
Citation: Safder, U.; Kim, J.; Pak, G.;

Rhee, G.; You, K. Investigating

Machine Learning Applications for

Effective Real-Time Water Quality

Parameter Monitoring in Full-Scale

Wastewater Treatment Plants. Water

2022, 14, 3147. https://doi.org/

10.3390/w14193147

Academic Editors: Celestine Iwendi

and Thippa Reddy Gadekallu

Received: 19 August 2022

Accepted: 4 October 2022

Published: 6 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Investigating Machine Learning Applications for Effective
Real-Time Water Quality Parameter Monitoring in Full-Scale
Wastewater Treatment Plants
Usman Safder * , Jongrack Kim, Gijung Pak, Gahee Rhee and Kwangtae You *

UnU Inc., Samsung IT Valley, 27, Digital-ro 33-gil, Guro-gu, Seoul 08380, Korea
* Correspondence: usman.safder@khu.ac.kr (U.S.); kty.unu@gmail.com (K.Y.)

Abstract: Environmental sensors are utilized to collect real-time data that can be viewed and inter-
preted using a visual format supported by a server. Machine learning (ML) methods, on the other
hand, are excellent in statistically evaluating complicated nonlinear systems to assist in modeling and
prediction. Moreover, it is important to implement precise online monitoring of complex nonlinear
wastewater treatment plants to increase stability. Thus, in this study, a novel modeling approach
based on ML methods is suggested that can predict the effluent concentration of total nitrogen (TNeff)
a few hours ahead. The method consists of different ML algorithms in the training stage, and the best
selected models are concatenated in the prediction stage. Recursive feature elimination is utilized
to reduce overfitting and the curse of dimensionality by finding and eliminating irrelevant features
and identifying the optimal subset of features. Performance indicators suggested that the multi-
attention-based recurrent neural network and partial least squares had the highest accurate prediction
performance, representing a 41% improvement over other ML methods. Then, the proposed method
was assessed to predict the effluent concentration with multistep prediction horizons. It predicted 1-h
ahead TNeff with a 98.1% accuracy rate, whereas 3-h ahead effluent TN was predicted with a 96.3%
accuracy rate.

Keywords: multistep ahead; TN prediction; recursive feature elimination; wastewater treatment
plant; machine learning

1. Introduction

Wastewater treatment plants (WWTPs) are an integral part of urban water infrastruc-
ture for minimizing pollutants and preserving public health. Effluent quality, energy con-
sumption, and resource recycling restrictions for WWTPs are becoming more stringent [1,2].
Increasingly, mathematical models are utilized to quantify the effectiveness of WWTPs
and to build optimum operating strategies by establishing a quantitative link between
influent WWTP features and effluent water quality [3]. Furthermore, nitrogen is a major
contaminant in wastewater that must be reduced to a specified level prior to wastewater
discharge. Ammonia, nitrite, nitrate, and organically bound nitrogen are the principal
types of total nitrogen (TN) in wastewater [4]. Monitoring TN in the influent of WWTPs is
essential for the performance of nutrient removal systems, the control of sludge production,
and the operation of different wastewater treatment processes [5].

Engineers must grasp and quantify wastewater properties, especially nutrient compo-
nents, at the start and end of treatment. To obtain the necessary data, the operator must
collect sensor data or sample wastewater and analyze the plant’s influent/effluent flow to
identify the characteristics of the raw waste. The entry of improperly treated wastewater,
one of the sources of nutrients, into water bodies such as groundwater systems may result
in several health issues [6]. However, many WWTPs have upgraded their facilities to in-
crease the removal of nutrient pollutants, resulting in a substantial decrease in the quantity
of nutrients discharged by WWTPs [7]. Most artificial intelligence (AI) methods are used
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to predict natural or artificial processes in a range of areas. As a subset of AI, machine
learning (ML) is the process of identifying a pattern in data for the purpose of prediction or
classification [8]. In recent years, the modeling and forecasting of environmental phenom-
ena using AI technology have surged because of its capability to solve practical problems
related to sewage treatment [9], river quality monitoring [10], and management of water
resources [11]. In their study, Bagheri et al. [12] investigated the impact of AI models on
the prediction and assessment of leachate penetration from a landfill site into groundwater.
These algorithms may unearth more intricate links than statistical methods [13,14]. Water
quality prediction may benefit from the use of neural network methods [15]; however, the
issue of inadequate training should not be overlooked [16]. Furthermore, a hybrid model
was designed to increase the accuracy of water quality prediction; however, the model
was unable to learn the state features across time series data, which might result in high
mistakes in extreme value prediction [17].

In addition, deep learning (DL) algorithms have become the most popular data-driven
modeling algorithms in recent years because of their potent nonlinear mapping and learning
capabilities. The applications of DL methods were critically reviewed for better control and
management of membrane fouling in wastewater treatment systems [18]. Ma et al. [19]
utilized DL to forecast the 5-day biological oxygen demand (BOD5) of New York harbor
water and produced an R2 value that was 22–40% of the other six standard data-driven
models assessed. Recurrent neural networks (RNNs) are also utilized for water quality
prediction because of their incorporated feedback and recursive structure, which enables
them to maintain information from earlier times and use prior information to predict
present information [20]. Jiang et al. [21] developed five data-driven models to forecast
the high-cost indicators of sewage in drainage networks; the accuracy of multiple linear
regression (MLR) was only 70–75% of the long short-term memory (LSTM) neural network.
Previous research has demonstrated that the LSTM model is more accurate and suited for
time series data prediction than standard neural network models [22,23]. Furthermore,
attention-based RNNs can now dynamically learn spatiotemporal associations and obtain
the greatest results in single-step prediction of multivariate time series [24]. Using RNN
methods as a modeling algorithm is an efficient method for enhancing the precision of
modeling-based water quality detection.

