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Abstract: Droughts that occur in tropical forests (TF) are expected to significantly impact the gross
primary production (GPP) and the capacity of carbon sinks. Therefore, it is crucial to evaluate and
analyze the sensitivities of TF-GPP to the characteristics of drought events for understanding global
climate change. In this study, the standardized precipitation index (SPI) was used to define the
drought intensity. Then, the spatially explicit individual-based dynamic global vegetation model
(SEIB-DGVM) was utilized to simulate the dynamic process of GPP corresponding to multi-gradient
drought scenarios—rain and dry seasons × 12 level durations × 4 level intensities. The results
showed that drought events in the dry season have a significantly greater impact on TF-GPP than
drought events in the rainy season, especially short-duration drought events. Furthermore, the
impact of drought events in the rainy season is mainly manifested in long-duration droughts. Due to
abundant rainfall in the rainy season, only extreme drought events caused a significant reduction
in GPP, while the lack of water in the dry season caused significant impacts due to light drought.
Effective precipitation and soil moisture stock in the rainy season are the most important support for
the tropical forest dry season to resist extreme drought events in the study area. Further water deficit
may render the tropical forest ecosystem more sensitive to drought events.

Keywords: tropical forest; gross primary production; sensitivity analysis; SEIB-DGVM; multi-gradient
drought scenarios

1. Introduction

As the main terrestrial ecosystem, tropical forests (TF) have a higher capacity for ab-
sorbing carbon dioxide (CO2) in the atmosphere than other forest ecosystems [1]. They play
an important role in adjusting the atmospheric carbon dioxide concentration and buffering
the climate of the biosphere [2,3] and are important carbon sinks [4]. However, in the past
few decades, climate change has increased the severity and duration of droughts [5–7], and
even the most intact and largest tropical forests have inevitably suffered from drought
disturbances [8,9]. Studies have shown that droughts significantly affect the photosynthe-
sis of tropical forest ecosystems [10], alter their carbon emission process [11], and affect
carbon sinks [12]. Therefore, understanding the sensitivity of tropical forest gross primary
productivity (TF-GPP) to drought can better predict the TF-GPP trend under future climate
change scenarios, which is of great importance for mitigating climate change.

The sixth IPCC assessment report (AR6) further affirms that global warming—caused
by man-made influences—has caused an increase in the frequency of extreme events and
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increased the frequency and intensity of ecological droughts [13]. In the future, precipita-
tion in subtropical and tropical regions is expected to decrease [13], and tropical forests
are highly susceptible to drought disturbances [14]. In order to improve the carbon sink
capacity of tropical forests, the topic of how to reduce the impact of drought on tropical
forests has become a major point of focus that is currently being faced. Existing research on
drought-affected tropical forests mainly focuses on the Amazon rainforest [8,10,12,15,16].
The drought response of tropical forest ecosystems is analyzed by means of field observa-
tions, sample plot control experiments, and large-scale remote sensing inversion [8,17–19].
However, on-site experiments require long-term monitoring and consume a great deal
of manpower and material resources [20,21]. Moreover, the tropical forest structure is
highly complex, climate change amplitude is difficult to predict [22], tropical areas are
covered with clouds throughout the year, and remote sensing methods are limited [23–25].
Therefore, models have become an important tool for observing and understanding the
response of tropical forests to drought. Compared with Amazon and African tropical
forests, tropical forests in Asia have the highest bio-carbon storage [26] and are in the
Western Pacific, which is severely affected by El Niño–Southern Oscillation (ENSO) events.
The tropical forests of Xishuangbanna in China are located on the northern edge of tropical
southwest Asia and form part of the Malay rainforest in India. Affected by the tropical
monsoon climate, precipitation presents seasonal changes, and the dry and rainy seasons
are distinct. Furthermore, it is a natural site for conducting research on the response of
tropical forest ecosystems to drought. The sensitivity of the TF-GPP response to multiple
drought scenarios in this region is an important supplement to the global tropical forest
GPP affected by drought.

