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Abstract: Nano-zeolite is an innovative class of materials that received recognition for its potential
use in water and tertiary wastewater treatment. These applications include ion-exchange/sorption,
photo-degradation, and membrane separation. The aim of this work is to summarize and analyze the
current knowledge about the utilization of nano-zeolite in these applications, identify the gaps in this
field, and highlight the challenges that face the wide scale applications of these materials. Within this
context, an introduction to water quality, water and wastewater treatment, utilization of zeolite in
contaminant removal from water was addressed and linked to its structure and the advances in zeolite
preparation techniques were overviewed. To have insights into the trends of the scientific interest in
this field, an in-depth analysis of the variation in annual research distribution over the last decade
was performed for each application. This analysis covered the research that addressed the potential
use of both zeolites and nano-zeolites. For each application, the characterization, experimental testing
schemes, and theoretical analysis methodologies were overviewed. The results of the most advanced
research were collected, summarized, and analyzed to allow an easy visualization and comparison of
these research results. Finally, the gaps and challenges that face these applications are concluded.

Keywords: sorption/ion exchange; photo-catalytic degradation; membrane separation; characterization;
models

1. Introduction

The sustainability of human life is very much dependent on the availability of clean
water not only for personal uses, but also to support the agricultural and various industrial
activities. On one hand, the provision of clean water and sanitation (Goal 6) can be
considered as a driving force to achieve zero hunger (Goal 2), good health and well-being
(Goal 3), decent work and economical growth (Goal 8), and industry, innovation, and
infrastructure (Goal 9). On the other hand, placing controls on wastewater and preventing
this pollution source from entering the geosphere and biosphere is the driving force to
ensure sustainable cities and communities (Goal 11), and life below water (Goal 14) and
on earth (Goal 15), which requires partnerships for the goals (Goal 17). Subsequently,
aspects related to water quality and the wastewaters management were addressed in
the Sustainable Development Goals (SDG) 6 [1]. This recognition for the importance of
maintaining the water quality and having efficient and reliable wastewater management
system led to the consideration of the wastewaters effluents as biogas resource and an
alternative source for potable water [2]. Increased research efforts were directed to improve
the treatment performance of the biological, chemical, and physical processes that are
used in the primary, secondary, and tertiary treatment of these effluents to meet stringent
regulatory requirements on the quality of the treated wastewater. An overview on these
requirements is found elsewhere [2]. Tertiary treatment aims to remove persistence organic
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contaminants and heavy metals from the effluents generated from the secondary treatment
using advanced wastewater treatment technologies [2].

Zeolites, a class of materials, are well known for their wide applications in water and
tertiary wastewater treatment, where different types of zeolites are used in filtration, ion
exchange, adsorption, photo-catalytic degradation, and membrane separation technologies.
These wide applications were designed based on inherent zeolite properties, such as the
high ion exchange capacity, large specific surface area, high thermal stability, and lattice
stability. The three-dimensional porous crystalline structure of zeolites is responsible for
the development of these properties, where the primary building units (PBU) of silicon
or alumina tetrahedra (TO4 where T = Si or Al, Figure 1a) are linked to form secondary
building units (SBU) of different numbers of PBU, e.g., four, five, . . . ... etc., that encompass
channels and cavities. Figure 2b illustrates the configuration of SBU formed of five tetrahe-
dral rings. The structure accommodates exchangeable charge compensating cations (Mn

b ),
and molecules (Ab), e.g., water, salts and can be described using these formulas [3,4]:

x1M
n+

1
1 ; x2Mn+

2
2 ;
[
(y1T1; y1T1 . . .)O2(y1+y2+...)

]x−
z1 A1; z2 A2 . . . (1)

M a
n

.(Al2O3)a.(SiO2)b.wH2O (2)

Zeolites could be classified based on the ratio of silicon to alumina in PBU, i.e., b/a,
into high silica (b/a > 5), intermediate silica (2 < b/a ≤ 5), and low silica (2 ≥ b/a). Zeolites
of low and intermediate silica have good electrostatic fields in the cavities which support
their uses in the sorption of polar molecules. High silica zeolites are characterized by
their hydrophobicity, which support their uses in micro-pollutants removal from industrial
wastewater effluents, e.g., personal care products and pharmaceutical. The ability of the
PBU to form different configurations of the SBU leads to the formation of hundreds of
frameworks of natural and synthetic zeolite and zeotype. The structure of Mordenite
(MOR), as an example of five rings’ intermediate silica zeolite (b/a = 5), is illustrated
in Figure 1c, where the structure accommodates sodium atoms as charge compensating
cations and encompasses large cavities and channels.
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Natural zeolites are formed in different geological environments. They are sub-
classified as hydrothermal and sedimentary zeolites; the latter are found in lake, ash
ponds, and marine sediments and in alkaline deserts [4,5]. Natural zeolite minerals are
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usually categorized into families of specified crystalline structure that include different
minerals. For instance, the Chabazite (CHA) group, an intermediate silica zeolite composed
of six-cyclic rings, has a rhombohedral shape and includes several minerals e.g., Chabazite,
willhendersonite, Gmelinite, ... etc. [4,6]. In particular, CHA and Clinoptilolite (CLP) are
known for their wide scale application in water treatment, where they are used to remove
NH3, Fe, and Mn from surface water, As and Cu from contaminated water, and F from
groundwater. These applications are limited for fixed bed operation. In addition, for appli-
cations that need the enforcement of quality requirements on the purity and uniformity of
the ion-exchanger/sorbent, the importance of synthetic zeolite comes to the surface, where
the lattice structure, pore sizes, rings, and compensating ions are optimized by control-
ling the synthetic conditions, e.g., Si/Al content, use of templates, temperature, pressure,
reagent solutions composition and pH, activation process, and ageing conditions [4,7].

Synthetic zeolites are usually prepared via the hydro/solvo-thermal method, where
the synthesis system composes of sources for the structural elements, i.e., Al, Si, the
mineralizer, e.g., source for OH− or F−, and template [3]. Hydrothermal methods comprise
of aluminosilicate gel formation followed by aging and crystallization. The gel is formed by
adding and mixing the structural element solutions in the presence of the mineralizer and
template (if used) at designed temperature and time. During the synthesis process, the gel is
kept at a fixed temperature in the range of 80–300 ◦C for specified aging and crystallization
time at fixed pressure [3,7–9]. Examples of typical conditions for preparing different types
of zeolites using hydrothermal (HT) methods are listed in Table 1 [7,8,10–15]. This method
is widely used to prepare both micro- and nano-scale zeolites in laboratories and in the
industry [7,9]. Advanced trends in zeolites synthesis aim to reduce the environmental
impacts of the preparation process and engineer the properties of the produced materials;
these trends include [10,12,15–27]:

• Producing green zeolites by using agricultural and industrial wastes as sources for
the structural elements, e.g., fly and biomass ashes containing silicon, Aluminum ash
and slag;

• Improving the performance of the solvo-thermal preparation method by using ionic
liquid, where these liquids are used to improve the solvation power, reduce the
vapor-pressure and increase the thermal stability of the produced zeolite;

• Producing green zeolites by reducing the consumption of chemicals and water; this
trend is dependent on the use of alternative synthesis routes, e.g., vapor phase transi-
tion (Dry Gel Conversion), and mechano-chemistry processes;

• Preparation of hierarchical zeolite to enhance the accessibility of the pores; this trend
relies on either the modification of the preparation scheme (bottom up) or post prepa-
ration modification (top down) techniques, Figure 2a,b illustrates these techniques;

• Preparation of zeolite nano-particles to improve the selective separation, to enhance
the sorption and de-sorption properties, and subsequently to reduce the size of the
wastewater processing units. The key factors that affect the properties of the prepared
nano-zeolites are illustrated in Figure 2c;

• Preparation of nano-sheets (2D) to improve the performance of selective separation
process by reducing the diffusion path and improving the catalytic activity.