In contrast, feature selection is utilized in the preprocessing step to increase training
time, enhance prediction accuracy, and simplify models [25]. In this study, we employ
a strategy based on recursive feature elimination (RFE) to eliminate irrelevant features. Dey
and Rahman [26] showed that RFE is beneficial for correlated predictors in general. For
water quality, many of the physiochemical characteristics are not independent of one an-
other; hence, RFE is believed to be effective for enhancing prediction models for wastewater
quality metrics. There are two primary objectives to accomplish during feature selection:
(1) One may like to identify all significant factors associated with the outcome variable,
or (2) one may wish to find a minimum collection of variables that provides a decent
prediction model that is not overfitted and can generalize to other datasets. Regarding the
forecast of water quality parameters, the second objective will be the most essential.

We observed in the literature that many models were constructed without the iden-
tification of predictive elements. Consideration of all characteristics for prediction may
provide an insufficient starting point for estimating water quality and may not adequately
represent effluent variance [27]. Therefore, the utilization of all indicators without a better
selection of predictive ones may not improve the sensitivity of wastewater effluent fluc-
tuation. A selection of predictive transactional characteristics is crucial for constructing
an efficient model for predicting water quality. To have a relevant selection of character-
istics for the researched model, it is required to have access to many real-time databases,
which is essential for achieving an accurate assessment performance.

This research proposes a unique hybrid paradigm for predicting the changing effluent
loads of WWTPs with complicated processes. In this regard, the contribution of this study
is the development of a specialized multistep prediction model based on ML and RNN
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algorithms that can maintain predictive capability at different time horizons by addressing
the highly nonlinear characteristics of the influent and effluent dataset in the presence
and absence of sensors. This study’s novelties include: (1) The data preprocessing step
combines the hourly recorded time series sensor and operating parameters, applies min–
max normalization, and generates time shift data; (2) The feature selection phase finds
the relevant features by using wrapper feature selection. The wrapper-based RFE selects
the optimal features using decision tree as the feature evaluator and finds the optimal
subset of features for high predictive ability; (3) The deep prediction phase predicts the
future effluent TN by using predictive models, including partial least squares (PLS), MLR,
multilayer perceptron (MLP), LSTM, gated recurrent unit (GRU), and multihead-attention-
based GRU (MAGRU). The performance of the predictive models is conducted to select
the best models and determine the multistep sequence prediction of the effluent TN. The
proposed innovative framework showed a greater capacity for prediction by virtue of its ML
and RNN architectures. To verify the applicability of the proposed prediction methodology
for directing the short- and long-term operational strategies of WWTPs, it was applied to
multistep (1 h and 3 h ahead) prediction horizons over a case study, a WWTP in South
Korea. The outcome of this study is highly beneficial to industrialists and policymakers
when devising proactive decisions for enhanced wastewater treatment management.

2. Materials and Methods
2.1. Target WWTP and Online Data Analysis

This study examined a data set from the H-municipal treatment plant for nutrient
removal, which is situated in South Korea. This WWTP is built for a mean capacity of
22,000 tons/day. The WWTP has a sedimentation tank, anaerobic/aerobic reactors, and
a clarifier. As shown in Figure 1, the WWTP consisted of pretreatment, a grit chamber,
and an activated sludge system, which included anaerobic, anoxic, and aerobic tanks.
The biological treatment system was followed by a secondary clarifier and then treated
with flocculation, sedimentation, sand filtration, and disinfection before discharge as the
final effluent.
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Figure 1. Conceptual configuration of the wastewater treatment plant.

A training set of data consisting of hourly measurements of total nitrogen (TN),
total suspended solids (TSS), biological oxygen demand (BOD), chemical oxygen de-
mand (COD), mixed liquor suspended solids (MLSS), total phosphorus (TP), influent
flowrate (Qin), effluent flowrate (Qeff), return flowrate (RAS), waste flowrate (WAS), and
dissolved oxygen (DO). The statistics of WWTP influent and effluent waste quality data
are shown in Table 1. The mean influent COD, MLSS, TSS, TN, and TP were 13.06 mg/L,
2892.07 mg/L, 2.76 mg/L, 8.13 mg/L, and 0.35 mg/L, respectively. In addition, two months
(1 March 2022–30 April 2022) hourly dataset were chosen for a dynamic-state model testing
and prediction, which is shown in Figure 2. The operation data were collected in real time,
with a data collection frequency of 1 h. Furthermore, to produce an appropriate model,
the dataset must be standardized, and unnecessary datasets must be removed to prevent
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overfitting. One of the primary objectives of this research is to assess the impact of relevant
parameters on model accuracy with or without sensor data.