The formation of drought events is extremely complex. In recent years, various
drought indices have been used to evaluate different drought parameters to quanti-
tatively analyze drought events [5]. Tropical forest ecosystems are more sensitive to
moisture [27,28]. Compared with other drought indices such as the Palmer drought severity
index (PDSI), the standardized precipitation index (SPI) is more suitable for tracking tropi-
cal forest drought events [29,30]. Different drought characteristics, e.g., drought duration
and drought intensity, and the drought initiating season affect the response of vegetation to
drought [1,31,32]. Fauset et al. (2012) [33] studied the effects of long-term drought on the
structure and functional composition of tropical forest ecosystems. Guo et al. (2018) [34]
considered time and space characteristics of drought events such as drought duration,
intensity, severity, and affected areas, and assessed the impact of drought on vegetation.
Furthermore, Aguirre-Gutiérrez et al. (2019) [35] found that under long-term drought, the
function of different tropical forest ecosystems changes with the precipitation gradient.
However, few studies have been conducted that quantify multiple drought gradients and
initiating dry seasons and analyze trend changes in TF-GPP affected by multiple drought
events. In addition, different ecological types, regional drought events, and GPP responses
to drought under extreme drought vary [36–39]. Therefore, it is necessary to study the
influence of drought on TF-GPP.

Based on the Xishuangbanna Tropical Rainforest Flux Observatory, this study simu-
lated the dynamic response process of tropical forest ecosystem productivity under gradient
scenarios with multiple drought characteristics (initiating dry season, duration, intensity)
to achieve the aim of this research, that is, to reveal TF-GPP’s response process to various
drought features and analyze its sensitivity. The results of this study provide theoretical
support for GPP changes in tropical forest ecosystems and their response to extreme events
under future climate change scenarios and provide technical support for the realization of
“carbon neutrality” and “nature-based solutions”.

2. Materials and Methods
2.1. Site Description

The tropical forest of Xishuangbanna is located on the northern edge of tropical
Southeast Asia. It is the transition zone from Southeast Asia (SE) tropical to East Asian
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subtropical. The region has a typical monsoon climate, with obvious alternations between
dry (November to April) and rainy seasons (May to October) [40]. The annual average tem-
perature is 21.5 ◦C [41]; the average annual total precipitation is about 1557 mm [41], and
about 87% [41] of the precipitation occurs in the rainy season. The study site is located in
Menglun Town, Mengla County, Xishuangbanna Prefecture, Yunnan Province, Southwest
China (21◦55′39′′ N, 101◦15′55′′ E). It is located in tropical seasonal rain forests with a vege-
tation canopy height of 36 m [42]. The dominant tree species include Terminalia myriocarpa,
Pometia tomentosa, Barringtonia macrostachya, Gironniera subaequalis, Mitrephora maingayi,
Garcinia cowal, Knema erratica, Ardisia tenera, Saprosma ternatum, Pteris cretica, etc. [42,43].

2.2. Climate Data

Daily meteorological data required for this research include: surface temperature (◦C);
0~10 cm, 10~200 cm, and 300 cm deep soil temperature (◦C); precipitation (mm); cloud
coverage (fraction); and specific humidity (kg/kg). These data were obtained by using the
National Center for Environmental Prediction/National Center for Atmospheric Research
(NCEP/NCAR) data [44] set to calibrate the monthly CRU-Ts4.05 meteorological data [45]
set (1981–2019) on a daily scale. Among them, abnormal precipitation values are replaced
by meteorological daily value data of the Xishuangbanna Station from 2003 to 2010 of
the National Ecological Science Data Center (NESDC). The daily temperature difference
(◦C) is CRU monthly data, consistent within the month; canopy wind speed (m/s) uses
NCEP/NCAR reanalysis data; GPP observation value is NESDC 2003–2010 Xishuangbanna
station flux monthly data.