These advanced trends in the preparation and modification of zeolites empowered
the research and application of zeolites, especially in the field of water and wastewater
treatment. In particular, the superior properties of nano-zeolites encouraged several re-
searchers to explore the potential applications of nano-zeolites in this field. Different classes
of nano-zeolites, i.e., nano-zeolite, and nano-zeolite composite, were prepared and tested
for this purpose. The aim of this work is to summarize the current knowledge about the
application of nano-zeolites in water and wastewater treatment, identify the gaps in this
field, and highlight the challenges that face the wide-scale application of these materi-
als. Within this context, the research and development in the application of nano-zeolite
in sorption/ion exchange, photo-catalytic degradation, and membrane separation will
be presented. To have insights into the scientific research interests in these applications,
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analyses of the indexed research in Scopus database were conducted. This analysis was
conducted for all the research indexed in that database without restricting the indexing
time or language. The used keywords were selected to cover a specific application for
zeolite and nano-zeolite, where the operators “AND” and “OR” were used to refine the
search results and the annual research distribution over the last decade was visualized.
For each application, the characterization, experimental testing, and theoretical analysis
methodologies will be overviewed. The results of the most advanced research will be
collected, summarized, and analyzed to allow an easy visualization and comparison of
these research results. Finally, the gaps and challenges that face these applications will
be identified.

Table 1. Examples zeolites hydrothermal preparation conditions (Reprinted with permission
from [7]).

Exchanger Preparation Conditions Ref

Zeolite Na-A Si:Al < 3, at 100 ◦C for 2–3 days [8]

Zeolite Na-X Si:Al ratios of 2.8:1, at 50 ◦C (6 h) * and
100 ◦C (3 h) for 2–3 days [8]

Zeolite Na A-X blend
Si:Al ratios of 2:1, at 80 ◦C (2 h for

gelification), 25 ◦C (24 h for ageing), and
90 ◦C (8 h for crystallization).

[10–12]

Clinoptilolite
Different silica, alumina and alkali

moleratios, temperatures (250–300 ◦C) and
pressure (42.5–81.6 atm) for 2–5 days.

[13]

Analcite Si:Al ratios of 2:1, at 275 ◦C for 2–3 days [14]

Mordenite Si:Al = 6:1 at 275 ◦C for 2–3 days [14]

Zeolite y, nano scale SiO2:Al2O3 = 4.35:1, at 100 ◦C, 2 days [15]
Note: * induction period.

2. Advances in the Investigations of Nano-Zeolites as Ion-Exchanger/Sorbent

Zeolites are well known for their potential use in the removal of heavy metals, e.g.,
Zn, Hg, ... [17,28–30], organic contaminants, e.g., cationic surfactants, phenol [30,31], reduc-
ing excess ammonia [32,33], salinity, and acidity [34], and removal of radionuclides from
aqueous radioactive waste effluents [10–12,15,35,36]. These applications are supported
by their high cation exchange capacity and specific surface area. In addition, zeolites are
characterized by high lattice stability, which entails the exchange of the charge compen-
sating species without affecting the structure of zeolite. Moreover, the sorption processes
that are designed to benefit from the molecular sieving, electrostatic fields, and polar-
izability are always reversible, which allow the reusability of this class of materials [5].
Nano-zeolites, inorganic- nano-zeolite composites, polymer-nano zeolite composites, and
zeolites-nano-particle composites have been prepared and tested for contaminant removal
either using sorption or ion/exchange batch techniques. The last category of materials,
i.e., zeolites- nano-particle composite, relies on the modification of the micro-zeolite matrix
using nano-particles; these applications are out of the scope of this work and could be
found elsewhere [31]. An analysis of the research indexed in the Scopus database was
conducted on the use of zeolites and nano-zeolite for “Removal” AND “Water” AND
“Treatment” on 10 October 2021; the results are illustrated in Figure 3a–d. It is clear that the
assessments of the potential use of zeolite and nano-zeolite in removal studies for water
treatment represent nearly 47% of the research conducted in the field of removal studies
(Figure 3a,c). The total amount of published research on the use of zeolite and removal is
considerably high compared to that of nano-zaolite and removal. The annual numbers of
indexed research have an increasing pattern from 2013 to 2020, with a noted reduction in
2021 (Figure 3b,d). Despite the ratio between the total indexed research for testing zeolite
for removal and water treatment to that of nano-zeolite being nearly 1:0.045, this ratio
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increased to 1:0.054–1: 0.076 during the period (2013–2021), where more than 82% of the
indexed nano-zeolites research has been reported in that period. A recent review article
reported that the indexed research about zeolite-based composites for adsorption of heavy
metal in wastewater treatment in the Scopus database equals 180 research papers in the
period (2011–2020) [31]. In another review article, the total indexed work in the Web of Sci-
ence database during the period (1963–2018) on the use of zeolite with sodium/water/ion
exchange/adsorption were reported to equal 311 references [34].
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2.1. Testing Scheme to Optimize the Ion Exchange/Sorbent Applications

In general, the testing schemes for evaluating the performance of the ion-exchanger/
sorbent materials include material characterization, operational conditions optimization,
and design the removal process by adopting static batch and/or column operation. The aim
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of the characterization step is to identify the chemical and physical properties of benefits to
the ion-exchange/sorption processes. These include:

• Particle size, morphology, and surface properties determination: usually, these prop-
erties are determined using microscopic techniques. For nano-materials, Scanning
Electron Microscope (SEM), Transmission Elector Microscope (TEM), and Scanning
Probe Microscope (SPM) are widely used;

• Chemical compositions identification and detection of impurities: Spectroscopic analy-
sis are widely used, e.g., Ultra-Violet Spectroscopy (UV), Fourier Transform Infra-Red
Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS), Energy-Dispersive
X-ray spectroscopy (EDX);

• Material crystallinity: Wide Angle X-ray Diffraction (WAXD), Small Angle X-ray scat-
tering (SAXS), and Ultra Small Angle Scattering(UAXS or USAXS) are
widely used;

• Pore characteristics, the pore volume, porosity, and specific surface area could be mea-
sured via nitrogen absorption and application of Brunauer–Emmett–Teller
(BET) model;

• The tendency of the material to agglomerate is usually identified by measuring zeta
potential and the hydrodynamic radius;

• The ability of the material to act as cationic or anionic exchanger is usually determined
by identifying the zero point charge;

• Cation Exchange Capacity (CEC) procedures are widely used to assess the capacity of
the cationic exchanger.

The features of the above-mentioned characterization techniques are listed else-
where [37]. In addition, chemical and thermal stabilities of the materials are important
to be identified for materials used under challenging operational conditions, i.e., treating
alkali or acidic media, and at high ambient temperature.

The optimization of the operating conditions could be conducted by relying on One
Factor at A Time (OFAT) technique or the Multi Variant Technique (MVT) to identify the
optimum ion-exchanger/sorbent mass (m, g), contaminated solution volume (V, L) and
pH, initial contaminant concentration (Co, mmol/L), mixing velocity (v, rpm), contact time
(teq, min), and operational temperature (T, K). Table 2 summarizes the features of each
technique [38,39].

Table 2. Comparison between the optimization techniques (Reprinted with permission from [39]).