Table 1. Process variables in an H-municipal full-scale treatment plant.

Influent
Parameter Description Unit Mean Standard

Deviation

Qin Influent flowrate m3/day 83.05 16.84
CODin Chemical oxygen demand mg/L 13.06 2.43
MLSS Mixed liquor suspended solids mg/L 2892.07 335.43
TSSin Total suspended solids mg/L 2.76 0.74
TNin Total nitrogen mg/L 8.13 2.27
TPin Total phosphorous mg/L 0.35 0.16
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2.2. Selection of Predictive Features

The main goal of feature selection is to obtain the most relevant sensor and operating
parameters from a dataset. Reducing the number of features utilized before training an ML
model may increase its runtime and efficiency [28]. In practice, feature reduction is difficult
and often needs lengthy testing. In the ML field, there are several strategies for selecting
predictive features, a set of features that effectively predicts the likelihood of an outcome,
or nonpredictive features [29].

Recursive feature elimination is a procedure that eliminates nonpredictive features
without increasing the model’s error, hence accelerating learning and minimizing training
time. Therefore, the most useful data with predictive capabilities are crucial. Nkiama et al. [30]
used an RFE approach coupled with a decision-tree-based classifier to extract pertinent
characteristics for the goal of enhancing a detection system. The study offers credence to the
notion that feature selection based on RFE may be utilized to enhance classifier performance
and identify significant features of influent and effluent water quality parameters. Figure 3
depicts the RFE method of removing nonpredictive characteristics implemented in this
study. This represents the procedure for data generation, directly taken from the SCADA
database, preprocessing, and elimination of water parameters using RFE with a decision
tree model as the eliminator. At each time step t feature selection, the effluent TN at t is
predicted, and the operation is repeated until completion.
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Figure 3. Architecture representation of the sensor and wastewater process feature selection.

2.3. Prediction Models for Water Quality Parameter

In this section, we describe several prediction models based on machine learning,
artificial neural network, and recurrent neural network, which we used in our study.
Additionally, the internal process of the Transformer model with multihead attention
mechanisms is presented in this section.

2.3.1. Partial Least Squares (PLS) Model

The partial least squares (PLS) technique is a mature method. It produces orthogonal
components by applying existing correlations between explanatory variables and corre-
sponding outputs. The PLS model can be represented in matrix form as Equation (1) [31].

Y = X× C + R (1)
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where C is the regression coefficients matrix, and R is the residuals matrix.

2.3.2. Stepwise Multiple Linear Regression (MLR) Model

MLR was used to establish the pattern of relationships between predictors and out-
come variables. In general, the model can be written as Equation (2) [32].

Y = Bo = B1X1 = B2X2 + . . . + BkXk + ε (2)

where Y is the dependent variable, X1, X2, . . . Xk are the predictor variables, and ε is the
error term.

2.3.3. Multilayer Perceptron (MLP) Model

MLP is a parameter-free modeling technique used to estimate a function between
inputs and outputs. As illustrated in Figure 4, it comprises three layers: input, hidden,
and output. Backpropagation is used to continuously change the network’s weights to
decrease the error rate throughout the MLP learning process. Backpropagation computes
the gradient of the weight space with respect to error computed by a loss function and
updates the network’s weights using stochastic gradient descent and other techniques [33].
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Figure 4. Architecture of MLP modeling for predicting future WWTP effluent water quality.

2.3.4. Memory Gated Recurrent Neural Networks

In this section, RNN versions of recurrent units (i.e., LSTM and GRU) were created.
In this work, we compared RNN architectures, namely, LSTM and GRU. Multiple hidden
recurrent layers are piled above one another in RNNs. The output of one recurrent layer
serves as the input for the subsequent layer.
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The depth of LSTM architecture determines the important forget gate ft, whereas the
input gate xt updates the additions using the term of candidates Ct, and then the output
gate yt generates the prediction values, as given in Equations (3)–(6) [34].

ft = σ× (w f × [ht−1, ot] + b f ) (3)

xt = σ× (wi × [ht−1, ot] + bx) (4)

Ct = tanh(wC × [ht−1, ot] + bc) (5)

yt = σ(wo · [ht−1, ot] + bo) (6)

where σ(•) is the activation function, w is the weight of the matrices, b is the bias vector
of the function, ht−1 is the output value at time t − 1, and xt is the input at time t. The
schematic representation of the LSTM is shown in Figure 5. The GRU structures are
described using Equations (7)–(10) [35].

zt = σ(wz · [ht−1, xt]) (7)

rt = σ(wt · [ht−1, xt]) (8)
∼
ht = tanh(wC · [rt · ht−1, xt]) (9)

ht = (1− zt) · ht−1 + zt ·
∼
ht (10)

where
∼
ht is the current candidate produced by zt and rt at time t, and ht is the activate

function to define the final output at time t.
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2.3.5. Transformer Multihead Attention Network

Google team’s suggested Transformer is a traditional natural language processing
solution that is superior to RNNs for machine translation jobs [36]. This model depends
primarily on an attention mechanism and has the capacity to be parallelized successfully,
as assessed by the minimal number of consecutive operations necessary. Transformer
avoids the RNN model restriction that important computations cannot be conducted
in parallel, and the number of operations necessary to determine the relationship be-
tween two points does not grow with distance [37]. Transformer construction is shown in
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Figure 6; the model comprises stacked encoders and decoders with multihead attention
and time-scattered layers.
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Inspired by the visual attention mechanism of the fovea, a selective attention mecha-
nism concentrating on the important bits of the input has been suggested by assessing the
output’s sensitivity to the variance of the input [38]. This kind of attention strategy not only
fundamentally increases model performance, but also facilitates enhanced interpretability,
as described using the following equations.

