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Abstract: In order to assess slope stability owing to rainfall, the availability of an effective and
simple-to-use methodology, relating directly rain to eventual landslide triggering, is undoubtedly
useful. To this purpose, a simplified method aimed to the prediction of rainfall-induced shallow
landslides in unsaturated soils is proposed in the present study. This method takes advantage of
some closed-form solutions to evaluate the change in pore pressure due to infiltration of a rainfall
characterized by a given intensity and duration, and the simple scheme of infinite slope to calculate
a threshold for the change in pore pressure when the slope is under limit conditions. Particularly,
using the present approach, a critical curve can be defined to establish the rainfall events that can
trigger a failure process at a given depth, where suction before rainfall is known. The proposed
method appears promising from an engineering viewpoint, since it is simple to use and requires
few parameters as input data. In addition, these parameters can be determined from conventional
geotechnical tests. The validity of the proposed approach is corroborated by some comparisons with
the results of well-documented case studies.

Keywords: rainfall-induced shallow landslides; unsaturated soil; simplified method; intensity–duration
critical curve

1. Introduction

Rainfall-induced shallow landslides generally occur during short and intense rain-
storms or after long rainy periods, depending on the infiltration capacity of the slope
and soil properties (mainly hydraulic conductivity and saturation degree), in relation to
rainfall intensity and duration. The thickness of the unstable soil typically ranges from
some decimeters to few meters (generally 1–2 m). Movement usually experienced by
these landslides is a translational slide [1] with direction mainly parallel to the ground
surface. However, under certain conditions, these landslides evolve into debris flows [2–7].
Therefore, despite the relatively small volume of the displaced material, such landslides
could be really dangerous due also to the lack of warning signs that make problematic their
prediction. In view of these features, rainfall-induced landslides have caught the interest of
the scientific community in recent decades. As a result, many studies were published in the
literature on this topic [8–20].

Landslide triggering is strictly related to the condition of partial saturation of the soil
in the shallow portion of the slope, a condition that favors slope stability because suction
gives a sort of apparent cohesion to the soil, resulting in an increase of its shear strength.
However, rain infiltrating into the slope causes a progressive reduction of suction (and
consequently of soil strength) that could lead to slope instability [21]. Therefore, the most
critical situation for slope stability occurs when small values of suction exist in the soil
before rainfall commences. This mainly occurs owing to prolonged rainfall periods that
cause an increase in soil water content up to levels close to saturation. This may also occur
during the formation of a capillary barrier in an unsaturated soil layer lying on a soil with
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higher permeability [22]. In these circumstances, water is retained in the upper layer and
consequently, its saturation degree increases causing a reduction in the soil shear strength.
Therefore, it is undeniable that the effects of rain infiltration on the pore water pressure
regime cannot be ignored for the analysis of rainfall-induced landslides [23–26].

Although numerical solutions based for example on the finite element method or
the finite difference method, can provide a comprehensive understanding of the complex
infiltration and deformation processes occurring in the slope [27–36], the availability of
simplified (but reliable) methods is undoubtedly useful to readily assess slope stability, es-
pecially for shallow landslides that generally involve relatively small volumes of displaced
material in comparison with other types of landslides.

From a general point of view, the critical stability condition of a slope due to rainfall
can be achieved as a result of a decrease in suction or a subsequent increase in the positive
pore pressure, depending on the hydrological characteristics of the soil and the rainfall
intensity. This means that, from a phenomenological point of view, the failure surface can
form within either the unsaturated or saturated portion of the slope. However, only the case
in which the failure surface develops in the unsaturated portion of the slope is considered
in the proposed method. In this context, a user-friendly method is proposed in the present
study for predicting the occurrence of rainfall-induced shallow landslides in unsaturated
soils. Specifically, the method is based on some closed-form solutions to evaluate the
changes in pore water pressure due to rain infiltration, and the infinite slope model to
calculate a threshold value for pore water pressure corresponding to a limit condition of
the slope. A critical rainfall intensity-duration relationship is also obtained, which can
be readily used to predict whether (or not) a landslide occurs owing to expected rainfall
scenarios. Another advantage of the present approach is that few parameters, derived
from conventional geotechnical tests, are required as input data. However, the proposed
method is affected by some approximate assumptions that have to be kept in mind when it
is applied to real cases, as specified in the subsequent sections. In addition, some effects are
ignored [37,38]. Application to some real cases study is performed to assess the validity of
the proposed method.

