µg L−1 and Secchi disc depth (ZSD) in cm.

Table 4. Estimated ZSD from shallow Pampean lakes according to model I, before (20th century) and
after (21st century) the adoption of GR crops.

Chla
Concentration Predicted Secchi Disc Depth (cm)

(µg L−1) 20th Century ZSD 21st Century ZSD 21st Century ZSD as % of
20th Century ZSD

7 79.4 40.7 51.3
50 38.0 18.2 47.9
200 23.4 12.9 55.0

4. Discussion

Due to their small size, Pcy cells are expected to absorb and scatter light more strongly
on a mass-specific basis than larger cells [29,31]. Therefore, after accounting for the effect
of Chla, the depth of disappearance of the Secchi disc (ZSD) should decrease, in theory,
with the concentration of Pcy. This effect, in turn, should be more apparent at high Pcy
concentrations (>106 cells mL−1) [30]. The analysis of the “validation” dataset confirmed
this prediction, proving that the theoretical expectation holds true, even for highly complex
waters, such as those typical of shallow Pampean lakes [42]. Our findings reinforce the
importance of water clarity as an ecosystem indicator of eutrophication. Although there
are several measures of water transparency, ZSD has been the most consistent and frequent
measure employed over time [43].

Previous experiments [16,17] and field surveys of shallow Pampean lakes [19] demon-
strated that exposure to glyphosate stimulates the development of Pcy populations. On the
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other hand, we have reported that the ZSD levels, conditional to Chla, in glyphosate-
impacted Pampean lakes are significantly shallower (~50–60%) than the values reported for
shallow lakes worldwide, within the low temperate latitudinal range (defined as two belts
from 23.6◦ to 44.5◦ North or South) [6]. Considering the steady increase in glyphosate use
in Argentina and the very high Pcy concentrations reported for Pampean lakes in recent
years [19,23,44], we suspect the shallower ZSD reported for Pampean lakes in recent times
represents an unforeseen result of the adoption of glyphosate-resistant crops. The analysis
of the “historical” dataset revealed that ZSD values, conditional to Chla, during the 21st
century (i.e., after the adoption of GR-crops) are significantly lower than the values reported
for the 20th century. In fact, current ZSD values are only about 50% of the values reported
during the 1980s and 1990s, which were therefore similar to those reported for other lakes
worldwide. All in all, the collected evidence suggests a scenario in which the massive use of
glyphosate in the Pampean region has shifted the phytoplankton size structure (increased
Pcy abundance), which in turn translated into lower water transparency (decreased ZSD).

As already mentioned, Pcy abundance in shallow Pampean lakes was not quantified
by epifluorescence microscopy or cytometry before 2005. However, the increase in the
abundance of tiny cells resembling Pcy over the last decades was apparent while quantify-
ing nano- and micro-phytoplankton under the inverted microscope (I. Izaguirre, personal
communication). On the other hand, Pcy cells often aggregate to form microcolonies in
response to different stimuli [45,46], and there is typically a positive relationship between
the abundance of microcolonies and that of single Pcy cells. Our historical records of
microcolonies abundance for a few Pampean lakes from 1987 [47] to 2015 [48,49] show
remarkable abundance increases. For example, in Lake Chascomús, microcolonies abun-
dance increased from 710 to 16,379 ind. mL−1 in 1987–1989 to 7396 to 182,297 ind. mL−1

in 2005–2015. Moreover, since Pcy began to be quantified by epifluorescence and flow
cytometry [19,23,44,48,50], Pcy abundances have increased by an order of magnitude in
several lakes over the period 2005–2015. Presently, dominant Pcy in Pampean lakes belong
to many different OTUs affiliated with the genera Synechococcus and Cyanobium, within the
order Synechococcales [49,51].

