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Abstract: This study presents a comprehensive data analysis using univariate and multivariate
statistical techniques as a tool to establish a baseline for the assessment of water quality parameters in
environmental compartments. The Al Wasit Nature Reserve is a hypersaline wetland in the UAE with
a spatial fluctuation in water parameters as water flows above ground as well as ponds forming in
deeper areas and over the year due to the arid climate and seasonality. Water samples were collected
at fifteen sites along the hypersaline wetland over three periods during the months of February to
March 2021 as temperatures started to rise with the oncoming summer. Water quality parameters,
including the temperature, pH, turbidity, dissolved oxygen (DO), oxidation-reduction potential
(ORP), electrical conductivity (EC), chemical oxygen demand (COD), chloride, ammonia, and nitrates,
were measured. The results of the data analysis were used to group the sites, which were divided
into three groups with similar water quality characteristics. Correlation assessments between all
studied parameters revealed significant differences in the values of eight of the evaluated parameters
between the three identified clusters, with only the nitrate concentrations and dissolved oxygen
parameters not being significant. It was found that one of the three clusters (cluster 1) performed
better than the other two for most of the studied parameters. The results of this study demonstrate the
applicability and the potential time and cost savings of the usage of data analysis tools for long-term
data monitoring in the wetland and other environmental systems worldwide.

Keywords: wetlands; water quality; ANOVA; chemical oxygen demand; principal component
analysis (PCA)

1. Introduction

Wetlands are dynamic ecosystems covering approximately seven percent of the earth’s
total surface [1]. A wetland is an area of land typically saturated with water standing above
a soil surface [2]. Regional and local variations in topography, soil, climate, hydrology,
chemistry, vegetation, and human activity influence wetlands [3]. Hence, they are classified
into different categories depending on their geomorphic settings, water sources, and
hydrodynamics. Wetlands can be natural, artificial, stagnant, flowing, brackish, and
salty [1]. In a wetland, the water level can vary significantly between permanently flooded
and seasonally flooded areas with saturated soils [4]. Wetland habitats are important for
birds because they meet their needs for feeding, nesting, and roosting [5]. In general,
wetlands have a diverse range of life and provide shelter for a variety of animals and
plants.

Healthy, natural wetlands are crucial to human life. Global wetlands cover over
12.1 billion hectares, where 93% are inlands systems and 7% are marine and coastal. The
most significant areas of wetlands are concentrated in Asia, with approximately 32% of the
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global area, followed by North America with 27% and Latin America and the Caribbean
with 16%, while 13% are in Europe, 10% are in Africa, and only 3% are in Oceania [6].
Despite the fact that wetlands play an essential role in achieving the Sustainable Devel-
opment Goals [7,8], as shown in the Aichi Biodiversity Targets, the Paris Agreement on
climate change, and other related commitments, wetlands face various challenges. The UN
Environment World Conservation Monitoring Centre reports that the number of wetlands
declined over the period from 1970 to 2015 [9]. Consequently, the plants, animals, and other
species living in these wetlands are at risk of extinction. In addition, drainage, invasive
species, unsustainable use, and pollution are serious issues that wetlands suffer from.
These wetlands play a critical role in providing ecosystem services such as food security,
climate change mitigation, erosion protection, and biodiversity, which encouraged several
organizations to assess and promote wetland conservation and wise wetland use. In this
regard, in 2018 the Ramsar Convention, an international legal treaty essentially focused on
wetlands, highlighted key steps to conserve and regain healthy wetlands [10].

The United Arab Emirates has made significant progress in considering environmental
issues and improving the perceptions of the value of the environment and its impact on
overall development in the UAE. The Ministry of Environment and Water was established in
2006, and its role was expanded in 2016 to include international and national climate change
issues. The issue of the conservation and development of wildlife grabbed significant
interest in the United Arab Emirates (UAE). The country has made huge efforts to protect
and reintroduce endangered species to their natural habitat through adopting regulations,
monitoring their implementation, and establishing and expanding protected areas [11]. As
terrestrial and marine diversity is a fundamental part of the UAE’s heritage, the Ministry
of Climate Change and Environment has continuously worked to strengthen its efforts
through the implementation of a variety of projects and initiatives under the National
Biodiversity Strategy [12]. In the UAE, wetlands are key areas for bird protection, especially
migratory birds. Local increases in wetlands through conservation and construction efforts
have helped bird conservation efforts [13]. A key protected area in the UAE is the Al Wasit
Nature Reserve in the northern part of Sharjah, which is significant for bird ecology in
the Emirate of Sharjah. It is a distinctive location with a natural lake sustained by the
upwelling of underground water. The most outstanding feature of the reserve is the diverse
ecosystem with different habitats and vegetation types, including sand dunes, salt marshes
(sabkhas) associated with ponds, and a large open lake. In 2007, the Al Wasit Wetland was
declared a protected area by Emiri Decree No. (7) [14]. The reserve has great environmental
importance because it is a beautiful natural habitat where plants remove harmful emissions
and dust from the air by increasing the amount of oxygen, which has a positive effect on
global warming. It is an important place in the UAE to preserve the natural ecological
balance and enhance ecotourism through the diversity of ecosystems. It serves as a shelter
for local and migratory birds as well as a focal point for neighborhood residents. It has
rich biodiversity, including 198 different species of birds and a variety of small mammals,
reptiles, and insects as well as rare insect species that have been sighted and recorded for the
first time in the UAE [14]. However, the Al Wasit Nature Reserve was previously reported
to be threatened by chemical dumping and other waste dumping, perennial inundation,
and drowning. A previous study in the wetland showed fecal contamination in the surface
water, but no additional significant contamination was reported [15].