αi = softmax( f (keyi, q)) (11)

att((K, V), q) = αN
i=1 × αi × Xi (12)

attention((K, V), Q) = att((K, V), q1)⊕ . . .
⊕att((K, V), qM)

(13)

An attention function can be described as mapping a query and a set of key–value
pairs to an output, where the query, keys, values, and output are all vectors. The output
is computed as a weighted sum of the values, where the weight assigned to each value is
computed by a compatibility function of the query with the corresponding key. Multihead
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attention allows the model to jointly attend to information from different representation
subspaces at different positions, as given in Equation (14).

MultiHead(Q, K, V) = Concat(head1, . . . headh)×Wo

where, headi = Attention(Q×WQ
i , K×WK

i , V ×WV
i )

(14)

where the projections are parameters matrices WQ
i ∈ Rdmodel , WK

i ∈ Rdmodel×dk ,
WV

i ∈ Rdmodel×dv and Wo ∈ Rhdv×dmodel . In this work, we employed h = 2 parallel attention
layers or heads. For each of these, we use dk = dv = 32 and dmodel = 50.

2.4. Performance Evaluation

Using four performance metrics, the predictive prediction method’s efficacy was
tested. These include the root mean squared error (RMSE), the mean absolute error (MAE),
the coefficient of determination (R2), and the mean square error (MSE). These metrics are
provided below:

RMSE =

√√√√√ n
∑

i=1
(ŷi − yi)

2

n− 1
(15)

MAE =
1
n
×

n

∑
i=1
|ŷi − yi| (16)

R2 = 1−

n
∑

i=1
(ŷi − yi)

2

n
∑

i=1
(yi − y)2

(17)

MSE =

n
∑

i=1
(yi − ŷi)

2

n
(18)

where n represents the number of test observations, ŷi is the predicted data, and yi is the
experimental data. A lower value of the error metrics, and a higher R2 value represent
higher accuracy and prediction performance.

2.5. Proposed Multistep Ahead TN Prediction Methodology

Figure 7 presents a proposed framework for a multistep ahead effluent TN prediction
at WWTPs under dynamic variational data. The proposed framework is divided into four
main stages: (1) Data preprocessing and data generation, (2) feature selection by recursive
feature elimination (RFE) method, (3) sliding windows analysis and training of various
machine learning and deep learning models, and (4) multistep (t + 1 and t + 3) effluent
TN prediction based on selected best models. In this study, the effluent TN prediction
model was developed for hourly sequence prediction horizons. In the first stage, the hourly
recorded sensor and reactor dataset of the full-scale WWTP was collected. Then, it was
cleaned and normalized to prepare the suitable data for further processing and generate
the hourly time shift data of the sensor and reactors. In the second stage, a recursive feature
elimination method, wrapper feature selection, was applied to identify the significant and
relevant features, as explained in Section 2.2. RFE searches for a subset of attributes, starting
with all features and removing attributes according to a score, until reaching the number of
attributes to use and producing the optimal subset of features. The RFE selects both sensor
data, such as COD, BOD, SS, and TP, and operating parameters, including flowrate, MLSS,
and DO, if all sensors are working well. Otherwise, it selects the features from reactor data
when the sensor is malfunctioning.
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In the third stage, the moving window concept was configured by selecting one hour
past observation to identify the complex patterns in the neighborhood data, and future
data points were predicted. Then, multiple sequence predictions were conducted by using
several ML and RNN models, including PLS, MLR, MLP, LSTM, GRU, and MAGRU. The
prediction models were developed and trained with the selected features and subsets of
RFE. Then, the parameters of the constructed models were tuned by using the time series
cross-validation on a rolling basis with validation data. Finally, the performance of the
trained models with selected features was compared by employing the metrics mentioned
in Section 2.4. In the fourth stage, the best models were selected from the above-mentioned
models each trained using a different machine learning method. The criteria for selection
as the best model are the MAE of each model obtained during evaluation after feature
selection. The model with the highest MAE score was chosen as the best model. Then,
prediction from selected models with optimal subsets was conducted, and the prediction
values were concatenated to handle the influent and effluent characteristics of wastewater
treatment plants. It can boost the model performance and capture significant information
in the temporal pattern of effluent TN. Then, an average was made of all predicted models.
Finally, multistep prediction of effluent TN may exhibit more reliable and superior results
for highly nonlinear and nonstationary effluent parameters in various prediction horizons.

Computationally, the proposed multistep ahead TN prediction implementation was
conducted through PyCharm IDE with the following features: Intel® Core (TM) i7-11700
@ 2.50 GHz, 32.0 GB RAM, x64-based processor.