2. Method of Analysis

The differential equation governing rain infiltration into an infinite slope consisting of
unsaturated soils (Figure 1) can be written as follows, under the assumption that air is at
atmospheric pressure and soil properties are constant [39]:

∂uw

∂t
= cw

∂2uw

∂z2 (1)

where uw is the change in pore water pressure (otherwise suction) caused by rain infiltration
at time t and depth z (measured normally to the ground surface), with respect to the suction
existing at the same depth before rainfall commences. This latter is herein indicated with
uwo. It takes a negative value for unsaturated soils and should be determined from in situ
measurements, using tensiometers. By contrast, uw assumes positive values. The parameter
cw takes the form:

cw =
k

γwmw
(2)

in which γw is the unit weight of water, k is the soil hydraulic conductivity, and mw is the
coefficient of water volume change with respect to a change in suction, which is provided
by the slope of the retention curve at a given suction [21]. An evaluation of mw can
be performed by measurements of dilational and shear wave velocities (VP and VS), as
proposed by [40,41].



Water 2022, 14, 3180 3 of 17

Water 2022, 14, x FOR PEER REVIEW 3 of 18 
 

 

wm  can be performed by measurements of dilational and shear wave velocities (VP and 
VS), as proposed by [40,41]. 

 
Figure 1. Scheme used for the analysis of the rain infiltration process in an infinite slope. 

Actually, wm  and k depend on the position and suction. However, in view of de-
veloping a method of practical interest, in the present study it is assumed, as an ap-
proximation, that these parameters remain unchanged during the infiltration process. In 
this connection, wm  is evaluated as the slope of the retention curve at the initial suction 

wou , and k is cautiously assumed equal to the saturated hydraulic conductivity of soil 
[42]. This choice, in fact, leads to the highest rain infiltration and the highest wu . 

To solve Equation (1), the following initial and boundary conditions are considered: 

wu  = 0   for   t = 0   and   ∀ z (3) 

it expresses the condition that at t = 0 the change in pore water pressure is nil everywhere 
(initial condition); 

I
kz

u ww γ−=
∂

∂
   for   z = 0   and   t > 0 (4) 

where I denotes the rain infiltration at the slope surface (boundary condition at z = 0); 

( ) 0,w =∞ tu    for   t > 0 (5) 

this equation expresses the boundary condition that the change in suction due to rain in-
filtration is nil at high depths. Considering a rainfall event characterized by a constant 
intensity R and duration d, I can be expressed as: 

I = R   if   R < p   and   t ≤  d (6a) 

I = p   if   R ≥  p   and   t ≤  d (6b) 

I = 0   if   t > d (6c) 

where p is the potential infiltration rate, which is the maximum volume of water (per unit 
area) that can infiltrate into the soil in a time unit. Generally, p is influenced by many 
factors that make very difficult its evaluation, such as previous rainfall, presence of veg-
etation, evapotranspiration, tension cracks, preferential drainage paths, etc. [43–45]. To 
this end, field tests should be carried out. Nevertheless, for a preliminary evaluation of 
this parameter, this approximate equation could be used [46]: 

αcoskp =  (7) 

where α  is the slope angle of the ground surface. 
On the basis of the initial and boundary conditions (Equations (3)–(5)), a closed-form 

solution of Equation (1) can be derived [47,48]: 

Figure 1. Scheme used for the analysis of the rain infiltration process in an infinite slope.