Environmental data are important to assess the water quality and the status of an
ecosystem, but oftentimes the values alone do not significantly discriminate among the
sites of studies. In aquatic ecosystems, physical and biological factors can determine the
water quality. Routine water quality monitoring involves several parameters such as the
dissolved oxygen, pH, conductivity, total nitrogen, and total phosphorus, among others,
and may vary depending on the required information of the area, the utilized methods, the
sampling size, and the goal of the project. Fathi et al. used parameters including nitrate,
nitrite, ammonium, alkalinity, hardness, turbidity, conductivity, dissolved oxygen, and pH
to calculate the water quality index (WQI) of a wetland [16]. Some multivariate statistical
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techniques, such as principal component analysis (PCA), have previously been used in the
interpretation of the results and to reduce the dimensionality of a multivariate dataset while
maintaining its original structure [17]. In addition, the application of various statistical
techniques such as cluster analysis, discriminant analysis, and ANOVA analysis helps in
the interpretation of complex datasets to better understand the water quality of a system,
enabling the identification of possible factors affecting the water system and providing
a valuable tool for water resource management as well as a quick solution to pollution
problems [18,19] The use of some nonparametric multivariate statistical approaches was
also beneficial in assessing the different levels of some pollutants, such as arsenic, in the
aquifers of the Calabria region [20]. A geochemical modeling approach was also used
to study arsenic pollution through investigating water–rock interactions and applying
reaction path modeling [21]. In this study, various univariate and multivariate data analysis
techniques were performed on the Al Wasit Nature Reserve area in the United Arab
Emirates to investigate how water quality parameters change at different sampling sites
and to determine which variables are most responsible for the variations in water quality.
The findings of this study will greatly benefit scientists by facilitating future sampling
collections and reducing the time and effort required for these activities.

2. Literature Review

The concepts that are covered in the literature are extensive and span different areas of
research and practice. This section reviews the literature from several sources by focusing
the review of the literature on water quality assessment methods such as statistical data
analysis in the Al Wasit Nature reserve in the UAE in particular. This section identifies the
gaps in the body of research knowledge and the motivations for this research.

2.1. Importance of Wetlands

Wetlands can effectively minimize the number of pollutants and effluents before
discharge to rivers and other resources. Some wetlands are natural, while others are con-
structed (artificial). The performance of wetlands in improving water quality and reducing
runoff pollution has been described in several studies [22,23]. In addition, wetlands provide
diverse watershed functions, including important wildlife habitats, floodwater storage,
groundwater recharge, and water filtration. The global decline in wetlands has been re-
lated to amphibian reduction, the loss of reptile and invertebrate habitat, and changes
in hydrologic states [24–26]. For these reasons, wetlands have been considered in global
policies and targets. For example, they are considered an important element in the 2030
Agenda for Sustainable Development because they are necessary for achieving many of
the 17 United Nations Sustainable Development Goals, namely (i) SDG 6, which focuses
on water sanitation; (ii) SD 14, which motivates the protection of coastal and marine areas;
and (iii) SDG 15, which promotes the sustainable use and protection of inland freshwater
ecosystems and their services [27]. In addition, wetlands are of great relevance to the “Aichi
Biodiversity Targets”, which are part of the Strategic Plan for Biodiversity (2011–2020) [28].
Many of these targets focused on stopping ecosystem loss, including Target 5, which aimed
to wipe out the loss of natural habitat by 2020. Other targets aimed to preserve inland,
coastal, and marine water and promote the sustainable use of aquatic species and the
management of aquaculture [29]. Moreover, the UN Convention to Combat Desertification
set a target to halt land degradation, which has a direct impact on wetlands such as peat-
lands and rivers [30]. Wetlands are also part of several international agreements, such as
the 2015 Paris Agreement, which called on countries to include wetland protection and
management in their nationally determined contributions to addressing climate change
with nature-based solutions [31]. Accordingly, it is important to understand the risks and
challenges associated with wetlands in order to effectively set regulations to mitigate risks
and achieve the aforementioned targets.

Wetland assessment and monitoring are essential to the understanding of how wet-
lands are evolving over the long term, how species richness and water quality are changing
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over time, and how they are deteriorating. Natural wetlands are in long-term decline
worldwide. Both inland and marine/coastal wetlands have declined by about 35% from
1970 to 2015. In contrast, man-made wetlands have doubled during this period and account
for 12% of today’s wetlands. Nevertheless, this increase in man-made wetlands has not
compensated for the loss of natural wetlands [6]. Due to this fact, expectations of a decline
in wetland-dependent species have been raised, with concerns of extinction. In this context,
the International Union for Conservation of Nature Red List assesses the level of threat
of extinction of animal and plant species, showing that 25% of species that depend on
inland wetlands are threatened with extinction. It has also shown that inland species
dependent on rivers and streams are more threatened globally than species in swamps and
lakes. In addition, the risk of extinction is higher for species in inland wetlands than for
their terrestrial counterparts, and wetland-dependent species are most at risk in tropical
areas [32]. Using the Wetland Living Planet Index, the percentage of wetland-dependent
species declined by 39% between 1970 and 2011 [24]. Ultimately, water quality is a crucial
concern for human well-being [33], yet the signs indicate that it is negatively impacted
over time. Despite the fact that a decline in water quality leads to wetland degradation,
wetlands have a significant role in enhancing water quality through ecosystem-regulating
services [34]. The preceding discussion suggests that the main challenges facing wetlands
are wetland degradation, declines in wetland-dependent species, and water quality degra-
dation. However, since this study aims to assess and analyze the water quality parameters
in wetlands, specifically in the Al Wasit Wetland, the next section will focus more on the
problem of water quality in wetlands and the main trends related to it.