3. Results and Discussions

Our primary objective is to comprehend the capability of ML and AI models for
predicting the WWTP’s future condition hours ahead of time. We also investigated how
various factors impact the quality of the prediction.

3.1. Selection of Significant Features for Effluent TN Prediction

A wastewater treatment system is a complicated system influenced by several vari-
ables. The primary process parameters in the treatment process are critical for the stable
and efficient operation of WWTPs, and the inclusion of process parameters (DO in the
aerobic zone, DO in the anoxic zone, MLSS) may not only increase prediction accuracy, but
also give support for future model application. We conducted a study utilizing RFE with
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decision tree and cross-validation to identify the appropriate number of features for evalu-
ating the most important water characteristics. These characteristics (water parameters)
were then graded according to their impact on the classification accuracy of each model.
The feature selection was implemented as described in Section 2.2.

After preliminary screening, 52 variables are selected as the input of the RFE which
includes four influent parameters recorded using a physical sensor (CODin, TPin, TSSin, and
TNin,), four effluent parameters (CODeff, TPeff, TSSeff, and TNeff), and reactor parameters
(TMS_TN, DO, MLSS, and WAS, RAS, Qin, and Qeff). The top six dependent variables were
selected at current time step t. Figure 8 illustrated the selection of water parameters in time
series for the period of two months. The patterns represent the sensor, reactors, influent,
and effluent parameters, where TMS-TN was selected at each time step t. The subsets of
five of the selected parameters were taken for the training models, which are described in
the following section.
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3.2. Determination of the Appropriate Predictive Model Based on Historical Data

This section proposes and compares different algorithms, including PLS, MLR, MLP,
LSTM, GRU, and MAGRU. This section’s primary purpose is to determine which approach
provides the most accurate predictions with little error. In this respect, MSE was used
as the loss function for the training phase of the algorithms, while MAE, RMSE, and R2
were employed as comparison measures. The dataset was additionally preprocessed to
eliminate missing values. It should be emphasized that deleting outliers might enhance
training outcomes, but it is crucial to retain them to better comprehend the overall picture
of the studies, particularly when there are many outliers. Considering this, the dataset’s
outliers were maintained. Depending on the quantity of missing data, users may choose
an appropriate solution-producing approach. Furthermore, the ideal window size and
window aggregation settings in preparation for the final comparisons were used.
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Regarding time series data sets, the characteristics of wastewater are reliant on previ-
ous time steps. Consequently, “Rolling Forecasting Origin” was used to evaluate forecasting
algorithms [39]. In this method, just the subsequent value of effluent TN is prioritized. At
each time step, a new observation was added to the training set, which was the precise
output from the previous time step. A new model is trained using the updated training set
to predict the value of effluent TN. In addition, the performance of the algorithms is only
provided on the test data since it offers an objective test against unobserved data to validate
the trained model’s consistency. In addition, a batch normalization layer was arbitrarily
added between the first and second hidden layers, and linear activation was used to decode
the output layer. Moreover, RNN encodes the input based on the number of motor neurons
(1 neuron). The output layer is next a dense layer that decodes the instantiated RNN and
adapts the output to the dimensions of the desired predicted sequences. The structures
of GRU, LSTM, and MAGRU were determined after optimization of the structure. The
description of the structures of each technique is detailed in Table 2.

Table 2. Description of the structures of the different DL models for TN prediction.

GRU LSTM MAGRU

General training
components

Batch size: 2048
Epochs: 500

Validation split: 0.2
Early stopping patience: 10

Loss function: mean squared error
Optimizer: Adam

Batch size: 128
Epochs: 100

Model checkpoint
Optimizer: Adam

Learning rate: 0.001

Batch size: 3
Epochs: 100

Validation split: 0.2
Loss function: mean squared error

Optimizer: Adam

Hyperparameters
description

Hidden layer 1: 256 memory cells
Hidden layer 2: 128 memory cells

Dropout: 0.15
Learning rate: dynamic

Hidden layer 1: 32 neurons (ReLU)
Hidden layer 2: 16 neurons (ReLU)

Dropout: 0.15
Learning rate: dynamic

Encoder 1: 64 neurons (ReLU)
Encoder 2: 64 neurons (ReLU)

Hidden layer 1: 16
Time distributed 1: 64
Time distributed 2: 32

Max Pooling: 64

The modeling performance metrics quantify the error that each modeling technique
produces. The model with the least values of MAE is the most accurate. The top scores
are highlighted in Table 3 for the modeling performance of the water quality variables in
the wastewater treatment plant using various modeling techniques. The top eight models
are selected based on performance metrics. It shows the randomly picked performance of
all methods at different times, where subscripts t0, t1, t2, t3, t4, and t5 show a subset of
selected predictive features from RFE.

Table 3. Performance comparison of different models.