Technique Feature Advantage Limitation

OFAT

Evaluate isolated effects of the studied
factors on a single performance measure

Empirical, mechanistic, and black box
models are used to analyze the data

Allow the determination of
mechanisms, interpolate and

extrapolate the process
performance

Does not allow the determination of
the effect of interaction between the
factors that affect the performance

MVT
Evaluate the effects of the studied factors

variability and their interactions on
single and multi performance measures

Identify the main influencing
factors,

Provide insights into the
system reliability

Does not allow the determination of
the mechanism

2.2. Batch Investigations

Batch investigations of ion-exchanger/sorbents materials are used to support the
design of the removal process. In this regard, kinetic and equilibrium studies are conducted
to allow the calculations of the rate constants, material capacity, and the thermodynamic
parameters. In these investigations, certain mass of the ion-exchanger/sorbent (m, g) is
mixed with certain volume of the contaminated solution (V, L) of specified contaminant
concentration (Co, mmol/L) and pH at specified mixing speed for a certain period of time
at determined temperature (T, K). Then, the solid/liquid suspension is separated and
the contaminant concentration (Ct, mmol/L) in the solution is measured using suitable
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analytical techniques. The sorbed contaminant amount (qt, mmol/g) is determined using
the following equation:

qt =
(Co − Ct)V

m
(3)

Kinetic batch investigations are used to determine the time to reach equilibrium
and predict the rate constants and maximum sorbed contaminant amount. Both rate
and mechanistic models are used to analyze the kinetic behavior of the removal process
obtained using an OFAT technique, where Pseudo-First Order (PFO), Pseudo-Second
Order (PSO), Double Kinetic Model (DKM), and Elovich (El) rate models are widely used to
determine the rate constants. Intra-particle model (IPM) and homogenous particle diffusion
model (HPM) are used to determine the rate determining mechanism and calculate its
parameters. The equilibrium behavior is investigated by varying the initial contaminant
concentration within a specified range following the OFAT technique, and then the data
are analyzed using a suitable model, i.e., Freundlich (F), Langmuir (L), and D–R models.
Table 3 lists the features of these widely used models. Running the experiments at different
temperatures is an important step to optimize the operating temperature and to determine
the thermodynamic parameters of the reaction (Table 3). These parameters could be
determined either from the kinetic data at equilibrium values, where each curve represents
a single point in the equilibrium, or determined from the equilibrium behavior data.

Table 3. Models used in analyzing the results of batch investigations for ion-exchanger/sorbents.

Model Equation Model Features

K
IN

ET
IC

PF
O

Linear : log(qe − qt) = log(qe)− k1
2.303 t

Rate model used to determine the rate constant(k1, min−1) and sorbed contaminant amount
per unit mass of zeolite at equilibrium (qe , mmol.g−1),

Entails that the reaction rate is limited by only one process or mechanism on a single class of
sorbing sites and that all sites are of the time dependent type,

The reaction might be controlled by diffusion through the boundary layer.Non− linear : qt = qe
(
1− ek1t)

PS
O

Linear : t
qt

= 1
k2 q2

e
+ 1

qe
t Rate model used to determine the rate constant(k2, g.mmol−1.min−1) and sorbed

contaminant amount per unit mass of Zeolite at equilibrium (qe, mmol.g−1),
Entails that the rate of sorption is directly proportional to the number of active surface sites
and that the rate limiting step may be a chemical sorption involving valence forces through

sharing or exchange of electrons between the adsorbent and the adsorbate.Non− linear : qt =
k2q2

e t
1+k2qe t

D
K

M

qt = qe −
(

D1
M ekd1t

)
−
(

D2
M ekd2t

) A rate model that assumes that the reaction proceed via two subsequent mechanisms. It
allows the calculation of the sorbed amount of contaminant in at equilibrium and

identification of the rate constant for each mechanism

El
.

Linear : qt = β ln(βα) + β ln(t)
Used to determine the initial sorption rate (α, mEq.g−1.min−1) and the desorption constant

(β, mmol.g−1).
Entails that the reaction increases exponentially with time.

IP
M qt = Kpi

√
t + Cpi

Used to quantify the boundary layer effect (Cpi , mmol.g−1), and determine the rate constant
of the sorption stage (Kpi, mmol.g−1.min−0.5),

Entails that the reaction involves diffusion mechanism and allow the assessment of the
contribution of the boundary layer in the reaction

H
PM

Film : − ln(1− X) = 3DC
rδq t Used to determine the rate controlling step and calculate the diffusion coefficient (D, m2/s),

Film diffusion model entails that the rate determining step is the contaminants diffusion
through the liquid film around the Zeolite particles,

Particle diffusion model entails that the rate determining step is the contaminants diffusion
into the Zeolite particles.

Particle : − ln
(
1− X2) = 3Drπ2

r2 t
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Table 3. Cont.

Model Equation Model Features

IS
O

T
H

ER
M

F

Linear : log qe = log K f + (1/n) log Ce
Used to determine Freundlich constant indicative of the relative adsorption capacity (Kf,
mmol.g−1), Freundlich intensity constant indicative of the relative sorption capacity (n),

Empirical model employed to describe the interaction between contaminants and
heterogeneous sorbent,

It suggests that sorption energy exponentially decreases on
filling of the sorption centers of the sorbent.

Non− linear qe = K f C
1
n
e

L

Linear : Ce
qe

= 1
Qo b + 1

Qo Ce Used to determine the mono-layer capacity (Qo, mmol.g−1) and Langmuir constant (b)
Assumes that the sorption takes place at specific homogenous sites, energetically equivalent,

within the sorbent,
The sorbent has a finite capacity for the contaminants.Non− linear : qe =

Q
◦

bCe
1+bCe

DR

Linear : ln(qe) = ln(qm)− βε2

ε = RT ln
(

1 + 1
Ce

)
, E = 1√

−2β

Used to determine the maximum amount of ion that can be sorbed onto unit weight of
zeolite (qm, mmol.g−1) constant related to sorption energy (mol2.K.J−2), Polanyi sorption
potential, ε is the work required to remove a molecule to infinity from its location in the

sorption space,
Employed to describe the interaction between contaminants and heterogeneous sorbent,

Used to differentiate between physical and chemical sorption.
Non− linear : qe = qmexp

(
ε2

−2E2

)

Thermo ∆G◦ = −RT ln(kc) &
∆G◦ = ∆H◦ − T∆S◦

Used to determining the thermodynamic parameters, i.e., Gibbs free energy change
(∆G, KJ.mol−1) and the change in entropy (∆S, kJ.mol−1.K−1) and in enthalpy ∆H, kJ.mol−1)

from the real thermodynamic equilibrium constant (Kc).

The reusability and regeneration ability of the ion-exchanger/sorbent is an important
topic to be identified to ensure the economic feasibility of the materials and to reduce the
environmental footprint by reducing the material requirement for the treatment process.
The reusability is usually tested by repeated loading of the ion-exchanger/sorbent with the
contaminant; this is only useful if the material did not reach each its capacity. The regenera-
bility is the use of eluent to de-sorb the contaminant from the ion-exchanger/sorbent, and
re-load the material with the contaminant in successive cycles. The latter set of investiga-
tions includes optimization of the eluent (e.g., HCl, HNO3, NaOH), elution time, eluent
volume to ion-exchanger/sorbent mass ratio, and regeneration cycles [7,38]. It should be
noted that the repeated use of the ion-exchanger/sorbent in reusability and regeneration
ability is associated with a decrease in the removal efficiency, as the active sites become
occupied or not fully recovered, respectively.

2.3. Application in Removing Radioactive Contaminants

Zeolites have been used for several decades as an ion-exchanger on the industrial scale
in the nuclear industry. In particular, natural CLP is being used in a Site Ion-EXchange ef-
fluent Plant SIEXP, City, UK [40]. Several studies were dedicated to assess the potential use
of natural and synthetic zeolites as potential materials for radio-contaminants [40–67] and
metal ion removals [67–84]. The tested zeolites included natural zeolites, modified natural
zeolites, nano-zeolites, and nano-zeolite-composites in the form of magnetic or polymeric
materials. In this sub-section, the focus is to present the research related to radioactive con-
taminants removal, where, in the next sub-section, the metal ions (Section 2.4.1) and organic
contaminant (Section 2.4.2) removal will be discussed. Scopus database search retrieved 17
research papers (eight of them target the immobilization step) of the search (Nano AND
zeolite AND radioactive AND Cs Or Sr OR Th Or U Or Eu). Table 4 summarizes the tested
nano-zeolite type, size, if it is a composite and the preparation method. Moreover, the
results of the kinetic, equilibrium, thermodynamics, and regeneration ability investigations
of this research are listed. Based on the presented data, it could be concluded that:

• Different types of synthetic nano-zeolite were investigated that include zeolite A,
zeolite Y, zeolite X, CHA, and MOR. The listed research employed the hydrother-
mal (HT) preparation method and mostly utilized analytical grade chemicals during
the preparation.
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• Both magnetic and polymeric Nano-zeolites composites were tested for the removal
of the radioactive contaminants. In particular, natural zeolite was ground to nano-
scale then immobilized in polymeric matrix, i.e.,Poly vinyl alcohol(PVA), Alginate
(ALG)/poly-ethyleneoxide (PEO), and tested.