2.2. Water Quality of Wetlands and Statistical Analysis Techniques

Many factors play important roles in affecting the water quality in wetlands, including
the degree of wastewater treatment, the erosion of topsoil, nutrient loading and eutrophica-
tion, pathogen pollution, salinity, and thermal stress. Untreated wastewater is a major threat
to water quality. Therefore, proper treatment should be carried out before the water enters
wetlands. It was shown by [35] that the treatment of industrial and municipal wastewater
in countries has a positive correlation with the country’s income. On average, 70% of
wastewater is treated in high-income countries, followed by 38% in upper-middle-income
countries, while lower-middle-income countries treat about 28% of their wastewater, and
only 8% of wastewater is treated in low-income countries. In addition, according to the
United Nations World Water Development report [36], over 80% of the world’s wastewater
is discharged into wetlands without adequate treatment. This creates serious problems
that negatively impact wetland water quality. The next challenge affecting water quality
is topsoil erosion, which leads to nutrient loading and the eutrophication of wetlands,
considered the greatest challenge to water quality. In 2017, the United Nations reported
that by 2050, about one third of the population will be exposed to water with excessive
nitrogen and phosphorus [37]. In addition, increased sedimentation may harm aquatic
biodiversity, e.g., [38,39], while on the other hand, the retention of sediment behind dams
would minimize sediment loading in coastal and deltaic areas, leading to the subsidence
and loss of wetlands. Moreover, the preliminary results from the Global Water Quality
Monitoring Program show that one third of all river stretches in Latin America, Africa,
and Asia are already affected by severe pathogen pollution [40], which may lead to serious
health issues and diseases such as cholera and giardiasis [27]. Another important factor in
water quality is salinity, which can increase due to vegetation clearing and the irrigation of
saline soils as a result of the infiltration of water through the soil profile [41]. The excessive
extraction of groundwater and the rise in sea level promote saltwater intrusion [42]. Once
they occurs, soil salinization and groundwater salinity are considered permanent and
irremediable problems [43]. Salinity plays an important role in this study, as the Al Wasit
Wetland is considered to be a hypersaline wetland. A hypersaline lake is a body of water
with a concentration of salt exceeding 35 g/L [44]. It has been reported that all wetlands
are initially freshwater water bodies, and they eventually move to more saline states due to
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natural and anthropogenic factors [45]. Additionally, according to Delaney et al. (2017),
saline wetlands report conductivities ranging between 8.8 and 50 mS/cm, and those higher
than 50 mS/cm are considered hypersaline. The eutrophication of wetlands is another
important problem caused by nitrogen oxides, ammonia, and other compounds released
from many sources, such as fertilizers and animal wastes in agriculture and landscaping
and the release of treated sewage waters into the environments [46]. Finally, the thermal
pollution of wetlands, associated with power plants and industry, reduces oxygen levels,
alters the food chain, reduces biodiversity, and promotes the invasion of thermophilic
species [47].

Since water is an invaluable and radical element for life in wetlands, providing a range
of services to ecosystems and serving as a central habitat for various species, the water
quality of surface and groundwater systems has become an important field of research in
the last century and is still one of the most important trends in recent decades. Statistical
data analysis is an essential research tool for studying relationships, patterns, and trends
among variables and has applications in various research fields, including the environ-
mental field, where statistical analysis has played an important role in assessing the water
quality in different regions. For example, a case study on the Fuji River Basin in Japan [17]
illustrated the usefulness of multivariate statistical analysis techniques for the analysis
and interpretation of complex datasets and for water quality assessment. The author per-
formed a discriminant analysis to reduce the dimensionality of the large dataset and to
identify a few indicator parameters responsible for large variations in water quality. In
addition, factor, principal component, and cluster analyses were applied to surface water
quality data in the Tahtali Basin in Turkey [18]. It was concluded that agricultural use and
domestic discharges controlled the surface water quality. In addition, a cluster analysis
was performed to group the sites based on variable levels. Agricultural discharges were
found to strongly influence the north and northeast areas of the region. These techniques
were useful in helping managers understand the complex nature of water quality prob-
lems and set priorities for improving water quality. Moreover, Apollaro et al. [20] adopted
a multivariate nonparametric technique to investigate the different levels of concentration
of some chemical elements in ground water, such as arsenic, which is considered to be
one of the most monitored pollutant elements worldwide due to its harmful effects on
human health. In addition, a geochemical modeling approach was also used by [21] to ad-
dress arsenic pollution while studying water–rock interactions and applying reaction path
modeling to investigate the rock-to-water release of arsenic and the fate of this pollutant
in crystalline aquifers. Another nonmetric multidimensional-scaling analysis was used
by [19] to investigate the variation associations of abiotic and biotic parameters among
and within three constructed wetlands in metropolitan Taipei. Further investigation was
conducted in [19] to test the pollutant-removal performance of the wetland systems.

According to Gazzaz [48], a latent structure of the Kinta River (Malaysia) water qual-
ity dataset was identified using three different multivariate statistical techniques (factor
analysis, cluster analysis, and discriminant analysis). The factor analysis identified the
parameters responsible for the variations in water quality of the Kinta River. The cluster
analysis grouped the monitoring sites into two clusters, one for sites with low water pollu-
tion and the other with relatively high river pollution. The discriminant analysis confirmed
these clusters and created a discriminant function to predict the membership of new or
unknown samples in a cluster. These techniques showed the potential to appropriately
reduce the number of water quality parameters and the number of monitoring stations
for long-term monitoring. Furthermore, the important rule of wetlands in decreasing
pollutants and wastewater before discharging into rivers and other water sources encour-
aged the researchers in [49] to invest time to perform statistical techniques and a pattern
analysis, which resulted in time and cost efficiency for data monitoring purposes in a free
constructed wetland.
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The novelty of this study is that it serves as a baseline to demonstrate the use of statistical
analysis techniques to evaluate wetland water quality data. Furthermore, it will play a role in
determining which sites are representative and which require continuous monitoring.