Actually, mw and k depend on the position and suction. However, in view of develop-
ing a method of practical interest, in the present study it is assumed, as an approximation,
that these parameters remain unchanged during the infiltration process. In this connection,
mw is evaluated as the slope of the retention curve at the initial suction uwo, and k is
cautiously assumed equal to the saturated hydraulic conductivity of soil [42]. This choice,
in fact, leads to the highest rain infiltration and the highest uw.

To solve Equation (1), the following initial and boundary conditions are considered:

uw = 0 for t = 0 and ∀z (3)

it expresses the condition that at t = 0 the change in pore water pressure is nil everywhere
(initial condition);

∂uw

∂z
= −γw

k
I for z = 0 and t > 0 (4)

where I denotes the rain infiltration at the slope surface (boundary condition at z = 0);

uw(∞, t) = 0 for t > 0 (5)

this equation expresses the boundary condition that the change in suction due to rain
infiltration is nil at high depths. Considering a rainfall event characterized by a constant
intensity R and duration d, I can be expressed as:

I = R if R < p and t ≤ d (6a)

I = p if R ≥ p and t ≤ d (6b)

I = 0 if t > d (6c)

where p is the potential infiltration rate, which is the maximum volume of water (per unit
area) that can infiltrate into the soil in a time unit. Generally, p is influenced by many
factors that make very difficult its evaluation, such as previous rainfall, presence of vegeta-
tion, evapotranspiration, tension cracks, preferential drainage paths, etc. [43–45]. To this
end, field tests should be carried out. Nevertheless, for a preliminary evaluation of this
parameter, this approximate equation could be used [46]:

p = k cos α (7)

where α is the slope angle of the ground surface.
On the basis of the initial and boundary conditions (Equations (3)–(5)), a closed-form

solution of Equation (1) can be derived [47,48]:

uw(z, t) =
2γw I

k

[√
cwt
π

e−
z2

4cwt − z
2

er f c
(

z
2
√

cwt

)]
for t ≤ d (8a)
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uw(z, t) = 2γw I
k

[√
cwt
π e−

z2
4cwt − z

2 er f c
(

z
2
√

cwt

)]
+

− 2γw I
k

[√
cw(t−d)

π e−
z2

4cw(t−d) − z
2 er f c

(
z

2
√

cw(t−d)

)] for t > d (8b)

where er f c is the complementary error function. Summarizing, Equations (8a) and (8b)
provide the change in pore water pressure occurring at any depth and time owing to a rain
event characterized by an infiltration rate I and duration d. Equation (8a) is an increasing
monotonic function, therefore the maximum value of uw is attained at tp = d. Referring
to Equation (8b), the time corresponding to the maximum value of uw is determined by
imposing that:

∂uw

∂t
= 0 (9)

To this aim, it is convenient to write Equation (8b) in the following form [48]:

ψ

z
=

I
k
[R(t∗)− R(t∗ − d∗)] (10)

in which ψ(z, t) = uw(z, t)/γw is the pressure head, and:

t∗ =
4cwt

z2 (11)

d∗ =
4cwd

z2 (12)

R(t∗) =

√
t∗

π
e−

1
t∗ − er f c

(
1√
t∗

)
(13)

As a result, Equation (9) takes the form:

e

[
z2

4cw

(
d

tp(tp−d)

)]
=

√
tp√

tp − d
(14)

which can be solved to provide the time tp when the maximum value of uw is attained
after the end of rainfall. It is worthwhile noting that tp depends on the rain duration, but
it does not depend on the rainfall intensity. Figure 2 relates tp to d, for different values
of a = z2/4cw.
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As can be seen, tp approaches d for small values of a, i.e., at shallow depths and/or for
high values of cw (or highly permeable soils). By contrast, tp could be significantly greater
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that d at high depths and for poorly permeable soils. Consequently, depending on depth
and hydraulic conductivity, the evolution of uw with time assumes a different shape, as
shown in Figure 3. In this figure, the blue curve corresponds to a case with tp = d, and the
red curve is representative of a case when tp > d. A slope failure could occur before the
end of the rainfall in the first case, whereas failure likely occurs after the rainfall event in
the second case.
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Indeed, a landslide is triggered if the maximum value of uw exceeds a threshold value,
uc. This latter is determined by imposing that the safety factor of the slope is unit at a given
depth z [30]:

FS =
c′ + γz cos α tan φ′ − χ(uwo + uw) tan φ′

γz sin α
= 1 (15)

In Equation (15), c′ and φ′ are the effective cohesion and the angle of shearing resistance
of the soil, respectively, χ is a parameter ranging between 0 and 1 depending on the water
content [46], which in turn depends on the matric suction [49], and γ is the unit weight
of the soil. For simplicity, in the present study it is assumed that χ = 1 and γ is constant,
considering that this latter is generally slightly affected by infiltration. The resulting
expression of uc is:

uc =
1

tan φ′
[
ct − γz

(
sin α− cos α tan φ′

)]
(16)

in which:
ct = c′ − uwo tan φ′ (17)

At this point, by imposing:
uw
(
zs, tp

)
= uc (18)

it is possible to determine, for a certain duration d, a critical value of the rainfall infiltration
rate, Icrit, which is capable to trigger a landslide at a certain depth zs where the initial
suction uwo is known. From a general point of view, the value of uwo appearing in Equa-
tion 15 can be either negative or positive and, consequently, the critical condition can be
reached as a consequence of the reduction of suction or increase in the positive pore water
pressure. However, the proposed method is suitable for the prediction of shallow land-
slides triggering due to rainfall only when the failure surface develops in the unsaturated
portion of the slope. In this case, the soil is in the unsaturated condition before rainfall and,
consequently, uwo takes a negative value. For a more generic situation, in which uwo can
be either negative or positive, a different method should be employed [19,20].
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After substituting Equations (8b) and (16) into Equation (18), the following expression
of Icrit is obtained:

Icrit =
uck
2γw

· 1
R(t)− R(t− d)

(19)

where

t =
4cwtp

z2
s

(20)

and
d =

4cwd
z2

s
(21)

It is worth noting that R
(

t− d
)

approaches zero as tp approaches d, leading to the
same result obtained using Equation (8a) instead of Equation (8b) when tp = d. In other
words, Equation (19) is a general equation that can be used both for tp = d and tp > d.

Calculating Icrit for different values of d, a critical curve is obtained (Figure 4) which
allows the stability condition of a slope to be readily assessed on the basis of intensity R and
duration d of an expected rainfall. Nevertheless, since a portion of rainfall can generally
infiltrate into the slope taking into account the potential infiltration rate (Equations (6a)
and (6b)), it is convenient to calculate a critical duration, dc, using Equation (19) in which
the condition Icrit = p is imposed. As a result, if an expected rainfall is characterized
by a duration d < dc, the slope is stable independently on the expected rainfall intensity
R, making the concept of critical duration very useful from a predicting point of view.
Contrariwise, a landslide occurs if d ≥ dc (i.e., if the rainfall is sufficiently prolonged in
time), provided that I ≥ Icrit. In other words, a landslide can be triggered only if the
point representative of an expected rainfall with intensity R and duration d, falls into the
area highlighted in red in Figure 4. As shown in the flow chart of Figure 5, the solution
procedure is very simple-to-use and is hence suitable for routine applications.
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Figure 5. Flow chart illustrating the use of the proposed method. The critical duration, dc, is
calculated using Equation (19) in which Icrit = p is imposed.

3. Application of the Method

In this section, the proposed method is applied to analyze two case studies documented
in the literature.