Models/
Time

1 March
2022 02:00 h

2 March
2022 04:00 h

10 March
2022 13:00 h

15 March
2022 22:00 h

28 March
2022 06:00 h

5 April
2022 11:00 h

15 April
2022 09:00 h

26 April
2022 15:00 h

Score-MAE

PLSt0 0.561 0.808 0.861 0.572 0.715 0.427 0.432 0.503
MLRt0 0.577 0.708 0.716 0.564 0.631 0.435 0.441 0.432
MLPt0 0.772 0.979 0.788 0.645 0.881 1.386 0.706 0.437
GRUt0 0.973 1.013 0.893 1.054 1.068 1.475 1.825 0.969
LSTMt0 0.688 0.876 0.845 0.765 0.788 0.679 0.987 0.906

MAGRUt0 0.436 0.398 0.550 0.425 0.961 0.374 0.588 0.416
PLSt1 0.400 0.553 0.878 0.593 0.595 1.357 0.446 0.672
MLRt1 0.478 0.545 0.730 0.562 0.482 0.928 0.428 0.554
MLPt1 0.530 0.756 0.640 0.492 0.575 1.648 0.656 0.541
GRUt1 0.626 1.015 0.885 0.676 1.080 1.484 1.853 1.375
LSTMt1 0.703 0.754 0.845 0.788 0.721 0.986 1.010 0.906
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Table 3. Cont.

Models/
Time

1 March
2022 02:00 h

2 March
2022 04:00 h

10 March
2022 13:00 h

15 March
2022 22:00 h

28 March
2022 06:00 h

5 April
2022 11:00 h

15 April
2022 09:00 h

26 April
2022 15:00 h

Score-MAE

MAGRUt1 0.304 0.423 0.551 0.321 0.359 0.369 0.669 0.411
PLSt2 0.459 0.611 1.788 1.763 0.539 0.312 0.484 0.369
MLRt2 0.513 0.550 0.932 1.053 0.473 0.434 0.427 0.434
MLPt2 0.653 0.574 0.637 0.955 0.599 4.601 0.716 0.426
GRUt2 0.941 1.004 0.935 1.057 1.061 1.476 1.887 0.876
LSTMt2 0.689 0.757 0.986 0.810 0.721 0.754 0.987 0.906

MAGRUt2 0.395 0.593 0.406 0.264 0.631 0.330 0.584 0.481
PLSt3 0.425 0.401 0.846 0.589 0.570 0.417 0.518 0.356
MLRt3 0.479 0.489 0.695 0.568 0.468 0.470 0.426 0.431
MLPt3 0.495 0.733 0.655 0.608 0.660 1.737 0.549 0.457
GRUt3 0.940 1.037 0.889 1.183 1.075 1.477 1.856 0.877
LSTMt3 0.689 0.752 0.841 0.765 0.721 0.679 0.987 0.906

MAGRUt3 0.404 0.398 0.453 0.557 0.350 0.330 0.628 0.313
PLSt4 0.405 0.428 0.844 0.525 0.544 0.303 0.843 0.407
MLRt4 0.479 0.486 0.700 0.556 0.484 0.439 0.601 0.444
MLPt4 0.523 0.519 0.851 0.588 0.605 1.954 0.968 0.417
GRUt4 0.942 1.006 0.895 1.074 1.082 1.477 1.884 0.924
LSTMt4 0.716 0.754 0.845 0.765 0.721 0.680 1.053 0.906

MAGRUt4 0.408 0.389 0.371 0.492 0.367 0.390 0.611 0.307
PLSt5 0.514 0.409 1.006 0.542 0.551 0.830 0.926 3.337
MLRt5 0.571 0.489 0.806 0.563 0.525 0.580 0.609 1.384
MLPt5 0.764 0.673 0.819 0.599 1.119 1.249 0.683 1.421
GRUt5 0.946 1.026 0.893 1.050 1.066 0.499 0.881 1.461
LSTMt5 0.733 0.754 0.903 0.765 0.721 0.679 0.987 1.132

MAGRUt5 0.376 0.406 0.447 0.427 0.494 0.286 0.438 0.305

The modeling performance metrics quantify the error that each modeling technique
produces. The MAE for the modeling performance of the water quality variables in the
WWTP using various modeling techniques is summarized in Table 3. The top eight models
are selected based on performance metrics. It shows the random performance of all methods
across the time, where subscripts t0–t5 show a subset of selected features.

The LSTM memory cell incorporation demonstrates the worst performance among
the neural models. However, its parameters are adaptable for every time step. The reason
for this is that as the input length rises, so does the amount of information stored in each
layer of the memory module. During network training, the model will be influenced by
these long-term stored correlations while learning the short-term local characteristics of the
current input. As a result, the prediction accuracy of the model decreases. The GRU method
shows accuracy reported as MAE from 0.62 to 1.88 in the training model, where it shows
an acceptable accuracy; however, it suffers from overfitting as for unseen information.
According to the RNN methods, the modeling performance is somehow similar; however,
comparing the RNN with the MLP, it can be noted that low improvement can be obtained
when applying RNN methods in each time step (hourly interval prediction), achieving
11–25% improvement on average. The MLRt2 exhibits the most accurate performance for
considering neural models, with an improvement of 8.3% with the MLPt4. The accuracy of
the MLR is reported as MAE, where 0.42 was reported as the lowest in the MLRt1, while
the highest value of −1.38 was reported in the MLRt0; thus, it is selected as the best model
in some training stages.