3. Materials and Methods
3.1. Study Area

The Al Wasit Nature Reserve (Al Wasit), shown in Figure 1, is located in the northern
Sharjah suburb in the United Arab Emirates (UAE). The reserve is considered one of the
most ecologically diverse conservation sites, and it is a protected area for both captive and
wild birds [50]. The National Reserve was previously known as Al Ramtha Lagoon, and
it is categorized as a saltmarsh (sabkha), giving it a hypersaline nature [51]. The wetland
is currently conserved by the Environment and Protected Areas Authority of the Sharjah
Government. For the purpose of this study, we have characterized the different areas into
ponds, including the big pond (shoreline and middle) occupying the biggest area near the
shore and the middle deeper areas; followed by the middle pond, connecting the pond
with above- and below-ground flows between the big and upper ponds, and the upper
pond (the final water destination).
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3.2. Sampling and Water Quality Assessments

Samples were collected from fifteen locations along the Al Wasit Wetland biweekly
during the months of February to March 2021. The locations were selected based on
the available surface water and were representative of the whole reserve. At least three
observations were recorded per location. The studied parameters are shown in Table 1.
An on-site water quality analysis was conducted using an HI 9829 multiparameter (Hanna
Instruments, Singapore) to measure the temperature, pH, turbidity, dissolved oxygen (DO),
oxidation-reduction potential (ORP), and electrical conductivity (EC) at various locations on
the wetland. Additionally, surface water samples were collected simultaneously in Nalgene
or polypropylene bottles and transported to the laboratory for an analysis of chemical
oxygen demand (COD), chloride, ammonia, and nitrates. Ion-selective electrodes (ISEs) for
ammonia, nitrates, and chloride were used to measure samples in the laboratory (HI 4101,
HI 4113, and HI 4107 from Hanna Instruments, Singapore). Chloride samples were diluted
due to their high salt content. The chemical oxygen demand (COD) was tested using HI
93754C-25 HR and an HI 83399 multiparameter photometer (Hanna Instruments, Rhode
Island, United States). Guiding standards for hypersaline wetlands are not available. Hence,
the marine water quality guiding standards published by the Ministry of Climate Change
and Environment (MOCCAE) and typical concentrations found in similar hypersaline
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environments were used for comparison purposes and are shown in the fourth column of
Table 1 (MOCCAE, 2020) [52].

Table 1. Parameters studied in Al Wasit Nature Reserve and units of measurement.

Parameter Name Representation Unit of Measurement Guiding Standards

Electrical conductivity EC µS/cm >50,000 **
Dissolved oxygen DO mg/L >5 *

Oxidation-Reduction
Potential ORP mv -

Potential Hydrogen pH - 6.0–9.0 *

Turbidity turb
FNU

(Formazin
Nephelometric Units)

<75 *

Temperature Temp ◦C 19–35 *
Chemical oxygen demand COD mg/L <40 *

Chloride Cl mg/L 26,000 ***
Ammonia NH3 mg/L <0.06 *

Nitrate NO3 mg/L <50 *
Note: * (MOCCAE, 2020, [52]), ** (Delaney et al., 2016, [46]), *** (Taher et al., 2012, [53]).

3.3. Statistical Analysis

Several statistical techniques were utilized to assess the water quality. In particular,
a Pearson correlation analysis was performed to examine the associations among all pairs
of the evaluated parameters. A hierarchical cluster analysis was used to group the 15 sites
into three clusters based on the water quality parameters. A discriminant analysis was
also used to verify the quality of the cluster analysis results. Finally, to investigate the
differences between the three clusters, a nonparametric ANOVA test was used, followed
by multiple comparison procedures, to detect the source of the differences among the
three clusters for each parameter.

4. Results

The selected water quality parameters studied per site were recorded during each
sample trip. On average, the temperature ranged from 25.33 to 30.52 ◦C, the pH ranged
from 8.12 to 8.50, the electrical conductivity ranged from 27,541 to 116,547 µS/cm, and the
DO ranged from 6.81 to 10.88 mg/L, among others. To understand the differences between
the sampling locations and parameters, all measurements were further analyzed using
a Pearson’s correlation analysis, multivariate statistical techniques, a cluster analysis (CA),
and a linear discriminant analysis.

4.1. Pearson Correlation Analysis

The relation between the measured water quality parameters was investigated using
the Pearson correlation coefficient by testing its significance at a 5% level of significance
(Proc corr procedure) using the SAS 9.3 software (SAS Institute, Cary, NC, USA). The
results are shown in Table 2. According to [54], the correlation values can be interpreted
as follows: (1–0.9) very high, (0.89–0.7) high, (0.69–0.5) moderate, (0.49–0.26) weak, and
(0.0–0.25) very weak. From Table 2, moderate negative correlations were found between
the chloride levels and the dissolved oxygen (r = −0.529, p-value < 0.05), pH and ORP
(r = −0.507, p-value <0.05), pH and EC (r =−0.580, p-value < 0.05), EC and NH3 (r = −0.598,
p-value <0.05), and NH3 and Cl (r = −0.534, p-value < 0.05). On the other hand, high
positive correlations were observed between EC and both Cl and COD (r = 0.860 and 0.805,
respectively, p-values <0.05). Moderate positive correlations were observed between ORP
and EC (r = 0.528, p-value < 0.05), ORP and Cl (r = 0.512, p-value < 0.05), Turb and Cl
(r = 0.565, p-value < 0.05), and Cl and COD (r = 0.649, p-value < 0.05).
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Table 2. Pearson correlation matrix for the water quality parameters.

Temp pH ORP EC DO Turb NH3 NO3 Cl COD

Temp
pH −0.313 *

ORP −0.084 −0.507 *
EC 0.259 −0.580 * 0.528 *
DO −0.015 0.527 * −0.367 * −0.414 *
Turb 0.137 −0.402 * 0.458 * 0.598 * −0.324 *
NH3 −0.023 0.398 * −0.243 −0.598 * 0.369 * −0.541 *
NO3 −0.198 0.439 * 0.025 0.320 * 0.179 0.291 −0.247

Cl 0.305 * −0.421 * 0.512 * 0.860 * −0.529 * 0.565 * −0.534 * 0.300 *
COD 0.175 −0.404 * 0.333 * 0.805 * −0.192 0.375 * −0.472 * 0.387 * 0.649 *

Note: * Significant correlation at 5% level of error.