The first case study is drawn from a paper by [50] and concerns a rainfall-induced
shallow landslide occurred in a site near the city of Bologna (Northern Italy). The slope can
be schematized as an infinite slope with an average inclination α = 14◦. It was affected in
the past by landslide movements that involved an inorganic clay with high plasticity [51].
Two failure surfaces were localized at the depths (measured in the vertical direction) of
0.80 m (z = 0.78 m) and 1.40 m (z = 1.36 m), respectively [50]. Direct shear tests performed
on reconstructed samples provided a residual friction angle ϕ′ = 12◦ and a nil intercept
cohesion. Additional strength contributions due to the presence of roots can be neglected at
the depths where the slip surfaces were found [51]. The measured hydraulic conductivity
was k = 4.6 × 10−7 m/s. Since no infiltration tests was carried out, the potential infiltration
rate is approximately evaluated using Equation (7) that provides p = 38.4 mm/day. Ex-
perimental data concerning the volumetric water content ϑ and suction s are documented
by [50]. To determine a retention curve for the soil involved in the landslide, these data
are fitted using the following relationship, which was originally proposed by [52] and
subsequently modified by [53]:

ϑ− ϑR

ϑS − ϑR
=

[
1

1 + (βs)n

]1− 1
n

(22)

where ϑS is the volumetric water content at saturation, ϑR is the residual volumetric
water content, and β and n are model parameters. Table 1 reports the values of these
parameters that provided the best agreement between experimental data and Equation (22),
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as documented in Figure 6. Once the retention curve is obtained, the coefficient of water
volume change mw is evaluated as the slope of this curve at the initial suction uwo.

Table 1. Van Genuchten model’s parameters (data drawn from [50]).

ϑR ϑS β (kPa−1) n

0.07 0.54 0.095 1.3
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Daily rainfall recorded from October 2004 to August 2006 are available (Figure 7). The
present method is used to analyze the slope response to three rainfall events, which are
indicated by red arrows in Figure 7. It is worth noting that the rainfall event characterized
by the highest value of intensity (about 140 mm/day) in Figure 7 was not considered in
the present study because it did not cause any failure mechanism due to the very high
value of suction measured before this event (about 1000 kPa). Rain intensity, initial suction
(measured just before these events) and the associated values of mw are included in Table 2.
Duration of each event is 24 h.
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Table 2. Rainfall intensity and initial suction for the events considered in the analyses (data drawn
from [50]), along with the corresponding values of mw.

Rainfall R (mm/day) uwo (kPa) mw (kPa−1)

10 April 2005 54 −33 0.0036
5 October 2005 77.5 −40 0.0019

1 May 2006 32.5 −4.9 0.0072

The values of suction in Table 2 are those measured at the depth of 0.80 m, where the
upper slip surface was detected. Since no measurement is available at the depth of 1.40 m,
where the lower slip surface was detected, the values of suction measured at 0.80 m are also
assigned to the depth of 1.40 m. This assumption is justified by the fact that the available
measurements provide an essentially constant profile of suction with depth [50].

As documented by [50], some instability phenomena were observed in the period
March–May of 2006 (Figure 7). Therefore, only the third rainfall event among those
considered in the present study caused a slope failure at the above-mentioned depths
(0.80 m and 1.40 m).

Figures 8–10 present the critical curves calculated at the depth of 0.80 m using the
procedure described in the previous section, for each value of uwo measured at this depth
(Table 2). As can be seen, no slope failure occurs owing to the first rainfall events considered
(Figures 8 and 9). In this case, in fact, the rainfall duration d is always less than the critical
threshold dc, the values of which are indicated in Table 3. In addition, since the rainfall
intensity is greater than the potential infiltration rate (R > p), a portion of the rainfall
infiltrates into the slope (Equations (6a) and (6b)).
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Table 3. Values of the critical duration dc (in hours) calculated considering the initial suction existing
before the considered rainfall events.