2.3. Method
2.3.1. SPI

The standardized precipitation index uses the long-term precipitation distribution
in a certain area to assess the degree of drought in that area. Generally, monthly-scale
precipitation series are used as the research object, and the cumulative probability dis-
tribution of precipitation is calculated and then normalized to obtain the standardized
precipitation index [46]. If the precipitation in a certain area is greater than the historical
average precipitation, the SPI value of the area is positive; conversely, a negative SPI value
means that the precipitation in the area is less than the historical average precipitation [47].
According to the SPI value, different drought levels can be divided. In this study, SPI
was used to calculate the precipitation change in multiple drought scenarios from 1981 to
2019, and four drought intensities were distinguished according to the magnitude of the
SPI value.

2.3.2. SEIB-DGVM

SEIB-DGVM dynamically simulates the establishment, growth, competition, and death
stages of various vegetations. It is driven by geographic and meteorological data to simulate
terrestrial physical processes, vegetation physiological processes, and vegetation dynamic
processes, which can accurately assess the response of terrestrial ecosystems to climate
change. SEIB-DGVM can simulate the sensitivity of ecosystem photosynthesis to precipi-
tation frequency, intensity, and rainy season length [48], which is beneficial for reflecting
the sensitivity of GPP to drought intensity, duration, and initial dry season. The model
contains 16 plant function types (PFTs). In this study, four tropical broad-leaved evergreen
forests (PFT1: shade-tolerant species with a maximum tree height greater than 36 m; PFT2:
shade-tolerant species with a maximum tree height of 25–36 m; PFT3: light-demanding
species with a maximum tree height of 15–25 m; PFT4: intermediate shade-tolerant species
with a maximum tree height of 1.3–15 m) were launched for simulation [49,50].

In this study, meteorological data from 1981 to 2010 were used for 300 years of spin-
up to ensure that the ecosystem was in balance. Daily standard weather from 1981 to
2019 was used to repeatedly simulate 100-year changes in the Xishuangbanna ecosystem
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GPP affected by multiple droughts (Figure 1). The model version is SEIB-DGVM 2.82
(This version corresponds with Sato et al. 2015) [51].
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Figure 1. Model running and experiment process.

2.3.3. Adaptation of SEIB-DGVM

Our research verifies the adaptation of SEIB-DGVM based on the GPP monthly
flux data of the NESDC Xishuangbanna station from 2003 to 2010. The diameter lim-
its (DBH_limit) of the four PFTs are 0.71 m, 0.58 m, 0.45 m, and 0.11 m [52], and the
maximum tree height (HGT_max) is set to 55 m, 55 m, 54 m, and 40 m [53]; the optimum
temperature (Topt) is adjusted to 20 ◦C; the maximum photosynthetic rate (Pmax) of PFT1
and PFT3 were adjusted to 5.5 and 10.5, respectively; and the light use efficiency (Lue0) of
the four PFTs was adjusted to 0.047 [54].

2.3.4. Experiment Design for Multiple Drought Scenarios

Daily meteorological data from 1981 to 2019 were selected to calculate the daily
standard climate state of Xishuangbanna, which is used to simulate the GPP value (GPP_Sta)
under the standard climate of the tropical rainforest ecosystem in Xishuangbanna. Different
SPI time scales (SPI_1, SPI_2, SPI_3, SPI_4, SPI_5, SPI_6, SPI_7, SPI_8, SPI_9, SPI_10, SPI_11,
and SPI_12) were used to calculate precipitation in multiple drought scenarios. For example,
SPI_1 refers to the SPI value on a one-month time scale, representing the distribution of
precipitation in the current month; SPI_3 refers to the SPI value on a three-month time
scale, representing the cumulative precipitation change from the previous two months to
the current month. The initiating dry season, drought duration, and drought intensity
were determined to simulate multiple drought scenarios (Figure 2). In this study, the
initiating dry seasons are January (cool-dry season, CD), March (hot-dry season, HD),
June (early rainy season, ER), and September (mid-to-late rainy season, MLR); drought
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duration is 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, and 1 months; drought intensity is light drought
(SPI = −0.75), moderate drought (SPI = −1.25), severe drought (SPI = −1.75), and extreme
drought (SPI = −2.00). There was a total of 23,040 simulations in this study (4 seasons
× 12 duration × 4 intensity × 12 SPI time scale × 10 repetitions). The results of the
GPP simulation (GPP_Mod) and GPP_Sta in each drought scenario were compared and
analyzed, and the impact of drought on GPP was evaluated.
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3. Results
3.1. Model Validation