4.2. Multivariate Statistical Analysis

To further understand the differences among the sampling locations, two multivariate
statistical techniques, cluster analysis (CA) and linear discriminant analysis (LDA), were
used. CA, which is an unsupervised multivariate technique, was used to cluster cases
or objects based on their characteristics, resulting in clusters of objects with high internal
homogeneity (within-cluster homogeneity) and low homogeneity between clusters [55].
LDA is a multivariate technique that can either predict or describe group differences [56].
This technique is frequently used to develop classification rules in order to assess the
relative importance of variables in differentiating between groups [57].

In this study, complete linkage hierarchical clustering was performed on the dataset
using the proc varclus procedure in the SAS software in order to cluster all 15 sampling
sites based on the water properties, which were determined based on the 10 measured
parameters. By using the proc varclus procedure, the parameters were first normalized,
and the Euclidean distance was used to find the distance and measure the similarity and
dissimilarity between each pair of individual observations. Then, a complete linkage was
used to measure the distance between each pair of clusters. The CA results are depicted
in Figure 2. From the dendrogram in Figure 2, one can observe three clusters: sites 1, 2,
and 3 are grouped into one cluster (Cluster 1); sites 4, 5, and 6 are grouped into one cluster
(Cluster 2); and the remaining sites can be grouped together (Cluster 3). Furthermore, the
three clusters can be classified based on their locations on the map as follows: Cluster 1
can be classified as the upper pond, Cluster 2 can be classified as the middle pond, and
Cluster 3 can be classified as the big pond (see Figure 3). In the big pond, some of the sites
are located in the middle of the large pond, including sites 9, 8, 10, and 15 on the map
(Figure 3), while the remaining sites, 11–14 and 7, were located on the shore of the big pond
on the map (Figure 3). For more clarity, the locations of the three clusters in the wetland are
shown in Figure 3. The cluster analysis grouped the 15 sites into three groups according to
the water quality characteristics of the tested samples.

In order to verify the CA results, LDA was performed using the proc discrim procedure
in the SAS Software as a supervised technique to classify the three clusters based on the
10 water quality variables. Furthermore, a canonical analysis was used as a dimension
reduction technique to visualize the three clusters in two dimensional graphs. Table 3
shows the results of the LDA analysis. The classification tables show 100% training accuracy
and 95.83% cross-validation accuracy. Due to the small sample, cross-validation was based
on the leave-one-out method, where in each iteration, one observation was used as a testing
point and the remaining observations were used as training data. For further verifications
of the quality of the CA results, a canonical plot based on the first two canonical variables
is shown in Figure 4. It can be clearly seen that the figure supports the results from the CA.
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Table 3. Classification matrix for discriminant analysis of spatial variation in water quality of Al-Wasit
Nature Reserve.

Monitoring Ponds %Correct
Pond Assigned by DA

Upper Pond Middle Pond Big Pond

Training model
Upper pond 100% 9 0 0
Middle pond 100% 0 8 0

Big pond 100% 0 0 27
Total 100% 9 8 27

Cross-validated model
Upper pond 100% 9 0 0
Middle pond 87.5% 0 7 1

Big pond 100 0 0 27
Total 95.83% 9 7 28
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4.3. Cluster Segmentation

A cluster analysis provides an initial exploratory assessment of the spatial difference
characteristics of the systems under study. In cluster segmentation, we are mainly interested
in investigating the differences between the three clusters. For this purpose, the mean
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and standard deviation of each cluster are reported in Table 4, in addition to the overall
minimums, maximums, and means of all ponds.

Table 4. Water quality parameters of the three clusters (means ± standard deviations), minimums,
maximums, and mean values.

Parameters Upper Ponds Middle Ponds Big Ponds Min Mean Max

Temperature (◦C) 26.75 ± 1.48 30.01 ± 0.86 27.44 ±0.97 24.61 27.76 30.81
pH 8.45 ± 0.12 8.19 ± 0.12 8.16 ± 0.11 8.00 8.22 8.60

ORP (mv) 41.12 ± 30.31 50.57 ± 4.92 80.34 ± 7.72 −20.67 66.91 95.17
EC (µS/cm) 27,606 ± 560 74,358 ± 36,806 86,379 ± 4220 26,960 72,172 134,700
DO (mg/L) 9.50 ± 1.88 8.03 ± 1.27 7.46 ± 1.05 5.90 7.98 11.59

Turbidity (FNU) 4.04 ± 2.62 14.21 ± 4.90 15.58 ± 4.13 1.00 12.97 19.83
Ammonia (ppm) 1.79 ± 1.48 0.40 ± 0.06 0.18 ± 0.08 0.04 0.55 4.71

Nitrate (ppm) 50.7 ± 16.6 54.3 ± 26.1 57.5 ± 16.0 30.6 55.5 106.0
Chloride (ppm) 12,642 ± 5728 33,788 ± 14721 36,043 ± 3731 8320 30,846 55,200