10 April 2005 5 October 2005 1 May 2006

zs = 0.80 m 264 200 20
zs = 1.40 m 305 227 10

By contrast, rainfall totally infiltrates into the slope when the third event is considered
(R < p). In this case, it also results that d is greater than dc (Table 3) and the point represen-
tative of this event is located above the critical curve (Figure 10). As a result, a landslide is
triggered at the depth considered in accord with what actually observed.

Similar results are obtained when a slip surface located at the depth of 1.40 m is
considered. The slope is stable for the first two rainfall events (Figures 11 and 12), whereas
a failure occurs owing to the third event (Figure 13). Summarizing, although the first two
precipitations were characterized by a higher intensity, the landslide was triggered by the
third rainfall event when the initial suction was significantly lower than that measured
before the other events considered. These results confirm the importance of the initial
suction on the slope stability.
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Finally, for the sake of completeness, Figures 14–16 show a comparison between the
evolution of uw calculated at the depth of 0.80 m using Equations (8a) and (8b), and the
threshold uc at the same depth provided by Equation (16). These graphs also allow an
evaluation of the time at which failure occurs.
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In agreement with the results previously shown, the change in pore pressure is always
less than its critical value (uw < uc) for the first two rainfall events (Figures 14 and 15),
whereas uw exceeds uc owing to the third event (Figure 16). In this last case, a triggering
condition (uw = uc) occurs 27 h after the beginning of the rainfall.

Analogous remarks can be made about the results obtained at the depth of 1.40 m
(Figures 17–19). Specifically, the change in pore pressure exceeds the corresponding critical
value owing to the third event only. In this case, failure occurs just at the end of the rainfall
(i.e., at t = 24 h), preceding that occurred at 0.80 m.
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The second example is taken from a paper by [54]. This example was inspired by a
real case [55] which concerns a shallow landslide occurred in October 1994, in the Province
of Girona (North-Eastern Spain) after a period of intense rain. The landslide involved a
road embankment and caused soil displacements in the order of some meters. The failure
process was simulated by [54] using the Material Point Method (MPM), an advanced and
effective numerical technique. The embankment was made up of sandy clay with low to
medium plasticity. The available soil properties are summarized in Table 4.

Table 4. Soil properties of the embankment (data from [54,55]).

γ (kN/m3) c′ (kPa) φ’ (◦) k (m/s)

20 0 20 10−7

The soil was unsaturated, and the failure mechanism involved the upper portion of
the slope to a depth of about 1.5 m (z = 1.27 m). An infinite slope model with α = 32.5◦ can
be reasonably used to schematize the embankment portion affected by failure (Figure 20).

Measurements of suction are not available. Thus, uwo is estimated in the present
study using Equation (17), in which ct is the initial apparent cohesion assumed by [54]
for the involved soil (ct = 6.7 kPa). The resulting value is uwo = −18.4 kPa. The authors
of [54] also used the Van Genuchten retention curve [52] to relate the degree of saturation
to suction (the parameters of this curve are listed in their Table 4), from which a value of
mw = 0.00025 kPa−1 is calculated at uwo, under the assumption that the soil void ratio re-
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mains unchanged during wetting. In addition, lacking specific experimental data, p is eval-
uated using Equation (7) from which p = 7.30 mm/day is obtained. Daily rainfall recorded
in the period from 1 September to 31 October 1994 are shown in Figure 21. Referring to
the rain event with the highest intensity (R = 123 mm/day) and duration d = 24 h, only a
portion of this rain can infiltrate into the slope in accordance with Equations (6a) and (6b).
In addition, the critical duration is 5.5 h.
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Figure 22 shows the critical curve calculated at a depth of 1.5 m using the proposed
method. As can be seen, rainfall duration is greater than the critical one (d > dc) and the
point representative of the considered rain event (R = 123 mm/day and d = 24 h) falls
into the instability region. This result is consistent with the conclusions of the analysis
performed by [54] using MPM.
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4. Discussion

The approach presented in this study allows a preliminary prediction of the occur-
rence of rainfall-induced shallow landslides in unsaturated soils due to expected rainfall
scenarios, under the hypothesis that the rainfall intensity is constant over time. Basically,
it is developed referring to the scale of slope. Indeed, the specific characteristics of the
considered slope are taken into account, such as geometry, geotechnical properties and
suction existing at the depth of the failure surface before rainfall. These characteristics
make the method suitable to be employed in the context of an early warning system.