Figure 3a shows the estimated monthly GPP value (GPP_Est) for this study and the
monthly GPP value (GPP_Obs) time series of the NESDC Xishuangbanna station monthly
flux value data from 2003 to 2010. Figure 3b shows the scatter point of GPP_Est and
GPP_Obs. The overall trend of the monthly GPP value of the model fits well (R2 = 0.56);
the correlation coefficient (R = 0.85) between GPP_Est and GPP_Obs is relatively high; the
root mean square error (RMSE) is 38.13 g C m−2 month−1; the average relative error (RE) is
12.04%. SEIB-DGVM can effectively reproduce the monthly-scale GPP dynamic pattern of
the tropical rain forest flux observation station in Xishuangbanna, which can be used for
GPP estimation under multiple drought scenarios.
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3.2. The Sensitivities of TF-GPP to Droughts Occurring Different Seasons

Figure 4 shows the GPP loss caused by drought in different seasons. Under the same
drought duration and intensity, the ∆GPP (∆GPP = GPP_Sta − GPP_Mod) change in HD is
the most significant, and the ∆GPP change in ER is the least significant. The GPP change
in drought initiated in the dry season is more significant than drought initiated in the
rainy season.
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tween the average monthly GPP in standard climate and the average GPP in arid climate month
(∆GPP = GPP_Sta − GPP_Mod) varies with the duration and strengths of the drought.

Drought initiation during the dry season. The GPP impairment value is more af-
fected by drought intensity than drought duration. As drought intensity increases, ∆GPP
also increases. When drought duration increases, ∆GPP first increases and then decreases.
Drought occurs in the CD, and GPP loss reaches the maximum (22.09 g C m−2 month−1)
after 5 months of continuous drought (Figure S1a). Drought occurs in the MD, and ∆GPP
reaches the maximum (31.31 g C m−2 month−1) after 3 months of continuous drought
(Figure S1b).

Drought initiation during the rainy season. Drought duration has a more obvious
impact on GPP than intensity, and ∆GPP increases with the increase in drought intensity.
Drought started in ER: ∆GPP first decreases and then increases with the increase in drought
duration. The turning point occurred when drought lasted 5 months. At this time, the
∆GPP was 0.64 g C m−2 month−1, 0.77 g C m−2 month−1, 0.94 g C m−2 month−1, and
1.23 g C m−2 month−1 as drought intensity increased. (Figure S1c). When the drought
lasted for 8 months or more, ∆GPP increased significantly (Figure S1c), and the ∆GPP was
2.49 g C m−2 month−1, 3.52 g C m−2 month−1, 4.68 g C m−2 month−1, and 5.25 g C m−2 month−1

as the drought intensity increased. Drought occurred in MLR, and ∆GPP first increased
with the increase in drought duration and then almost remained unchanged (Figure 4).
The drought lasted more than 4 months, and GPP decreased significantly, and its val-
ues were 1.33 g C m−2 month−1, 2.11 g C m−2 month−1, 2.92 g C m−2 month−1, and
3.38 g C m−2 month−1 as the intensity increased (Figure S1d).
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The sensitivities of TF-GPP to droughts occurring different seasons under SPI_1, SPI_3,
SPI_6 and SPI_12 time scales are shown in Figures S2–S5.

3.3. The Sensitivities of TF-GPP to Drought Duration

Figure 5 shows the GPP losses due to different drought durations under the gradient
of drought seasons and strengths. Keep the drought intensity consistent with the initial dry
season. Short-duration drought has a more obvious impact on GPP in the dry season than
in the rainy season, and the difference in ∆GPP between the two dry and rainy seasons is
significant; the GPP in the rainy season changes significantly in the long-duration drought,
and GPP is almost unaffected in the dry season.
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(e) 5 months; (f) 6 months; (g) 7 months; (h) 8 months; (i) 9 months; (j) 10 months; (k) 11 months; and
(l) 12 months. ∆GPP varies with drought intensity and initial drought seasonal changes.