COD (mg/L) 122 ± 72 1297 ± 988 1523 ± 690 88 1195 2924

As mentioned previously, guiding standards for hypersaline wetlands are not available.
In order to have an understanding of the expected regional water characteristics, the
marine water quality guiding standards published by the Ministry of Climate Change
and Environment (MOCCAE) and typical concentrations found in similar hypersaline
environments were used for comparison purposes [49]. The results of this comparison
show that the temperature, DO, pH, and turbidity are within the acceptable levels. The
average values for the majority of the parameters in the three clusters show lower and
sometimes higher levels of concentrations than the standard levels shown in Table 1. The
average values for ORP in this study ranged between 81 and 41 mv, yet no specific standard
values are available for comparison purposes. The average values for EC levels in the three
clusters were greater than 70,000 µS/cm, agreeing with the standard level of higher than
50,000 µS/cm. Moreover, the COD average levels appeared to be higher than the standard
levels of less than 40 mg/L in all clusters. However, the upper pond showed much lower
COD levels than the samples from the other two clusters. Chloride is another parameter
that is interesting for this type of hypersaline ecosystem. The results in Table 4 show
that the average chloride concentration was between 37,000 mg/L and 12,000 mg/L in the
three clusters, which is consistent with the previously reported values of typical hypersaline
environments of approximately 26,000 mg/L. The average levels of ammonia were between
1.7 mg/L and 0.1 mg/L, which were higher than the standard level (>0.06 mg/L). Finally,
the average levels of nitrates were between 50 mg/L and 58 mg/L and were slightly higher
than the standard level (<50 mg/L).

In general, the upper pond appeared to have lower temperature, ORP, EC, turbidity,
nitrate, chloride, and COD values when compared with the middle and big ponds. The big
pond had higher ORP, EC, turbidity, nitrate, chloride, and COD values. Despite having
higher pH, DO, and ammonia values than the other two ponds, the upper pond appeared
to perform better, with major reductions in EC, turbidity, chloride, and COD. Table 5
depicts a heat map of the differences between the three ponds for clarity. The statistical
significance of the differences for each variable is investigated further in the following
section by running multiple nonparametric ANOVA tests and pairwise comparisons among
the three levels in the SAS software using the proc glm procedure.

4.4. Univariate Statistical Tests

For each of the ten water quality parameters, a one-way ANOVA test was used to
investigate the differences between the three ponds (upper, middle, and big). This method
is useful for determining whether each of the ten parameters varies between the three
ponds. The parametric ANOVA test assumes normality and variance homogeneity. These
assumptions were tested, and Levene’s test showed that the homogeneity assumption
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between the three groups was violated. As a result, the Kruskal–Wallis test, a nonparametric
analogue to the parametric one-way ANOVA, was used to test the following hypotheses:

H0. There are no differences among the three ponds.

Ha. There is at least one difference between the three ponds.

Since the Kruskal–Wallis test was used for each of the water quality variables,
a Bonferroni p-value adjustment was used in order to control type I error. According to
Table 6, the adjusted p-values were significant for all parameters except for nitrate and
dissolved oxygen.

Table 5. Heat map for average values of water quality parameters in each cluster.

Clusters

Upper Ponds Middle Ponds Big Pond

Parameters

Temperature 26.75 30.01 27.44
pH 8.45 8.19 8.16

ORP 41.12 50.56 80.34
EC 27606 7436 86379
DO 9.50 8.03 7.46

Turbidity 4.04 14.21 15.58
Ammonia 1.79 0.40 0.18

Nitrate 50.69 54.26 57.46
Chloride 12642 33788 36043

COD 123 1297 1523
Note: “Green”: high; “Yellow”: medium; “Red”: low.

Table 6. Kruskal–Wallis p-values for each parameter.

Parameter p-Value Adjusted p-Value

Temperature <0.0001 <0.0009
pH <0.0001 <0.0009

ORP <0.0001 <0.0009
EC <0.0001 <0.0009
DO 0.008 0.0720

Turbidity <0.0001 <0.0009
Ammonia <0.0001 <0.0009

Nitrate 0.1360 1.0000
Chloride <0.0001 <0.0009

COD <0.0001 <0.0009

The source of the difference between the three ponds was also investigated. As a result,
pairwise comparisons were performed using the nonparametric Wilcoxon test, and the
results are shown in Table 7. For each combination, Table 7 displays the mean difference,
the Bonferroni adjusted p-value, and the simultaneous 95% confidence interval. The table
shows that the temperature and ORP levels in the big and middle ponds differed. The
temperature and ORP levels appear to be lower in the big pond. The pH, ORP, EC, turbidity,
ammonia, chloride, and COD levels differed significantly between the big and upper ponds.
The big pond appeared to have higher ORP, EC, turbidity, chloride, and COD levels and
lower pH and ammonia levels. Finally, the temperature, pH, EC, turbidity, ammonia,
chloride, and COD levels differed significantly between the middle and upper ponds. The
temperature, EC, turbidity, chloride, and COD levels were higher in the middle pond, while
the pH and ammonia levels were lower.
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Table 7. Pairwise comparisons between upper, middle, and big ponds.

Parameter
Class Comparisons Difference between

Least-Squares Means
LSMean(i)-LSMean(j)

Simultaneous 95% Confidence Limits
for Difference Adjusted p-Value Significance

i j Lower Limit Upper Limit

Temperature Big Middle −2.57 −3.65 −1.50 <0.0001 Yes
Big Upper 0.69 −0.34 1.72 0.3050 No

Middle Upper 3.27 1.96 4.57 <0.0001 Yes

pH Big Middle −0.029 −0.14 0.087 1.0000 No
Big Upper −0.29 −0.40 −0.18 <0.0001 Yes

Middle Upper −0.26 −0.40 −0.12 0.0001 Yes

ORP Big Middle 29.78 14.83 44.72 <0.0001 Yes
Big Upper 39.22 24.93 53.51 <0.0001 Yes

Middle Upper 9.44 −8.60 27.48 0.5958 No

EC Big Middle 12,021 −3630 2767 0.1866 No
Big Upper 58,774 43,808 73,740 <0.0001 Yes

Middle Upper 46,752 27,859 65,646 <0.0001 Yes

Turbidity Big Middle 1.37 −2.68 5.43 1.000 No
Big Upper 11.54 7.66 15.42 <0.0001 Yes

Middle Upper 10.17 5.27 15.07 <0.0001 Yes

Ammonia Big Middle −0.23 −0.88 0.43 1.000 No
Big Upper −1.61 −2.24 −0.98 <0.0001 Yes