Furthermore, the multi-attention transformer-based RNN network and statistical
method, PLS, resulted in the most accurate model for the prediction of an effluent TN.
The performance values of the MAGRU and PLS in the training stage are 0.26 (MAGRt2)
and 0.30 (PLSt4), respectively, which outperformed the ML approaches for the modeling
task. MAGRU method is selected most of the time as per the performance metrics for the
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prediction of effluent TN as it shows a low MAE value compared to the other studied
methods. The second ranked after MAGRU was the PLS modeling method, which achieved
the best results in most cases. The comparison results of the real-time modeling performance
based on different ML and AI models are depicted in Figure 9. The layer represents the
model selected in time step t.
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The MAGRU method reported the most accurate and selective predictive performance
among all introduced models in various subsets. Generally, the mean absolute error and
higher R2 throughout the data groups, and for modeled parameters of TN, are indications
of the MAGRU’s robustness. The PLS obtained the second most accurate model compared
to the reported ML models. At the same time, it shows that the MAGRU and PLS models
outperform the GRU and LSTM neural networks. The MAE of the PLSt5 approximating
wastewater treatment processes was 0.41 for effluent TN, while the MAE of the predicted
TN using the MAGRUt5 was 0.28. The rest of the performance for all models can be seen
in Figure 9a. Detailed information on the selection of the models can be found in Figures
S1–S4 of the Supplementary Information. The total number of counts of each model in the
training period can be seen in Figure 9b. It shows that MAGRU was selected most of the
time as the best model, where MAGRUt5 is ranked first with a total count of 958.

TN has discharge criteria for WWTPs; hence, it is vital to develop a multi-index pre-
diction model. Based on the study, it has been determined that the prediction accuracy
of models constructed using the PLS and MAGRU is high. Consequently, the selected
models were used for the prediction of effluent TN. We agree that the following variables
are mostly responsible for the significant performance of the multi-attention transformer:
(1) The memory module plays a critical role in achieving this outcome by recording local
and global correlation dependencies through long-term and short-term memory, respec-
tively. (2) Multisegment prediction reduces the number of repetitive outputs, which ef-
fectively reduces the build-up of mistakes. (3) Integrating the time-distributed module
into the model makes the model more sensitive to changes in the input data’s scale. This
suggests that the difficulty of collecting long- and short-term trends for ultra-long-term
prediction grows as the horizon lengthens. All selected models were used in the prediction
stage and concatenated to take the average of all eight models for efficient prediction of the
multistep ahead effluent TN. The next section explains the prediction performance of the
proposed approach.

3.3. Hourly and Multistep Effluent TN Prediction

Any rapid changes in wastewater characteristics in the influent and effluent might
result in severe treatment failure, a decrease in the overall remediation effectiveness of
WWTPs, and further environmental harm. To assist WWTP management teams to take fast
action in response to these concerns, a short-term prediction technique based on hourly
regression is a must-have.

To evaluate the effectiveness of the selected algorithms on WWTPs, Figure 10 demon-
strates the variation of predicted test data based on the error ratio between predicted and
observed data by taking the average of all selected models. The figure depicts standard
residual error, and the residual error was small. All selected models performed adequately
on the effluent TN dataset, as the errors were not excessively huge, and they were all
quite close. Although the errors of each of the eight models were tiny, the number of
discrepancies between the point prediction curves and the observed value curves was
considerable. The proposed approach was proven to have a positive impact on the ef-
fluent TN multistep forward prediction. The MAGRU and PLS model provided the best
fitting precision and generalizability for the prediction of effluent TN, as well as reasonably
substantial prediction power, allowing for accurate nonlinear modeling in wastewater
treatment systems.



Water 2022, 14, 3147 16 of 20

Water 2022, 14, 3147 17 of 22 
 

 

TN multistep forward prediction. The MAGRU and PLS model provided the best fitting 

precision and generalizability for the prediction of effluent TN, as well as reasonably sub-

stantial prediction power, allowing for accurate nonlinear modeling in wastewater treat-

ment systems. 

To minimize overfitting issues, it is observed that MAGRU and PLS permitted better 

performance of testing results than training results. In the meantime, Figure 10b demon-

strates that the predictions of selected models can capture the variability of effluent TN 

with the overall efficiency of 98.1% for 1 h future prediction. Results clearly indicate the 

improved accuracy of the proposed framework in an operational wastewater treatment 

plant. The suggested method also proved the robustness of predicting the effluent under 

substantial changes, which would be useful for boosting the alertness of the WWTP oper-

ation or altering the urban sewage network in advance to equalize the pollution loading 

of the influent. As indicated in Figure 10c, the TN content predicted by the suggested 

method for effluent over-limit discharges was more likely to correspond to reality. The 

residuals yielded by the proposed approach, in which the values were maintained in the 

interval of [−4, 4], except for a single point that surpassed these intervals. A quantile–

quantile plot of the residuals, as shown in Figure 10d, suggests that these errors have a 

close to normal distribution and do not show extreme observations, making this a robust 

method for water quality modeling. 

 

Figure 10. One-hour ahead prediction performance visualization of (a) a time series of predicted 

effluent TN, (b) a scatter plot of predicted and current TN values, (c) the generated residuals, and 

(d) the quantile–quantile plot for model residuals. 