Under short-duration drought (drought duration is less than 5 months), GPP loss
due to drought in the rainy season is not obvious and hardly changes with the change in
drought intensity (Figure 5a,b). When a drought event occurs in the dry season, ∆GPP
changes significantly and increases with increasing intensity (Figure 5a–e).

Under long-duration drought (drought duration is greater than 7 months), GPP loss in
the rainy season begins to increase with the increase in drought intensity. When the drought
lasted for 7 months and the drought started in ER, ∆GPP started changing significantly
with the increase in drought intensity—1.17 g C m−2 month−1, 1.68 g C m−2 month−1,
2.21 g C m−2 month−1, and 2.86 g C m−2 month−1. GPP loss in the dry season is almost
unaffected by changes in drought duration (Figure 5g–l); moreover, drought lasted more
than 4 months when the drought started in MLR, and ∆GPP increased with the increase in
duration and intensity (Figure 5d–l).

The sensitivities of TF-GPP to drought duration under SPI_1, SPI_3, SPI_6 and SPI_12
time scales are shown in Figures S6–S9.
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3.4. The Sensitivities of TF-GPP to Drought Strengths

Figure 6 shows the GPP losses due to different drought strengths under the gradient
of drought seasons and durations. With the increase in drought intensity, the GPP loss
of drought in the dry season increased significantly, and the ∆GPP in the rainy season
increased slightly. Furthermore, when the drought duration is consistent with the initial
dry season, the impact of drought intensity on ∆GPP in the dry season is more pronounced
than in the rainy season.
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Under mild drought intensity, GPP will not reduce significantly regardless of whether
there is a drought in the dry season or the rainy season; however, when a drought occurs in
the rainy season, ∆GPP will increase with the increase in duration (Figure 6a). Drought
started in CD, and ∆GPP first decreased and then increased with the increase in duration.
Drought started in HD, and ∆GPP first increased and then decreased with the increase
in duration.

Under moderate drought intensity, the dry season ∆GPP began to change significantly;
when the drought lasted 8 months and began in HD, ∆GPP had a minimum value of
4.997 g C m−2 month−1 (Figure 6b).

Under severe drought and extreme drought intensity, drought occurs during the dry
season, and its GPP changes significantly (Figure 6c,d). Under extreme drought intensity,
changes in ∆GPP are the most significant. With the different seasons (CD, HD, ER, and
MLR), when drought begins, the maximum values are also different: 22.09 g C m−2 month−1,
31.31 g C m−2 month−1, 6.448 g C m−2 month−1, and 7.468 g C m−2 month−1.

The sensitivities of TF-GPP to drought strengths under SPI_1, SPI_3, SPI_6 and SPI_12
time scales are shown in Figures S10–S13.

4. Discussion
4.1. Drought Initiation Season

Drought occurs during the rainy season, and GPP loss is not significant. This is be-
cause the rainfall in the rainy season—in the study area—is significantly higher than the
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water demand of the vegetation. When rainfall from the rainy season decreases in a short
period of time, vegetation is still able to use part of the precipitation to maintain its growth
and survival processes and will not suffer obvious water stress. At this time, the primary
productivity of the ecosystem is fairly sensitive to drought events. With the development
of drought events (drought lasting more than 4 months), the lack of long-term precipi-
tation caused water shortages to restrict vegetation growth, which caused a significant
decline in GPP during the rainy season. The rainfall in the tropical rainforest ecosystem of
Xishuangbanna in June was significantly higher than that recorded in September [55,56].
Maintaining consistent drought duration and drought intensity, the ER ecosystem has more
water resources that are needed to maintain the growth and survival of vegetation and pos-
sesses stronger resistance to drought events. Therefore, drought occurs at ER, and the loss
of ecosystem GPP is the least significant. Droughts began in CD and HD, and ecosystem
productivity dropped significantly. This is due to the dry season in Xishuangbanna from
November to April of the following year. During this period, the ecosystem has minimal
or no precipitation [57,58], and vegetation often suffers from severe water stress [59,60].
In order to maintain its own growth, it is necessary to continuously expand the roots deep
into the soil to obtain soil moisture [61–63]. Soil moisture can adequately buffer the impact
of seasonal drought on vegetation [64], and its distribution and utilization greatly affect
the growth and survival of vegetation [65]. At the beginning of the dry season, the ecosys-
tem experiences heavy rainfall during the rainy season, and soil moisture is adequately
stored. The ecosystem is able to adjust to short-duration droughts. Therefore, the GPP
of the drought-initiated ecosystem in the early dry season does not decline drastically.
After a long period of drought, the ecosystem has almost no precipitation [58]. At this
time, vegetation is more dependent on soil moisture. Due to the inability to replenish
soil moisture in the dry season, the ecosystem’s water resources become further deficient.
With the development of drought events (lasting more than 3 months), vegetation water
consumption exceeds soil water reserves, and vegetation productivity begins to signifi-
cantly decline. Li et al. (2010) [57] indicated that the highest temperature of the tropical
forest ecosystem in Xishuangbanna was from March to April instead of from June to July.
Drought occurred during this period, and the temperature increased and vegetation died.
This further explains that drought in HD has a more significant reduction in productivity
than drought in CD.