Middle Upper −1.38 −2.18 −0.59 0.0003 Yes

Chloride Big Middle 2255 −5006 9517 1.000 No
Big Upper 23,401 16,457 30,344 <0.0001 Yes

Middle Upper 21,145 12,379 29,911 <0.0001 Yes

COD Big Middle 226 −462 914 1.0000 No
Big Upper 1399 741 2058 <0.0001 Yes

Middle Upper 1173 342 2005 0.0032 Yes

Note: The difference is significant if adjusted p-value < 0.05.
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5. Discussion

In this study, ten parameters were investigated using 44 samples collected from 15 sites
in the Al Wasit Nature Reserve. The cluster and discriminant analysis results indicate that
water samples can be collected on a regular basis from one station in each cluster for a rapid
assessment of the Al Wasit Nature Reserve because each site in the cluster represents the
entire cluster. As a result, taking water samples from three sampling sites rather than fifteen
may accurately reflect the spatial dimension of the water quality throughout the wetland
and reduce the monitoring time, effort, and cost without significant loss. This finding is
consistent with the findings of a previous study conducted by Mohammadpour et al. [49],
who used a spatial pattern analysis to assess the water quality in free surface lakes.

Previous studies have suggested that, due to the dynamic nature of wetland ecosys-
tems, efforts to monitor and manage the water quality can be severely challenged [58]. For
this reason, studies that assess the physical and chemical characterization of a wetland
provide valuable inputs that contribute to the development of management programs [59].

The results of this study reflect on the importance of monitoring temperature as one
of the most important parameters for assessing water quality and ecosystems because it
influences many chemical and biological processes in marine ecosystems [55]. The water
temperature ranged from 24.61 ◦C to 30.81 ◦C, with a mean value of 27.76 ◦C, which fell
within the Ministry of Climate Change and Environment’s (MOCCAE) standard values
for marine water properties, suggesting that there is no thermal pollution in the wetland;
however, the temperature in the middle pond was significantly higher than in the upper
and big ponds. In addition, measurements of pH are a routine parameter, and in this study
the pH ranged from 8.00 to 8.60, with no significant difference between the middle and big
ponds (p-value > 0.05). The upper pond, however, had a significantly different pH than
the middle and big ponds, with the highest average pH value of 8.45. Overall, the average
pH values in the Al Wasit Wetland were within the standard ranges given in Table 1, i.e.,
between 6.0 and 9.0, indicating no serious threats from wastewater, minerals, or acid rain
affecting the pH [56].

The understanding of the significance of these results helps guide potential future
projects aiming at monitoring parameters over a long period of time to understand possible
changes or degradation, which were previously used in other studies to associate water
quality degradation to the trophic status of the ecosystem (Dar et al., 2021). In addition,
parameters such as surface water EC values vary depending on geological structure and
precipitation and can be used to categorize or distinguish wetlands [57]. When EC values
exceed 3000 S/cm, the sample is classified as saline [58]. The Al Wasit Wetland’s EC values
ranged from 26,960 S/cm to 134,700 S/cm, with an average value of 72,172 S/cm, which
falls within the hypersaline range. Furthermore, multiple comparisons revealed that there
was no significant difference in the EC values between the big and middle ponds, while
the upper pond EC values were significantly lower than the other two ponds. The Pearson
correlation analysis revealed strong positive correlations between EC and both Cl and COD
(r = 0.860 and 0.805, respectively, p-value < 0.001).

Furthermore, parameters such as the ORP showed clear differences between the
sites in the study. There was a significant difference between the big pond and the other
two ponds, as shown in Table 6, with the big pond having a higher ORP value. This could
be because the ORP value decreases in the sediment. Because the big pond is deeper than
the other two ponds, the samples from the upper and middle ponds are closer to the bottom
sediment, whereas the samples from the big pond are further away. The ORP and pH
values were found to have a moderate negative correlation. The latter result is consistent
with the findings of Ustaolu et al. [54], who assessed the water quality of the Pazarsuyu
Stream in Turkey.

The concentration of dissolved oxygen indicates how healthy the aquatic ecosystem
is. Fish and other aquatic animals may perish if dissolved oxygen levels are too low. DO
levels in the Al Wasit Wetland ranged from 5.90 mg/L to 11.59 mg/L, with a mean value
of 7.98 mg/L. These results are within the norm, and the mean values for all three ponds
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were greater than 5 mg/L, indicating a good level of DO, with no significant differences
between the three ponds. A moderate negative correlation between Cl and DO was found
(r = −0.529, p-value < 0.05). Overall, the DO values in the Al Wasit Wetland were not lower
than the reported standard values.

Turbidity is a measure of water clarity. It describes the amount of light scattered or
blocked by water particles. These particles give the water a cloudy or turbid appearance.
The measured turbidity values ranged from 1.00 FNU to 19.83 FNU, with an average value
of 12.97 FNU, which is within the standard turbidity range (75 FNU). The Kruskal–Wallis
test and pairwise comparisons showed a significant difference in the turbidity values
between the upper pond and the other two ponds, with the upper ponds performing
better, with lower turbidity values of 4.04 FNU. This is an indication of a healthy aquatic
ecosystem in the Al Wasit Wetland, as high turbidity can harm fish and other aquatic life.
Algae and other aquatic plants require light to grow, and high turbidity reduces the amount
of light available underwater.

Ammonia concentration management can improve plant growth and system func-
tion [59]. Ammonia toxicity varies with pH and water temperature. The average NH3
concentration in the Al Wasit Wetland was 0.55, which is higher than the standard value
of 0.06 mg/L. The nonparametric ANOVA test revealed significant differences between
the three ponds, with the upper pond exhibiting the highest NH3 levels. The correlation
analysis revealed moderate negative relationship between the NH3 levels and the turb,
Cl, EC, and COD levels. On the other hand, a moderate positive correlations were found
between NH3 and both DO and pH.

