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Abstract: The homogenization of freshwater ecosystems and their biological communities has
emerged as a prevalent and concerning phenomenon because of the loss of ecosystem multifunction-
ality. The millions of prairie-pothole wetlands scattered across the Prairie Pothole Region (hereafter
PPR) provide critical ecosystem functions at local, regional, and continental scales. However, an
estimated loss of 50% of historical wetlands and the widespread conversion of grasslands to cropland
make the PPR a heavily modified landscape. Therefore, it is essential to understand the current
and potential future stressors affecting prairie-pothole wetland ecosystems in order to conserve
and restore their functions. Here, we describe a conceptual model that illustrates how (a) historical
wetland losses, (b) anthropogenic landscape modifications, and (c) climate change interact and have
altered the variability among remaining depressional wetland ecosystems (i.e., ecosystem homoge-
nization) in the PPR. We reviewed the existing literature to provide examples of wetland ecosystem
homogenization, provide implications for wetland management, and identify informational gaps
that require further study. We found evidence for spatial, hydrological, chemical, and biological
homogenization of prairie-pothole wetlands. Our findings indicate that the maintenance of wetland
ecosystem multifunctionality is dependent on the preservation and restoration of heterogenous
wetland complexes, especially the restoration of small wetland basins.

Keywords: Prairie Pothole Region; wetlands; ecosystem function

1. Introduction

Globally, freshwater ecosystems are experiencing widespread habitat degradation
and biodiversity loss [1,2]. An increasingly observed trend in freshwater ecosystems is
the homogenization of both physical habitats and biological communities [3,4]. The de-
creasing variability in both physical habitats and biotic communities contribute to losses
of ecosystem multifunctionality [5–8]. This loss of multifunctionality over time due to
decreased variability in physical, chemical, and biological characteristics has been referred
to as ecosystem homogenization [9]. For freshwater ecosystems, evidence for ecosystem
homogenization has been demonstrated in lakes and rivers, many of which have been
highly modified through damming and streambed channelization [4,10–12]. There has
been considerably less attention focused on the homogenization of freshwater wetlands.
However, freshwater wetland ecosystems are among the most vulnerable to habitat degra-
dation and provide critical functions in maintaining local and downstream ecosystem
functions [13].

Wetlands are perhaps one of the most important and often overlooked components of
our freshwater systems and cover an area greater than 1.2 million hectares worldwide [14].
These temporally and spatially variable ecosystems provide numerous functions that are
important for the health of the landscape [15,16]. Wetlands embedded entirely within
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upland landscapes are particularly sensitive to anthropogenic modifications and climate
change [17–19]. This sensitivity to climate and land-use change makes wetlands especially
vulnerable to decreased hydrologic variability, increased biotic homogenization, and loss
of ecosystem function, i.e., ecosystem homogenization [5,6,20,21]. Ecosystem functions
provided by freshwater wetlands, e.g., nutrient cycling, groundwater recharge, and biodi-
versity reservoirs, often vary depending on a wetland’s geographic location (i.e., forested
vs. non-forested), hydro-period, and hydrogeologic setting [22–24]. Bedford, 1999 [5] hy-
pothesized that the non-random loss, degradation, and restoration of wetland ecosystems
in the United States and Canada has likely resulted in a shift in the relative proportion of
different types of wetlands on the landscape, which in turn has likely resulted in a net loss
of wetland ecosystem multifunctionality. This prediction was based on how individual
wetlands have physical and hydrological settings such as local climate, relationship to local
groundwater, and contributing watershed size and characteristics [5,25,26]; many aspects
of this were later encapsulated into the Wetland Continuum Concept [27]. Based on the
hypothesis of Bedford, 1999 [5], we developed a conceptual model for wetland ecosystem
homogenization (Figure 1). This framework incorporates how independent, interactive,
and synergistic processes caused by directional shifts in climate, land-use change, and
historical wetland loss can lead to ecosystem homogenization. In this manuscript, we use
depressional wetlands located in the Prairie Pothole Region (PPR) of North America as a
case study of wetland ecosystem homogenization.
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Prairie Pothole Wetland Ecosystem Variability and Function