• All of the listed research was conducted by using single contaminant solution, where in-
active contaminants were used to reduce the radiological exposure of the researchers.

• The investigated sorbent mass to waste volume fall in the range (1 ≤ m/V ≤ 20),
where regeneration studies are limited to one study.

The examination of the listed data indicates that radioactive contaminants removal re-
actions are mostly best described using the PSO rate model, which indicates the chemisorp-
tion nature of the reaction that involves electron sharing between the contaminants and
the zeolite [11,15,28,31,35,38,41–87]. For all the reported reactions, the kinetic data can be
divided into two portions; the first is fast with a steep slope that is linked to the sorption
onto the boundary layer and the second is slower approaching an asymptote which is
closely related to particle diffusion [28,40,41,43,44,61–91]. The Langmuir isotherm model
is the best model to describe the equilibrium behavior where monolayer capacity is used
as a comparative parameter to measure the affinity of the sorbent to a specific contami-
nant. Except for Lee et al. [64], the removal reactions are spontaneous and an endothermic
process with increased sorbent disorder (−ve ∆G, +ve ∆H, and +ve ∆S, respectively). The
values of ∆H in the range (2 < ∆H < 40 kJ/mol) that refer to hydrogen bonding between
the radio-contaminant and the sorbent. It should be noted that the thermodynamic param-
eters calculated by Lee et al. were determined at a single initial concentration experiment
(100 ppm) at three temperatures, which is a represent for the reaction at this particular con-
tamination level not the system at varying initial concentrations [64]. Only three research
studies adopted both OFAT and MVT to study and optimize the removal process [15,65,66].
The above-mentioned discussions and presented research indicate clearly that limited
research efforts have been made to study the application of nano-zeolite in removing
anionic uranium species and iodide [85–87], removal from binary or more complicated
solutions [38,64,65,88,92], and the impregnation of nano-zeolite [93,94]. Usually, the re-
moval mechanism is based on the radio-contaminant interaction with active OH sites in
the nano-zeolite, where the radio-contaminant is exchanged with H+ or Na+. For Nano-
zeolite composites, the removal process will occur on the active sites in zeolite and the
polymer or the magnetic components. An illustrative example for the mechanism is pre-
sented in Figure 4, for Th(IV) and U(VI) ions sorbed onto Poly vinyl alcohol(PVA)/Sodium
Alginate (SA)/poly-ethyleneoxide (PEO)/HZSM5 nano fiber adsorbent, where the radio-
contaminants interact with the negatively charged nano fiber adsorbent or via electron
exchange from adsorbent surface to Th(IV) and U(VI) ions. It was reported that OH and
COOH groups in that sorbent could be dissociated into O and COO groups in water
systems and contribute to the sorption process [65].
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Table 4. Batch investigations of nano-zeolites applications in radioactive contaminant removal.

Cont.

Nano-Zeolite

m/Vg/L

Kinetic Investigations Capacity Thermodynamic Parameters

Regeneration Ref.
Type Size, nm Composite Preparation Co,

mmol/L pH teq, min Temp, K Model Qo @RT
mmol/g

∆H
kJ.mol−1

∆S
J.mol−1.K

(-) ∆G
@RT

kJ.mol−1

Cs1

Zeolite Y 20–50 -

HT,
Chemicals

2 5.82 6 60 298–313 PSO 6.72 - - - [15] MVT

Zeolite Y <100 Mangetite 2 - - - - - 1.17 2.75 35 7.93 - [61]

Zeolite A >50 Magnetic 10 10 8 120 298 PSO 1.724 3.08 60 15.0 [62]

CHA <510 - 1 0.752 - 1 RT PSO 0.3 -20.02 −14 15.8 [64]

Zeolite A 82 ± 9 - HT, fly ash 10 0.752 7 1440 RT - - - - - - * [67]

Zeolite X 86 ± 12 - HT, fly ash 10 0.752 7 1440 RT - - - - - - * [67]

Eu3

MOR1
Sphere, D = 50

-

HT,
Chemicals 4 3 1 1440 303 ± 1 PSO

2.72 8.81 74.75 13.8 -

[63]
MOR2 - 2.87 7.05 69.75 14.1 -

MOR3 Rod, L = 400,
D = 25:50

- 2.98 9.64 79.02 14.3 -

MOR4 - 3.50 10.15 82.84 14.9 -

Sr2

Zeolite Y 20–50 -
HT,

Chemicals

2 19.72 6 60 298–313 PSO 15.42 - - - - [15] MVT

Zeolite Y <100 Mangetite 2 - - - - - 1.38 8.43 41 7.16 [61]

Zeolite A >50 Magnetic 10 20 8 120 298 PSO 1.016 12.16 100 18.1 [62]

CHA-3 100–300 - HT,
Chemicals 10 1.14 - 60 298 PSO 0.131 - - - 5 [54]

Zeolite A 82 ± 9 - HT, fly ash 10 1.14 7 1440 RT - - - - - - * [67]

Zeolite X 86 ± 12 - HT, fly ash 10 11.4 7 1440 RT - - - - - - * [67]

Natural 109.9 PVA/ALG - 20 0.285 6 120 298 PSO - - - - - [76]

Th4

MOR1
Sphere, D = 50

-

HT,
Chemicals 4 4 1 1440 303 ± 1 PSO

1.18 11.74 75.86 11.2 -

[63]
MOR2 - 1.23 11.2 73.65 11.3 -

MOR3 Rod, L = 400 D
= 25:50

- 1.11 11.78 78.72 11.0 -

MOR4 - 1.55 9.74 71.20 11.8 -

HZSM-5 Fiber D = 98 PVA/ALG/PEO HT,
Chemicals 1 - 5.5 240 298 DKM 1.138 35.67 145.3 7.704 - [65]

MVT

ZSM5 - PVA/ALG/PEO HT,
Chemicals 1 0.517 5 150 298 DKM 0.569 25.962 97.2 3.039 - [66] MVT

U4 HZSM-5 Fiber D = 98 PVA/ALG/PEO HT,
Chemicals 1 - 5.5 240 298 DKM 0.577 21.34 81.9 3.11 - [65]

MVT

Note: * Crystallite size.
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Figure 4. The sorption mechanism of Th(IV) and U(VI) ions on to the PVA/SA/PEO/HZSM5
nanofiber adsorbent (Reprinted with permission from [65]).

2.4. Application in Industrial Wastewater Treatment

Zeolites have been tested for their applications as ion-exchangers in industrial wastew-
ater treatment, where most of the applications focused on using zeolites as a cationic
exchanger. Fewer investigations were devoted to examining the potential use of zeolite as
an anionic exchanger, where the zeolites surface should have a permanent positive charge
to ensure its performance. This is achieved via operating the removal process under the
zero point charge or modifying the surface of zeolite [95–117]. In this case, the design of
the process should consider the nature of the zeolites as amphoteric materials that tend to
buffer the acidic and alkaline solution pH to 3.5–8 to equilibrate to the zero point charge and
have a noted solubility in acidic media [38,96,118,119]. In this subsection, the application
of nano-zeolites in metal removal and organic contaminant sorption will be summarized.