Optical signals similar to those observed in the Pampean region have been reported in
other agriculture-impacted areas. The use of glyphosate is widespread in the Chesapeake
Bay watershed [52]. Long-term increases in light scattering in Chesapeake Bay have been
inferred from ZSD, light attenuation, and remote sensing measurements [53]. Gallegos and
co-workers [31] suggested that these long-term trends could be explained by decreases in
the size structure of plankton populations. Independently, Wang et al. [54] reported high
densities of picoplanktonic Synechococcus (106 cells mL−1) throughout the Bay, contributing
20% to 40% of total phytoplankton chlorophyll-a. In Lake Erie, Burns and coworkers [55]
reported decreasing trends in ZSD during the period 1983–2002. According to these authors,
the observed reduction in ZSD by 7 ± 3 cm year−1 was unrelated to variation in Chla.
Moreover, Barbiero and Tuchman [56] observed decreases in Chla of 50% in the western
basin of Lake Erie, but despite these decreases in phytoplankton abundance, they actually
observed an increase in turbidity in the western basin [57]. Suggestively, the cyanobacteria
community of Lake Erie is persistently dominated by small, single-celled species consistent
with Synechococcus spp. And Cyanobium spp. [58].

Changes in plankton composition might alter the trophic interactions, and conse-
quently the flow of matter and energy through the food web. For instance, certain species
of zooplankton mediate the phenotypic plasticity of Pcy, promoting their aggregation into
colonies [44–46]. The decrease in the average cell size of phytoplankton would enhance
the relative importance of intraguild predators at intermediate trophic levels of the food
web, favoring the heterotrophic microbial pathway through small protists with the in-
crease in complexity and consequent reduction in trophic efficiency, as it occurs in large
tropical lakes [4]. The increase in the relative importance of Pcy affects the underwater
light climate, promoting more turbid conditions that might have a negative impact on
primary production in light-limited turbid shallow lakes [59,60], reducing carbon fixation.
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Both processes—the increment of microbial heterotrophic activity and the reduction of
photosynthesis—tend to occur in more heterotrophic environments.

Cultural eutrophication is a long-recognized phenomenon. Although at local scales
it might have been similar or even more significant in the past than at present, it was
only recently that it attained a true global dimension [61]. In its wider definition, an-
thropogenic eutrophication refers to the overproduction of organic material induced by
anthropogenic inputs of phosphorus and nitrogen, and the concept of syndrome (i.e., a set
of symptoms) has been introduced to refer to the myriad of biogeochemical and biological
responses to increased nitrogen and phosphorus inputs [62]. Modern agricultural packages,
however, involve the utilization of a large and diverse mixture of natural and synthetic
chemicals whose effects go beyond those of traditional fertilizers. For example, the usage
of glyphosate in the Pampa region not only resulted in increased abundance of small-sized
Pcy, as argued in the present study, but also resulted in higher abundance of the smallest
species within each major algal class [49], in clear contrast with the conventional pattern of
increasing phytoplankton cell size with trophic state ([63], p. 275) [64,65]. Paleolimnolog-
ical evidence also relates eutrophication with the shift in the phytoplankton community
toward cyanobacteria dominance, along with a shift in zooplankton community towards
small-bodied zooplankton, such as Bosmina and rotifers [66]. These findings suggest that
agriculture, through non-point contamination of nutrients and glyphosate, impacts the
composition of the phytoplankton and zooplankton communities and their size struc-
ture, with multiple ecological consequences. We therefore concur with the editors of this
Special Issue (https://www.mdpi.com/si/water/lake_eutrophications#info, accessed on
16 June 2021) in that new types of water pollution continuously impose new challenges,
requiring recurring reexamination of the eutrophication phenomenon. Our results highlight
the relevance of adopting sustainable practices and restoring buffering areas in shallow
lakes (e.g., riparian wetland zone at lake margins) to prevent contaminants from reaching
the water bodies.

5. Conclusions

In this study, we first demonstrated that ZSD (conditional Chla) decreases with the
abundance of Pcy. Next, we demonstrated a significant decrease in ZSD (conditional
Chla) in Pampean lakes. Such a decrease, which roughly occurred at the turn of the
century, was therefore contemporaneous with the sharp increase in glyphosate usage due
to the adoption of GR-crops. Previous studies have experimentally demonstrated that
the exposure to glyphosate stimulates the development of large Pcy populations, while
recent lakes surveys revealed that the abundance of Pcy in Pampean lakes is, on average,
remarkably higher than the world average. We conclude that this cumulus of evidence
strongly suggests that the increase in glyphosate usage in recent decades has resulted in
increased Pcy abundance in Pampean lakes and suggest that the same phenomenon may
have also occurred in other agricultural areas of the World.
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