4.2. Drought Duration

Vicente-Serrano et al. (2013) [66] stated that vegetation responds quickly to short-term
water deficits below normal levels. Therefore, when drought occurs in the dry season,
the primary productivity of the ecosystem will decrease significantly in the short term.
With the development of drought events, vegetation quickly adapts to the ever-changing
available water resources [66], controls water consumption, increases roots’ absorption
of soil water [67], and buffers drought pressure, and the loss of ecosystem productivity
tends to gradually flatten. Drought occurs at the CD, and ∆GPP begins to decrease after
the drought lasts more than 5 months. In addition, when drought occurs in the HD, ∆GPP
also decreases after the drought lasts more than 3 months. This is because, at this time, the
ecosystem enters the rainy season, and the precipitation increases significantly compared to
previously. In the rainy season ecosystem, under a short-duration drought, vegetation can
obtain deep soil water to relieve water stress [68], meaning that the primary productivity of
the ecosystem will not change significantly. Long-term drought will cause vegetation leaves
to fall away [69,70], and deep soil water or even bedrock water will become depleted [71],
causing tree death. Furthermore, long-term precipitation reduction reaches a threshold,
which may lead to the conversion of tropical forest ecosystems to other ecosystems [63],
thereby significantly reducing ecosystem productivity. Vegetation in the dry season is more
severely affected by water stress, and the soil moisture content is less than that in the rainy
season. Therefore, the GPP in the dry season is more degraded under a shorter drought
duration than in the rainy season.
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4.3. Drought Strengths

Under mild to moderate drought, the response of trees to drought is a gradual pro-
cess. At this time, trees activate physiological regulation processes to alleviate the effects
of drought events by increasing carbon storage in their organs [72], thus, the TF-GPP
did not change significantly under mild and moderate drought. Drought not only af-
fects vegetation growth but also increases the risk of pests and diseases, significantly
reduces canopy photosynthesis [73], and inhibits the primary productivity of the ecosys-
tem. In addition, severe drought can also disrupt the hydraulic balance of vegetation and
limit vegetation growth and the synthesis of structural substances, resulting in a net loss
of carbohydrates [72,74]. Moreover, soil moisture storage is gradually depleted, leading
to vegetation death due to severe water shortages before carbon depletion, which has an
irreversible impact on the ecosystem in the short term [75,76], resulting in a significant
decrease in primary productivity of the ecosystem. As rainfall in the rainy season ecosys-
tem is higher than the vegetation water demand, soil moisture is adequately stored, and
vegetation is limited by water (less so than the dry season ecosystem). Moreover, with the
increase in drought intensity, GPP loss in the rainy season is significantly less than that of
the dry season ecosystem.