2.4.1. Metal Removal Studies

The search in the Scopus database using the keywords (Nano AND zeolite AND
metal AND sorption) returned 53 research works. These results cover the removal of
radio-contaminants and carbon dioxide, modification of zolites for its application as cat-
alyst, and ion-exchange/sorption applications, including application of zeolites-nano-
composites. Table 5 lists the investigations that addressed the use of nano-zeolite in metal
removal [68–71,73–76,78–84]. The following remarks could be drawn from the table:

• All the listed studies investigated only magnetic and polymeric composites, not the
nano-zeolite particles. The magnetic composites included the use of magnetite and
cobalt ferrite, where polymeric composites include various single and binary polymer,
e.g., PVA, chtiosan, . . .

• Different types of natural and synthetic nano-zeolites were investigated. Natural
zeolites were not identified or presented as CLP, where the synthetic nano-zeolites
include zeolite Na-X, zeolite Y, Faujasite (FAU), ZSM-5, HZSM5, and MOR. The listed
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research employed the hydrothermal (HT) preparation method and one research
work investigated the use of silica and alumina wastes for the preparation of the
nano-zeolite.

• All of the listed research was conducted by using a single contaminant solution, the
sorbent mass to volume ratio fall in the range (0.5 ≤ m/V ≤ 20) and regeneration
studies were investigated in a comparatively large amount of research.

By examining the presented research results in Table 5, it is clear that the reactions
follow PSO and Langmuir models. The removal reactions are spontaneous with increased
sorbent disorder (−ve ∆G, and +ve ∆S, respectively). All the reactions are endothermic
except the metal ion reactions with the FAU/Geopolymer matrix and MOR/PEG-EG. They
are exothermic with a respective high change in enthalpy that falls in the range of a chemical
reaction (∆H > 60 kJ/mol). Only two research works utilized the OFAT and MVT to study
and optimize the removal process [82,84]. In research that compared the nano-zeolite
with their polymeric composites, the analysis of the mechanism of metal ion removal
in nano-zeolite- polymeric composites refers to the role of the polymeric composites in
enhancing the removal by providing more active sites for the reactions. In case of Mn
removal by CLP/Glutamic acid, the complexation with the organic active groups and
zeolite sites were reported to be responsible for the sorption [82]. As the availability of the
negative charges on the surface of the ion-exchanger/sorbent is essential for the successful
application of the material in the cation removal, it should be noted that the presence of the
magnetite/polymer affects the behavior of the sorbent at different pH [38,76,90]. At low
pH, the surface of nano-zeolite/polymer has a positive charge that hinders cation removal
from the solution. As the pH increases, the COOH groups deprotonate, allowing for the
presence of a negative charge on the surface of the sorbent. A schematic representation
of the pH effect on the availability of the negative charge on nano-zeolite/PVA/ALG is
illustrated in Figure 5. As the pH increases, the hydroxyl spices of the metals will become
dominant and will precipitate [76,90].
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Table 5. Investigations of nano-zeolite in cation removal form single contaminant solutions.

Cont.

Nano-Zeolite

m/Vg/L

Kinetic Investigations Capacity Thermodynamic Parameters

Regeneration Ref.
Type Size, nm Composite Preparation Co , mmol/L pH teq , min Temp, K Model Qo @RT

mmol/g
∆H

Kj.mol−1
∆S

J.mol−1K
(-) ∆G @RT
Kj.Mol−1

Al3 Natural 109.9 PVA/ALG - 20 0.926 6 120 298 PSO 0.438 - - - 10 [76]

As3 - 50 Magnetite - 16 1.33 - 60 - - 0.059 - - - - [73]

Cd2

Zeolite NaX Fiber
>170 PVA HT, chemicals 0.5 0.446 5 298–318 PSO 7.279 11.099 82 13.24 5 [75]

- 109.9 PVA/ALG Natural 20 0.222 6 120 298 PSO 0.411 - - - 10 [76]

CLP - DTPA Natural 0.2 8.763 5.9 205 - PSO 1.235 −10.3 102.89 −20.4 - [84]
MVT

Co2

FAU <150 Geopolymer HT, Si &Al
wastes 2 4.237 8 20 298 PSO 2.27 −106.88 323 203.1 - [70]

ZSM-5 - PVA/ALG HT, chemicals 1 1.695 - 240 298 DKM 1.255 16.47 55 0.16 - [69]

- 12 GLU Natural 10 10 - 360 298 PSO 0.179 - - - - ** [79]

Cu2

CLP 59 APS Natural 5 9.448 - 300 298 PSO 1.36 - - - - ** [80]

FAU <150 Geopolymer HT, Si &Al
wastes 2 3.937 8 20 298 PSO 1.987 −150.76 464 239 - [70]

- 109.9 PVA/ALG Natural 20 0.394 6 120 298 PSO 0.764 - - - 10 [76]

CLP <40 CYS Natural 15 7.874 - 1800 298 PSO 0.521 - - - - ** [81]

Fe3 - 109.9 PVA/ALG Natural 20 0.448 6 120 298 PSO 0.845 - - - 10 [76]

Li3 - 109.9 PVA/ALG Natural 20 3.62 6 120 298 PSO 5.527 - - - 10 [76]

Mn2
Natural 109.9 PVA/ALG Natural 20 0.455 6 120 298 PSO 0.781 - - - 10 [76]

CLP - GLU Natural 5 10.6 3.5 120 298 PSO 0.101 - - - 4 ** [82] MVT

Ni2

Zeolite NaX Fiber
>170 PVA HT, chemicals 0.5 0.341 5 298–318 PSO 5.738 6.018 60 11.9 - [75]

- 109.9 PVA/ALG Natural 20 0.426 6 120 298 PSO 0.812 - - - 10 [76]

CLP - DMG Natural 10 1.707 5.5 1400 298 PSO 0.96@293 - - - - ** [83]

Pb2

FAU 150–250 Cobalt ferrite HT, Chemicals - 1.038 7 60 298 PSO 2.91 - - - - [68]

Zeolite Y
150–300 -

HT, Chemicals 0.4 0.483 6 60 299 PSO
2.19 - - - - [71]

30–50 chitosan 0.265 - - - - [71]

- 109.9 PVA/ALG Natural 20 0.121 6 120 298 PSO 0.229 - - - 10 [76]

HZSM-5 Fiber PVP/chitosan HT, chemicals 1 0.48 5.5 240 298 DKM 1.46 78.35 146.68 8.22 - [74]

MOR 35.50, PEG-EG HT, chemicals 3 0.241 8 180 298 PSO 0.084 −68.82 218 133.7 5 [78]

Zn2
FAU <150 Geopolymer HT, Si &Al

wastes 2 3.823 8 20 298 PSO 2.017 −83.1 250 154.0 - [70]

- 109.9 PVA/ALG Natural 20 0.382 6 120 298 PSO 0.739 - - - 10 [76]

Note: ** thermodynamics are determined from kinetics. EG = ethylene glycol. PEG = polyethylene glycol 200. GLU = glutamic acid. DMG = dimethylglyoxime. DTPA = diethylenetri-
aminepentaacetic acid.
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2.4.2. Organic Contaminants’ Sorption Studies

The bibliometric data in Scopus include 77 research works on the (Nano AND ze-
olite AND organic AND removal); these research works include the use of modified
nano-zeolite, nano-zeolite, and zeolite-nano-composite in membrane separation, catalysis,
and dual processes. Most of the relevant papers addressed the use of nano-zeolite in
dye, BisPhenolS (BPS), and Polycyclic Aromatic Hydrocarbons (PAH) removal using the
ion-exchange/sorption technique only, as indicated in Table 6 [72,77,120–128]. Table 6
displays the data related to dye removal; the following remarks could be summarized from
these researchers:

• Natural and synthesized nano-zeolites of different types, i.e., Nano-zeolites X, MOR,
ZSM5, and Sodalite were investigated, where both green and conventional preparation
routes were adopted,

• Nano-zeolite particles were mainly investigated for the removal of different types of
dyes, i.e., MG, CV, MB, BR (18,41,46), and only one research studied the polymeric
composite of natural nano-zeolite. No study addressed the inorganic nano-zeolite
composite,

• The sorbent dosage falls in the range (0.3–10), which is relatively narrower than those
studied for the radioactive contaminants and for metal removal studies.