Figure 11 shows the effluent TN predictions for 3 h ahead, which are similar to the 

findings shown in Figure 10. It is shown in Figure 11a that the suggested modeling frame-

work was able to capture the peak values that were important for operational decision-

Figure 10. One-hour ahead prediction performance visualization of (a) a time series of predicted
effluent TN, (b) a scatter plot of predicted and current TN values, (c) the generated residuals, and
(d) the quantile–quantile plot for model residuals.

To minimize overfitting issues, it is observed that MAGRU and PLS permitted better
performance of testing results than training results. In the meantime, Figure 10b demon-
strates that the predictions of selected models can capture the variability of effluent TN
with the overall efficiency of 98.1% for 1 h future prediction. Results clearly indicate the
improved accuracy of the proposed framework in an operational wastewater treatment
plant. The suggested method also proved the robustness of predicting the effluent under
substantial changes, which would be useful for boosting the alertness of the WWTP opera-
tion or altering the urban sewage network in advance to equalize the pollution loading of
the influent. As indicated in Figure 10c, the TN content predicted by the suggested method
for effluent over-limit discharges was more likely to correspond to reality. The residuals
yielded by the proposed approach, in which the values were maintained in the interval of
[−4, 4], except for a single point that surpassed these intervals. A quantile–quantile plot
of the residuals, as shown in Figure 10d, suggests that these errors have a close to normal
distribution and do not show extreme observations, making this a robust method for water
quality modeling.

Figure 11 shows the effluent TN predictions for 3 h ahead, which are similar to
the findings shown in Figure 10. It is shown in Figure 11a that the suggested modeling
framework was able to capture the peak values that were important for operational decision-
making. As shown in Figure 11b, an appropriate approximation of the dataset can be shown
by looking at the correlation between the present and expected TNeff values during the
prediction stage. According to the suggested technique, Figure 11c,d shows the residuals
generated by this method, which were kept within the range of [4, 4] except for three points.
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There are no extreme data in the residuals, and this technique is thus resilient for water
quality modeling, as shown by a quantile–quantile plot. Thus, the proposed method can
assist in establishing the WWTP’s proactive measures to address potentially aberrant cases.
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effluent TN, (b) a scatter plot of predicted and current TN values, (c) the generated residuals, and
(d) the quantile–quantile plot for model residuals.

Since ML algorithms require an understanding of arithmetic and programming lan-
guages, a web app was designed to make them more user friendly. The ones of interest
must enter wastewater parameters, such as effluent TN, and then the predicted results
are readily available. The web application is comprised of four parts: (1) User interface,
which is the front-end that accepts user input values and object controls, as well as the
program’s layout and appearance; (2) Server function, which is the back-end that processes
these input values to finally produce the output results that are finally presented on the
website; (3) Database, the cloud that reads and writes real-time sensor data from wastewa-
ter treatment plants and saves predicted values; and (4) Algorithms, the application itself
that combines.

In terms of model structure and parameter formulation, this work’s outcomes may
potentially serve as a preliminary reference for future research. In addition, it is important to
note that effluent TN was deliberately chosen as an output variable due to its vital concern
over nutrient enrichment, but the web app can also be customized for other wastewater
quality parameters (such as TP, NH3, COD, and TSS as output variables), depending on the
specific purpose and relevant matter. Overall, this web program provides a comprehensive,
easy, and simple method for predicting wastewater quality, hence assisting enterprises with
proactive water management techniques. Additionally, this web service can continuously
monitor the wastewater quality and warrant the accuracy of the developed framework
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using ML algorithms. The developed ML framework is applicable to other places, as the
work is implemented in various wastewater treatment facilities.

4. Conclusions

For the proper operation and management of WWTPs, early identification of vari-
able influent and effluent concentrations is critical. According to this study’s findings,
ML algorithms may be used to predict the quality of wastewater in full-scale WWTPs.
Effluent TN concentration is a limiting factor in the formation of eutrophication because its
concentration regularly exceeds the standard discharge threshold. In this work, six differ-
ent ML algorithms ranging from shallow to deep learning architectures were developed
to detect effluent TN concentration. As illustrated by the lowest error value, MAGRU,
a multi-attention RNN, consistently documented the greatest performance for regression
estimation. When it came to computing efficiency, PLS performed well, indicating that this
technique was a good fit for effluent TN modeling. Other ML algorithms, on the other hand,
fell short due to structural complexity concerns. LSTM did not help to enhance prediction
capability; on the contrary, it made the model structure more unstable and noisier. Shallow
architectures, such as MLR and MLP, on the other hand, were unable to deal with big
datasets that exhibited nonlinear and nonstationary characteristics.

The proposed model was validated with measured effluent data from a full-scale
WWTP in South Korea. Effluent TN was best predicted by the suggested prediction model
because of the structure’s ability to cope with hourly and peak load from deconstructed
sublayers of original data. Due to the high peaks and short- and long-term periodic
properties of wastewater discharge, this is a critical benefit for the suggested framework
Incoming influent, a major contributor to effluent variability, and load factors relevant
to actual WWTP operations were included in the prediction model, and it performed
well. Modern urban activities are becoming more automated and computerized, making
intelligent administration of wastewater treatment systems possible. A new and effective
effort is made in the data preprocessing technique to use time-frequency transformation
algorithms to make outliers and nonaligned data play beneficial roles. This study’s high-
frequency indicators have a time window of between one and three hours.
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