5. Conclusions

This study shows that the increase in drought duration and drought intensity signifi-
cantly affects the productivity of tropical forest ecosystems, and the response of tropical
forests to drought in different initiating dry seasons is also significantly different. TF-GPP in
the dry season is more affected by drought than in the rainy season. Ecosystem productivity
in the dry season is sensitive to short-duration and high-intensity drought events; when
drought lasts for 3 months when the intensity reaches a moderate drought, GPP begins to
decrease significantly. For droughts lasting more than 5 months in the rainy season, the
ecosystem productivity decreases significantly, and GPP does not change significantly with
intensity. The impact of short-duration drought events on the TF-GPP in the dry season
is more obvious than that in the rainy season. Long-duration drought events cause no
significant difference in GPP loss caused by the dry and rainy seasons.

Drought formation conditions are complex, which not only affect precipitation changes
but also affect the potential evapotranspiration of vegetation and raise the temperature.
This study only considered changes in precipitation and did not consider the coupling
between high temperature and lack of water, which will be the focus of future research.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/w14020157/s1, Figure S1: Under SPI_9 (a) CD; (b) HD; (c) ER and (d) MLR initiate drought,
the difference between the average monthly GPP in standard climate and the average GPP in arid
climate month (∆GPP = GPP_Sta − GPP_Mod) varies with the duration and strengths of the drought.
Figure S2: Under SPI_1 (a) CD; (b) HD; (c) ER and (d) MLR initiate drought, the ∆GPP varies with the
duration and strengths of the drought. Figure S3: Under SPI_3 (a) CD; (b) HD; (c) ER and (d) MLR
initiate drought, the ∆GPP varies with the duration and strengths of the drought. Figure S4: Under
SPI_6 (a) CD; (b) HD; (c) ER and (d) MLR initiate drought, the ∆GPP varies with the duration and
strengths of the drought. Figure S5: Under SPI_12 (a) CD; (b) HD; (c) ER and (d) MLR initiate
drought, the ∆GPP varies with the duration and strengths of the drought. Figure S6: Drought
duration under SPI_1 (a) 1 month; (b) 2 months; (c) 3 months; (d) 4 months; (e) 5 months; (f) 6 months;
(g) 7 months; (h) 8 months; (i) 9 months; (j) 10 months; (k) 11 months and (l) 12 months, ∆GPP
varies with drought intensity and initial drought seasonal changes. Figure S7: Drought duration
under SPI_3 (a) 1 month; (b) 2 months; (c) 3 months; (d) 4 months; (e) 5 months; (f) 6 months;
(g) 7 months; (h) 8 months; (i) 9 months; (j) 10 months; (k) 11 months and (l) 12 months, ∆GPP varies
with drought intensity and initial drought seasonal changes. Figure S8: Drought duration under
SPI_6 (a) 1 month; (b) 2 months; (c) 3 months; (d) 4 months; (e) 5 months; (f) 6 months; (g) 7 months;
(h) 8 months; (i) 9 months; (j) 10 months; (k) 11 months and (l) 12 months, ∆GPP varies with drought
intensity and initial drought seasonal changes. Figure S9: Drought duration under SPI_12 (a) 1 month;
(b) 2 months; (c) 3 months; (d) 4 months; (e) 5 months; (f) 6 months; (g) 7 months; (h) 8 months;
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(i) 9 months; (j) 10 months; (k) 11 months and (l) 12 months, ∆GPP varies with drought intensity and
initial drought seasonal changes. Figure S10: The drought intensity under SPI_1 is (a) light drought;
(b) moderate drought; (c) severe drought and (d) extreme drought, ∆GPP varies with the duration of
the drought and the initial drought season. Figure S11: The drought intensity under SPI_3 is (a) light
drought; (b) moderate drought; (c) severe drought and (d) extreme drought, ∆GPP varies with the
duration of the drought and the initial drought season. Figure S12: The drought intensity under SPI_6
is (a) light drought; (b) moderate drought; (c) severe drought and (d) extreme drought, ∆GPP varies
with the duration of the drought and the initial drought season. Figure S13: The drought intensity
under SPI_12 is (a) light drought; (b) moderate drought; (c) severe drought and (d) extreme drought,
∆GPP varies with the duration of the drought and the initial drought season.
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