• The studies were conducted using single contaminant solution and the regeneratbility
studies are very limited.

By examining the kinetic data in Table 6, the removal reactions are chemisorptions,
i.e., follow PSO, where Langmuir and Freundlich were found to be the best models to
describe the equilibrium behavior. The available data indicate that the reactions are mostly
spontaneous and endothermic. The values of ∆H in the range (2 < ∆H < 40 kJ/mol) that
refer to hydrogen bonding between the organic contaminants and the sorbent. In addition to
the listed data, ZSM-5 nano-zeolite (250 nm) was prepared via hydrothermal methods using
chemicals, and was modified using hexadecyltrimethylammonium bromide (HDTMA-B);
the reaction follows PSO and reaches equilibrium at 120, min (Co = 5 mg/L, pH = 4, RT),
and the reaction follows Freundlich with Langmuir monolayer capacity = 41 mg/g [123].
This work revealed that, for single layer HDTMA-B formation on the external surface
of the nano-zeolites, BPS sorption is very low due to the unavailability of sufficient the
positive sites onto the sorbent. Finally, the surface of ground natural zeolite (170 nm) was
modified using humic acids, and it was found that this Hybrid sorbent allowed anthracene
and pyrene removal at percentages higher than 90%; fluoranthene, of angular molecular
structure, was adsorbed at 85% [128].
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Table 6. Applications of Nano-zeolites in dye sorption.

Cont.

Nano-Zeolite
Preparation
Technique m/Vg/L

Kinetic Investigations Capacity Thermodynamic Parameters

Regeneration Ref.
Type Size, nm Composite Co , mg/L pH teq , min Temp, K Model Qo @RT mg/g ∆H

kJ.mol−1
∆S

J.mol−1K
(-)∆G @RT
kJ.mol−1

AB-74 Zeolite 40–500 PA-6 Natural 20 - 120 - PSO 166.66 - - - - [72]
MVT

MG

ZF 46.56 -

HT, Al waste
and Si

chemical

2 700 - 120 RT PSO 226.757 −5.819 19 11.48 - [77]

ZM 26.28 - 2 700 - 180 RT PSO 239.234 −5.715 14 9.887 - [77]

ZS 75.83 - 2 50 - 40 RT PSO 29.744 −22.62 65 41.99 - [77]

ZT 38.73 - 2 50 - 50 RT PSO 25.221 −22.473 69 43.03 - [77]

CV

Sodalite 40–90 - Low- temp,
chemicals 0.3 20 - 40 RT PSO 227.2 28.006 108.22 4.225 * [120]

Zeolite X 19–39 - HT, coal fly
ash 0.75 - - - - PSO 234.57 - - - 10 [126]

MVT

MB
Zeolite-X 170 -

HT, Chemicals

2.5 100 - 5 RT PSO 0.1 - - - - [121]

MOR 55.34 - 10 - - 120 RT PFO 1.72 −18.98 4.6 17.6 - [122]

BR-41

ZSM5 40–100 -

1.2 17, M

7

60 RT PSO 13.76, µM/g - - - -
[125]
MVTBR-18 1.2 33, M 60 RT PSO 28.49, µM/g - - - -

BR-46 1.2 20, M 60 RT PSO 27.6, µM/g - - - -

Note: * Crystallite size. AB = Acid Blue. MG = Malachite Green. CV = Crystal Violet. MB = Methylene Blue. BR = Basic Red. ZF = fumed silica- based zeolite. ZM = sodium metasilicate-
based Zeolite. ZS = silica gel- based zeolite. ZT = tetraethyl orthosilicate-based zeolite.
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3. Advances in Nano-Zeolite-Composites Applications in Photo-Catalytic
Degradations

Advanced oxidation processes (AOP) are widely applied as tertiary wastewater treat-
ment technologies that aim to convert persistence contaminants into simple biodegradable
and harmless products [2,129]. These technologies rely on the use of single or combined
activation method to generate reactive species that can degrade these contaminants. Dif-
ferent activation methods are available including photochemical, chemical, and ionizing
radiation [2,130]. Photo-catalytic degradation is one of these technologies that utilizes
photon excitation of the catalyst to generate electron (e−) and hole (h+) pairs, i.e., primary
radicals, that subsequently hydrolyzes the water molecules to form different types of sec-
ondary radicals that will react with the contaminants. Meanwhile, part of the primary
radicals recombines with the catalysts surface which reduces the photo-catalytic activity.
A large variety of metal oxides, zero-valance elements, and bi-metallic materials were
investigated and applied as a catalyst to generate primary radicals, i.e., TiO2, ZnO, Fe0,Cu0,
and Zn/Pd [37,129,131]. To engineer sunlight driven photo-catalytic degradation process,
there is a need to select the catalyst to have a narrow band gap sufficient to capture the solar
energy, adequate sorption sites and reaction centers, efficient separation and transfer of
the primary radicals, minimum photochemical corrosion, allow easy separation, and have
low agglomeration tendency [129,132]. Modifying the catalyst and the use of support were
proposed in this context. The support should possess high specific surface area, acceptable
hydrophobicity especially for organic contaminant degradation and excellent stability in
water. CLP, ZSM-5, zeolite-Y, MOR, and zeolite beta were tested for their applications as
support not only due to their excellent sorption properties but also due to the presence of
acid/base sites that can reduce the e−-h+ recombination. Figure 6a summarizes the applica-
tion of zeolite-composite in the degradation of different organic contaminants in wastewater
and in air. The photo-catalytic degradation mechanism of these composites is illustrated in
Figure 6b; the mechanism comprises the adsorption and diffusion of the contaminants on
the zeolite surface, photo-catalytic degradation, and decomposition/desorption. Different
techniques are available to prepare these composites including ex-situ, sol–gel, ionic ex-
change, hydrothermal synthesis, and impregnation techniques. A detailed review of the
preparation techniques is presented elsewhere [129].
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in wastewater and air; (b) schematic of adsorption and photo-catalytic degradation on the surface of
zeolite-based composites (Reprinted with permission from [129]).
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The analysis of the bibliometric data in the Scopus database indicated that there are
450 research works that addressed the (zeolite AND photodegradation) and 68 research
works addressed the (nano AND zeolite AND photodegradation). By restricting the search
using the word “Water”, the number reduces to 151 and 21, respectively. The annual
distribution of these researches are illustrated in Figure 7a,b; the figure illustrates the
increasing research trends for the application of zeolites and nano-zeolite in the photo-
degradation of contaminants in water.
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3.1. Testing Scheme to Optimize the Photo-Catalytic Degradation Applications

In general, the testing schemes for evaluating the performance of photo-catalytic com-
posites include material characterization, and operational condition optimization. The aim
of the characterization step is to identify the chemical and physical properties of benefits
to the photo-catalytic degradation process, where both the sorption and photo-catalytic
degradation related properties are identified. Thus, in addition to the characterization
methods mentioned in Section 2.1, the optical properties of the photo-catalytic composite
are widely employed. In this context, the diffuse reflectance and the photoluminescence
spectroscopy are used to evaluate the structural changes in the composite during different
treatments, calculate the band gap value, and identify the defects in the structures [133–137].
In Velásquez et al. [137], erosion, reusability, and composite degradation tests were con-
ducted to assess the effect of mixing either mechanical or sonication on the polymer
composite stability, degradation efficiency behavior under repeated reusability, and com-
posite degradation resistance under prolonged exposure to the radiation. It should be
noted that the reusability is associated with efficiency reduction due to the sorption of the
degradation products on the zeolite surface [138]. Operational conditions optimizations
could be conducted via the OFAT or MVT technique to identify the optimum catalyst
composite mass (m, g), optimum catalyst to support ratio, contaminated solution volume
(V, L) and pH, initial contaminant concentration (Co, mmol/L), contact time (teq, min), and
effect of the support.