Nitrogen is an essential nutrient for plant development. High concentrations of certain
forms of nitrogen, such as nitrate, can be toxic to aquatic organisms. The NO3 levels in the
Al Wasit Wetland ranged from 30.60 mg/L to 106.0 mg/L, with a mean value of 55.49 mg/L.
This means that the NO3 levels were significantly higher than the standard (50 mg/L).
An ANOVA test revealed no significant differences in the NO3 levels among the three
ponds. A Pearson correlation analysis revealed moderate positive correlations between the
NO3 levels and pH as well as the EC, Cl, and COD levels.

Previous research, such as [53], showed that chlorides can accumulate in wetlands
from year to year and that seasonal increases in chloride concentrations in wetlands can
affect the reproduction of some species. Hypersaline wetlands, on the other hand, are
known for their high salinity levels, so chloride levels are expected to be high. In this study,
the Cl values ranged from 8320 mg/L to 55,200 mg/L, with an average of 30,846 mg/L.
The measured values were consistent with what has previously been reported in similar
environments in the UAE, which is an average of 26,000 mg/L. An ANOVA test and
multiple comparisons revealed that the Cl level in the upper pond differed significantly
from the other two ponds, where lower Cl values performed better. According to the
correlation analysis, Cl levels had moderate positive correlations with temperature, ORP,
turb, and NO3. However, moderate negative correlations were found between the Cl
content and pH, DO, and NH3.

The COD levels in the Al Wasit Wetland ranged from 88 mg/L to 2924 mg/L, with
an average of 1195 mg/L. The COD values appeared to be much higher than the standard
values (40 mg/L). An ANOVA test and pairwise comparisons revealed that the upper
pond had significantly higher COD levels than the middle and big ponds, which had much
lower average values. The Pearson correlation coefficient revealed that the COD level had
a strong positive correlation with the EC and moderate positive correlations with ORP,
turb, NO3, and Cl. Finally, moderate negative correlations were discovered between COD,
pH, and NH3.

In general, the results of this study clearly imply that samples taken from sites in
close locations may have similar water characteristics. In addition, according to the tested
samples, all the sites in the big pond, including sites that are located on the shore or in the
middle of the pond, appear to have similar water quality characteristics.
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Some of the limitations encountered in this study included the hypersaline nature of
the wetland and the lack of previous studies within the region comparing similar environ-
ments. As an initial study, this work provides a baseline on the possibilities of measuring
water quality parameters, which could be used for site selection and comparisons. In the
future, studies should be conducted to include a larger variety of chemical and physical
parameters, such as heavy metals, bacteria, and others, in addition to the collection of sedi-
ments and other biological matrices to complement the study. In terms of data collection,
access to the site and the number of measurements collected were also limiting factors,
as the measurements were taken on site and taken to the laboratory for further analysis.
Furthermore, if a larger dataset was available, the data could be used to predict spatial dis-
tribution patterns and pollution quality indexes, as suggested by Bera et al., 2022 [60]. This
study, also contributes to knowledge that is scarce in this region and highlights the impor-
tance of introducing tools such as remote sensing for regional water quality monitoring and
assessment [61,62]. In addition, understanding the water quality parameters of incoming
effluents will facilitate regulating and reducing the negative impacts on natural waters and
their organisms. Including additional factors not reported in this study, such as inorganic
suspended solids (ISS), total suspended solids (TSS), organic matter (OM), biochemical
oxygen demand (BOD), and total phosphorus (TP), can increase the understanding of
a wetland’s status and suggest treatment methods for the wetland [58,60–63].

6. Conclusions

Several statistical techniques were used to analyze water quality data from the Al Wasit
Nature Reserve in the United Arab Emirates in this study. Using a cluster analysis, fifteen
water quality monitoring sites were divided into three groups (the upper, middle, and big
ponds) with similar water quality characteristics. To validate the cluster analysis results,
a discriminant analysis was used. To investigate the differences between the three ponds,
an ANOVA was used. The three ponds were found to differ significantly in eight of
the evaluated parameters, with only the nitrate and dissolved oxygen parameters being
insignificant. Following that, pairwise comparisons revealed the sources of the differences,
with the upper pond (Cluster 1) outperforming the middle pond (Cluster 2) and the big
pond (Cluster 3) for the majority of the parameters.

Based on the findings above, the statistical analysis approaches presented here formu-
late a comprehensive framework that is useful for professionals involved in the design and
implementation of water quality monitoring networks and the interpretation of large water
quality datasets. This approach provides a multivariate statistical basis for classifying sites
by similar water quality characteristics. It also builds classification models that could be
used in the future with large datasets to predict the locations of new unknown samples.
In addition, larger datasets could be collected, and discriminant analyses could be further
used to identify the most responsible water quality parameters for spatial variation in water
quality and to identify opportunities to reduce the number of water quality parameters
and sampling sites to those that are most representative for long-term monitoring. This
will assist water quality monitoring agencies in refining current monitoring programs by
reducing the number of water quality variables monitored to those that are most influential
and limiting the number of sampling sites to those that are most representative of spatial or
temporal patterns, which will significantly reduce the time, effort, and cost of assessing
water quality.

This study establishes guidelines for sampling in the Al Wasit Wetland, such as
sampling only from ponds with significant differences in parameter values. The study
found no statistical differences between the middle pond, which is mostly located near the
shore, and the big pond, which includes deeper sites that require the use of specialized
tools, equipment, and boats for sampling. As a result, samples from the middle pond are
also considered representative of the big pond for future work, potentially saving costs.
It is also suggested that more data should be collected in the future in order to create
a high-accuracy predictive model. Such predictive models are useful for predicting how
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parameter values will change as a result of changes in spatial or temporal patterns. The
same framework could be used to assess water quality in other areas.
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