The method is inspired from other studies published in the literature [19,39]. However,
novel aspects are introduced in the present work. Compared to [39], the present paper
is aimed to the prediction of rainfall-induced shallow landslides in unsaturated soils by
the employment of some critical curves of analytical derivation, which are not considered
in [39]. Compared to the paper [19], the relationship between the time at which the change
in pore water pressure takes the peak value (tp) and rainfall duration (d) is presented.
It is shown that this relationship is a function of depth and hydraulic conductivity. In
particular, tp could be significantly greater than d when depth increases and hydraulic
conductivity reduces (Figure 2). As a result, the evolution of uw with time takes a different
shape (Figure 3). In addition, this paper introduces the concept of critical duration which
represents a threshold value of rainfall duration below which a landslide cannot occur. This
threshold is very useful for practical purposes.

The solution procedure is very simple-to-use and is hence suitable for routine applica-
tions. However, the proposed approach is characterized by some approximate assumptions
that have to be kept in mind when it is applied to real cases. Specifically, the method is
based on a simplified hydrological model and an infinite slope scheme with constant slope
angle, thickness, and homogeneous soil properties. Although these assumptions are gener-
ally accepted in engineering practice for the analysis of shallow landslides, the proposed
method must be used with caution when the slope consists of markedly anisotropic and
heterogeneous soils or is characterized by a complex geometry requiring two or three-
dimensional hydromechanical models. The proposed method is suitable to analyze the
triggering condition of rainfall-induced shallow landslides when the failure surface de-
velops in the unsaturated portion of the slope. On the contrary, when the failure surface
concerns the saturated zone, a different approach has to be employed [19,20]. In addition,
the proposed model should be applicable for slopes under wet conditions as usually occurs
during the rainy periods when the soil is close to saturation and the changes in the involved
soil parameters are generally not significant. On the contrary, this model could not be
effective for drier slopes when the soil properties strongly depend on suction. In this
regard, a study is currently underway to extend the present method to these conditions.
In addition, it is worth noting that the value of the suction measured at the depth of the
failure surface before rainfall, uwo, plays a crucial role on the slope stability. Therefore, it
appears clear that uwo has to be carefully evaluated at the depths of interest using suitable
in situ or laboratory measurements. Finally, since the initial suction often varies with depth,
the method could be employed to assess the slope stability at the different depths where
the initial suction is known, using for any depth the corresponding value of suction.

5. Conclusions

A method of practical interest is presented for predicting rainfall-induced shallow
landslide triggering in unsaturated soils. The proposed method is based on some analytical
solutions for evaluating the change in suction due to rain infiltration, and the simple
scheme of infinite slope to calculate a threshold of the suction change that determines a
condition of incipient failure of the slope. Specifically, the approach provides a critical curve
defining the rainfall events that are able to trigger a failure mechanism at a given depth
where suction existing before rainfall is known. Substantially, the method directly relates
landslide occurrence to the intensity and duration of an expected rainfall. In addition,
a critical value of the rainfall duration can be readily evaluated, below which no slope
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failure occurs at the considered depth. The method is very simple to use and can be easily
implemented in a common electronic sheet. Moreover, few parameters are required as
input data, which in addition can be obtained from conventional tests. All these features
make the proposed method fairly attractive for predictive purposes, as also confirmed by
the applications shown in the paper to some case studies documented in the literature.
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24. Peranič, J.; Mihalič Arbanas, S.; Arbanas, Z. Importance of the unsaturated zone in landslide reactivation on flysch slopes:
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