3.2. Batch Investigations

Batch investigations of photo-catalytic composites are employed to design the photo-
degradation process. In these investigations, certain mass of the photo-catalytic composite
(m, g) is mixed with a certain volume of the contaminated solution (V, L) of specified
contaminant concentration (Co, mmol/L) and pH at specified mixing velocity for a certain
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period of time under specified illumination conditions. Then, the solid/liquid suspension
is separated and the contaminant concentration (Ct, mmol/L) in the solution is measured
using a suitable analytical technique. The degradation efficiency (Deg, %) is determined
using the following equation:

Deg.% =

(
Co − Ct

Co

)
∗ 100 (4)

The experiments are usually conducted under dark conditions to ensure the achieve-
ment of the sorption equilibrium and then illumination is turned on to allow a clear
identification of the photo-degradation.

Kinetic studies are conducted to allow the calculations of the operational time and rate
constants of the degradation reactions. In this respect, the sorption kinetics models PFO,
PSO, and IPM are widely used to investigate the sorption and diffusion step in the process.
Langmuir–Hinshelwood (LH), and first order (FO) are widely used to analyze the photo-
degradation kinetics, and the features of each model are listed in Table 7 [139,140]. Different
efforts were directed to provide mechanistic models that could be used to better represent
the reaction kinetics, estimating the controlling steps, and obtaining a precise value for
the rate constants [140–144]. Equilibrium investigations in terms of varying the initial
contaminant concentration in the aqueous solution are usually modeled using the sorption
equilibrium models [139,140,145]. It should be noted that, for sunlight driven processes,
the variation of the solar intensity with time and reactor depth should be considered during
the design of the process.

Table 7. Models used in analyzing the photo-degradation kinetics.

Model Equation Model Features

LH

Linear:
ln( C

Co )
(Co−C) = −

kadkLH t
(Co−C) − kad

The model assumes that the rate of the photo-degradation reaction
proportional to the fraction of the surface by the contaminant,

It assumes that the available contaminants on the surface are sorbed following
the Langmuir monolayer model,

The model does not consider the reactions of the intermediates,
Kx the rate constant for sorption (x = ad) and photo-degradation (x = LH)

Non-linear:
C = Coe−kad(kLH t+Co−C)

FO
Linear : ln

(
C
Co

)
= −k f t Assumes that the overall degradation process is a first order reaction

valid for diluted solutions
Kf is the apparent first order rate constantNon− linear : C = Coe−k f t

The reusability of the photo-catalytic composite is tested by repeating the batch ex-
periment under optimum degradation conditions using fresh contaminant concentration
at each cycle. The composite is re-used after drying at specified temperature for a fixed
amount of time. The regeneration ability is tested after regenerating the surface of the
materials using chemicals; then, the batch experiments are repeated.

3.3. Applications in Organic Contaminant Degradation

The indexed research directed to explore the feasibility of using nano-zeolite in the
preparation of photo-catalytic composite for the degradation of organic contaminants are
listed in Table 8 [146–154]. The following concluding remarks could be drawn:

• Most of the conducted research utilized natural CLP grounded to the nano-scale, and
limited research utilized synthetic ZSM-5 nano zeolites for their applications in the
preparation of photo-catalytic composites.

• The composites included metal oxides e.g., ZnO, CuO, FeO, NiO, and metal sulfide,
e.g., ZnS, NiS, CuS, and PbS.

• Most of the conducted experiments employed a single contaminant solution, where
solutions of model organic contaminant, e.g., 4-Nitrophenol, Dyes, e.g., Rhodamine B,
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Methylene blue, personal care products and pharmathetical compounds, e.g., Metron-
idazole, Tetracycline, Cefuroxime, Benzophenone. Real effluent, i.e., fish pond water,
was only used in one research.

• The tested photo-catalytic composite dosage was in the range (0.025–3), where, in
some studies, oxidizer, e.g., H2O2, was supplemented to the contaminant solution.

Table 8. Results of the applications of nano-zeolite composite for photo-catalytic degradation of
organic contaminants.

Cont.
Nano-Zeolite

Illumination
Source

m/Vg/L
Optimum Conditions

Model Reuse Ref.
Type Size, nm Composite Preparation Co,

ppm pH teq, min

MB CLP 50 ZnO Natural Fluorescence
lamp, 60 W 0.25 10 - 50 FO 4 [146]

MB ZSM-5 - ZnO HT-
chemical

UV-Mercury
lamp, 500 W 0.2 50 - 30 FO 6 [147]

TC CLP 100 FeO Natural Hg lamp, 30 W 0.2 - 4.3 200 FO 6 [148]

CF CLP 10–70 NiO Natural Hg lamp, 35 W 0.025 - 4.3 200 LH - [149]

FP CLP - FeO-
ZnO Natural Sunlight 0.1 - 8.3 140 - 5 [150]

4-NP CLP 52 NiS/PbS Natural Hg lamp, 30 W 0.5 - 7.5 200 FO - [151]

MB CLP 100 CuO Natural Hg lamp, 75 W 0.2 7 5.9 180 FO - [152]

MZ CLP 30 ZnS/NiS Natural Hg lamp, 35 W 3 4 3 150 - - [153]
MVT

BP CLP -
ZnO/CuO

Natural 2 Hg lamp, each
35 W

0.12 30 7.5
300 FO

5
[154]

ZnS/CuS 0.1 30 7.5 5

Note: RB = Rhodamine B. (TC) = Tetracycline. (CF) = Cefuroxime. Fp = Filtered Fish Pond Wastewater.
4-NP = 4-Nitrophenol. MZ = Metronidazole. BP = Benzophenone.

The examination of the listed data in Table 8 shows that most of the analyses were
conducted using the linear form of the FO model, where the experiments were conducted
after reaching the sorption–desorption equilibrium. The analysis of the integrated process
of sorption and diffusion, photo-catalytic degradation, and desorption of the degradation
products were not conducted. Only one research work tested the photo-degradation under
sunlight, and the rest of the published work employed lamps as an illumination source.

4. Advances in Nano-Zeolite Applications in Membrane Separation

Contaminants and/or salt removal from the water and wastewater are achieved
in membrane technology by using a barrier that allows selective transport of certain
molecules, ions, or particles under driving force [37]. The driving force could be pressure,
concentration, or potential gradients. This barrier comprises two-layers or more, where
the upper layer is a thin denser layer (active layer) that is overlaying more porous and
thicker substrates. Two categories of materials are widely used to construct the membrane
namely: polymer and ceramic. The membrane technology is usually classified based
on the pore size of the membrane into microfiltration (MF), ultra-filtration (UF), nano-
filtration (NF), and reverse osmosis (RO). Compared to polymeric membranes, ceramic
membranes are characterized by their higher porosity, higher hydrophilicity, and better
chemical, mechanical, thermal, and biological stabilities which are translated to better
hydraulic performance, lower fouling rates, and longer service time. Subsequently, ceramic
membranes are applied in all membrane classes, with wider applications in MF and
UF [155]. Alumina, silica, zeolite, tetania, and zirconia are five principal materials in
ceramic membrane preparation. In particular, zeolites are used to form the active layer
in MF, UF, and RO with relatively limited utilization as a substrate. Compared to other
ceramic membrane materials, zeolites have the second highest hydrophilicity and unique
pore structures, but their chemical and thermal stabilities are not advantageous [155]. Mixed
matrix membranes (MMM) are formed from Nano-Polymer Composites (NPC) to overcome
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the drawbacks of the polymeric membranes using inorganic filler or additives [37,156,157].
There are two configurations that are widely used in this context, namely: conventional
PNC, and thin film composites (TFC) deposited on the PNC surface [158]. The application
of adsorptive membranes, adsorption-membranes hybrid treatment system, and nano-
fibrous membranes using electrospinning in water treatment were reviewed [159–161]. The
analysis of the research indexed in the Scopus database was conducted using the keywords
zeolite and nano-zeolite combined with the keywords treatment and water; the results
are illustrated in Figure 8a,b. The annual number of indexed research focused on the
study of zeolites was considerably larger than those studying nano-zeolites. The research
that assesses the potential use of zeolites in membrane application for water treatment is
nearly two thirds of those used for the treatment. On the other hand, almost all the studies
that addressed the nano-zeolites directed for its use in membranes were focused on water
treatment. The research trends are slightly increased over the studied time.
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4.1. Testing Scheme to Optimize the Membrane Applications

As in the other applications, the testing schemes for evaluating the performance of
nano-zeolites containing membranes include material characterization and operational
conditions optimization. Material characterizations are conducted to identify the membrane
composition and its physical properties, where the particle size, pore structure, morphology
and surface properties, chemical composition, and crystalinity are identified as mentioned
in Section 2.1. In addition, the hydrophilicity of the membrane is characterized using a
water contact angle technique. Moreover, the stress–strain behavior of the membrane is
evaluated to have insights on the reliability of the designed membrane. Fouling resistance
is usually determined by applying repeated cycles of treatment- backwash and or chemical
treatment. Bio fouling resistance is usually quantified by assessing the initial bacterial
attachment to the membrane and the inhabitation of the micro-organisms’ growth, e.g.,
E-coli, P. aeruginosa LB, on the membrane surface. OFAT is usually used to assess the
performance of the membrane and optimize the operational conditions as will be presented
in the next subsection.

4.2. Identification of Membrane Performance

Batch and continuous experiments are conducted; the batch experiments give an indi-
cation on the sorption characteristics for adsorptive membranes. In these experiments, the
procedure for batch sorption is adopted and sorption characteristics are identified [162,163].
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In continuous experiments, the contaminated solution is flowing through the membrane
by the action of the driving force. In pressure driven membrane applications, the system is
subjected to a specified pressure using a suitable pump. Feed of contaminated solution of
concentration (Cf, mg/L) is pumped through the membrane and the contaminant concen-
tration in the permeate is measured (Cp, mg/L). The membrane efficiency is determined in
terms of contaminant rejection (R, %) using the following equation:

R =

(
1−

Cp

C f

)
∗ 100 (5)

The permeate flux (Jw, L/(m2.h)) is determined from the ratio between the permeated
volume in a given time (V(t), l/h), and the membrane area (A, m2) is as follows:

Jw =
V(t)

A
(6)

Three parameters could be used to compare the fouling resistance, which is the flux
recovery ratio (FRR), which is the percentage of the permeated pure water after repeated
filtration cycles to that before the cycles permeate, i.e., Jwn and Jw1, respectively [164]:

FRR (%) =
Jwn

Jw1
× 100 (7)

Total fouling (Rt, %) and irreversible fouling (Rir, %) could be assessed by finding the
percentage of the change in water flux after to backwash (Jwb) and chemical treatment (Jwc)
according to the following equations [165]:

Rt (%) =
Jwb − Jt

Jwb
× 100 (8)

Rt(%) =
Jwb − Jwc

Jwb
× 100 (9)

4.3. The Membrane Investigations

The results of indexed research that addressed the application of nano-zeolite in
membrane separation are presented in Table 9 [165–171]. Different types of nano-zeolites
and modified nano-Zeolties were tested in a continuous testing scheme following the
OFAT technique. The research addressed the removal of metal and organic pollutants,
i.e., dyes, simulated waste effluent, and oil. The research mainly used the pressure as the
driving force, except for one research work that utilized potential difference. The following
concluding remarks could be drawn:

• Zeolite-Y, Na-X, FAU, Na-A, and beta were used as an active layer in the membrane
composite, via depositing a thin film on the substrate or embedding onto the mem-
brane matrix;

• Different modifications for the nano-zeolites were proposed including the addition of
metals, e.g., Cu, oxides, e.g., TiO2, and organic modification, e.g., D-tyrosine. These
modifications were used to increase the fouling resistance.

• The applications were restricted to MF, UF, and NF, despite there are some research
studies that tested the use of nano-zolite in membrane applications for dehydration of
different products using RO and forward osmosis, but these membrane types were
not tested for wastewater treatment.
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Table 9. Application of nano-zeolite in membrane separations.

Cont.
Membrane

Contact
Angle, o

Optimum Conditions
Fouling Ref.

Active Layer Substrate Type Co, ppm Flux, lm2/h R, % Pressure,
bar

CV Zeolite-Y CNS UF-
conductive 40 20 210 100 @3 volte - [165]

Engine Oil Beta CA MF 67.7 2% - 97 Vacuum- - [166]

Oil Zeolite
NaX-TiO2

PES UF - - - - - - [167]

TPH Zeolite -NaA Polyaniline NF - 35.1-78.0 96.99 77.79 5 - [168]

Paper mill
effluent Cu–Zeolite PES UF 73.4–74.8

COD = 1840,
PH = 7.6,

BOD = 660,
So4 = 205,
Cl = 340

38.9 COD = 89
BOD = 90.5 4.14 Fouling [164]

Syenthtic
wastewater

FAU-
D-tyrosine NF270 NF 20 - - - - Bio fouling [169]

As Zeolite Chitosan - 74.2–59.2 1000 - 94 - - [170]

Ni
Zeolite-Na-X PSf UF 67 500

21 91
1 - [171]

Pb 21 42

Note: TPH = Total Petroleum Hydrocarbon. CNS = Carbon Nanostructure. CA = Cellulose acetate.
PES = Polyethersulfone. PSf = Polysulfone.

5. Conclusions

The applications of nano-zeolite in water and wastewater treatment were reviewed in
this work, where the application of zeolites in this field was introduced, and zeolites struc-
tures and their properties and recent trends in the preparation of zeolites were overviewed.
The various applications of the nano-zeolites in the field were addressed by focusing on
the applications of nano-zeolite in ion-exchange/sorption, photo-degradation, and mem-
brane separation. In this respect, in depth analysis of the variation of the annual research
indexed in Scopus database was performed for each application to have insights into the
trends of the scientific interest in this field. The characterization schemes, experimental
investigations, and theoretical analysis of the data were presented. Finally, the results of
recent research were summarized, analyzed, and concluding remarks were drawn for each
application. Based on these concluding remarks, some gaps in this innovative field of study
were identified as follows:

• Despite it being found that the use of nano-zeolite has enhanced the performance of the
treatment process and subsequently can reduce the size and land requirement of the
wastewater treatment plant, there is a need to consider the reduction of the materials
footprints; this could be achieved by following greener nano-zeolite preparation
techniques, i.e., use of bio-materials and wastes as sources for the preparation, use of
biosolvent, and low temperature processes.

• Batch experiment for nano-zeolite applications in ion exchange/sorption process is
a major research field with the highest number of published papers. This forms a
database that can assist with the wide-scale application of several types of nano-
zeolites for the removal of different contaminants including radioactive, metal, and
organic. Research that assesses the continuous application of nano-zeolites in this field
is very limited, where there is a need to assess the hydraulic and sorptive performance
of this type of application.

• Despite nano-zeolite being able to be modified to act as anion exchanger/sorbent,
these research investigations are very limited. Moreover, the research that includes
the application of complicated solutions is missing, i.e., real wastewater. Finally, the
application of nano-zeolites for the treatment of corrosive wastewater stream is not
sufficiently addressed.

• For photo-degradation applications, there is a need to consider the application on
complex/ real wastewater effluent, where the research only focuses on the use of a
single contaminant solution.
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• For membrane separation, the application of nano-zeolite in RO and forward osmosis
is missing in the field of water and wastewater treatment.

• Hierarchical and 2D zeolites were not investigated yet in any application related to
water and wastewater treatment.

• For all the presented applications, neither the cost analysis for the preparation and
application of nano-zeolite in water and wastewater treatment nor the pilot scale
applications were addressed. These types of investigations can help in paving the way
toward the wide application of these materials in the industry.

• For each application, the research that addressed the life cycle management of nano-
zeolite is missing. In particular, clear assessment of the end of life cycle management
options for the exhausted nano-materials should be conducted.
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