Pothole depressional wetlands are the predominant wetland type that occurs in the
PPR. The PPR is one of the largest and most-modified, wetlands-dominated regions on
earth. The PPR covers approximately 777,000 km2, spanning north and west from northwest
Iowa through South and North Dakota in the United States into central Alberta in Canada
(Figure 2 [28]). As such, it forms the largest wetland complex in North America [29]. Within
the PPR, there are millions of individual wetland basins that can exhibit variable ponded-
water permanence and chemistry [16]. The high spatial and temporal variability exhibited
by prairie-pothole wetlands is a reflection of the high spatial and temporal variability in
climate across the region [24,29]. The entire PPR’s climate is highly variable within and
among years.
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Annual maximum and minimum temperatures can range between 40 ◦C in the summer
and −40 ◦C in the winter and mean annual precipitation can range from 30 cm/year to
90 cm/year. Typically, the northern portion of the PPR is cooler than the southern, and the
eastern portion is wetter than the western. Precipitation can also exhibit both interannual
variability and decadal oscillations in the form of wet-dry cycles ([30]; Figures 3 and 4).
These wet-dry cycles can influence the distribution of ponded-water area among wetlands,
especially during times of drought or extreme deluge (Figures 3–5). The typically closed-
basin morphology and low-permeability substrates of prairie-pothole wetlands make them
highly responsive to changes in surface-water inputs. However, they also accumulate
or lose water to or from subsurface flows depending on a basin’s relationship to the
local groundwater table, such as the basin’s proximity to the local water table and soil
permeability [31]. Wetlands above the water table can recharge groundwater, are typically
small, accumulate few salts, and have short hydroperiods, while wetlands below the
water table receive groundwater discharge, are typically larger, accumulate salts (through
groundwater), and have long hydroperiods [27,31]. Losses and accumulations of salts
through the groundwater system, combined with climate-driven dilution and concentration
effects, result in substantial variation in hydrogeochemistry [32] among prairie-pothole
wetlands. For example, the temporal and spatial variability in their ponded-water salinity
can range from extremely fresh (<0.8 mS/cm) to hypersaline (>60 mS/cm), i.e., saltier than
sea water (~50 mS/cm [33,34]).
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The hydroecological variability of prairie-pothole wetlands contributes to the variety
of ecosystem functions they perform [23,27,35,36]. Some of the more important functions
include groundwater recharge, nutrient cycling, carbon sequestration, and stormwater
retention [37–41]. Prairie-pothole wetlands also uniquely contribute to regional aquatic
and intercontinental, aquatic, semiaquatic, and terrestrial biodiversity through the habitat
and resources they provide [16,41,42]. For example. the PPR typically hosts around 50% of
the continental breeding-duck population, making it a globally important area for wildlife
management [43,44]. Many of these ecosystem functions are maintained through the
aforementioned spatial and temporal variability exhibited by the wetlands. However,
historical and contemporary changes in climate, landcover, and wetland drainage have
altered this natural variability.
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2. Ecosystem Homogenization

Among-wetland ecohydrological variability of prairie-pothole ecosystems is driven by
an individual wetland’s hydrogeologic setting, local climate, and surrounding landscape
characteristics. A wetland basin’s setting is defined as a basin’s topographic elevation,
size, geomorphology, surrounding land use, and underlying substrate, which in turn
influence its relationship with local surface-water and groundwater flows, and subse-
quently contribute to a wetland’s capacity to pond and store water [31]. However, even
wetlands with very similar hydrogeologic characteristics can exhibit high among-wetland
variability due to spatial variation in climate and surrounding land use [45,46]. Wetlands
and their functions are linked through landscape connections that determine how water,



Water 2022, 14, 3106 7 of 20

nutrients, and biota move through the landscap1r4e [25,47–50]. Alterations of wetland-
to-wetland landscape linkages, i.e., the uplands that connect wetlands, periodic surface
connections between wetlands, and the geographic distance between wetlands can, in turn,
influence the hydrologic and biotic variability of nearby wetlands [5,31,47,51,52]. Many
wetland ecosystem functions, e.g., biodiversity maintenance, groundwater recharge, and
stormwater retention, are maximized in complexes of wetlands with heterogenous water
regimes [24,53,54]. Therefore, the loss of variability in water regimes over time, altered
spatial organization of wetland landscapes, and corresponding changes in functions can
lead to ecosystem homogenization.

2.1. Conceptual Model for Ecosystem Homogenization

Spatial variability in topography or physical characteristics and temporal variability
in climate are essential to maintaining local heterogenous complexes of wetlands. However,
large-scale landscape alterations and long-term or extreme changes in regional climate can
have additive and often synergistic effects on wetland ecosystem functions [25,55–57]. Our
conceptual model for wetland ecosystem homogenization (Figure 1) depicts how shifts in
climate cause directional changes in wetland hydrology that, in turn, can cause a directional
change in water and soil chemistry, and subsequently modified biotic communities. In
addition to being a primary driver of wetland ponding, directional shifts in climate can
influence wetland ecosystems by driving changes in surrounding land use, such as a
change from pasture to crop production, which in turn affect wetlands through water-
management decisions that can result in the movement of water off the uplands and
small upland embedded wetlands into depressional waterbodies [56,58]. The wetland loss
category refers to the deliberate draining, ditching, and filling of wetland basins. The loss
of functioning wetlands not only simplifies the geographic configuration of remaining
wetlands, but their displacement changes local surface-water flows, which in turn can alter
the temporal and spatial dynamics of remaining wetlands on the landscape [5,13,59–61].

2.2. Mechanisms for Ecosystem Homogenization in the PPR

The landcover of the pre-European settlement PPR was primarily a mix of native
grassland with embedded depressional wetlands. These relatively small, prairie-pothole
wetlands covered an estimated 20% of the region’s land area [39]. However, the interplay
between European settlement, local topography, local climate, and agricultural produc-
tion has led to spatial simplification of prairie-pothole wetland distributions [5,13,62,63].
This simplification was predominately driven by the conversion of wetlands and their
surrounding native uplands (native prairie) to cropland. It has been estimated that 65%
of the historical wetland basins in the PPR were lost due to anthropogenic influences [39].
This loss is spatially variable, ranging from 35% in South Dakota to >90% in the Des Moines
lobe ecoregion of Iowa [63,64]. Since wetland losses in the PPR were primarily a result of
the draining and filling of wetland basins for agriculture [65], losses were concentrated in
the most heavily farmed areas [66]. In addition, a disproportionate number of wetlands
that were drained or filled were the small, most temporarily ponded wetlands [5,62,63].
The preferential loss of these smaller wetlands not only decreased the hydrologic variability
on the landscape but also led to the loss of spatial connectivity, i.e., the loss of small “step-
ping stone” wetlands that are important for biological dispersal, and facilitated ecosystem
homogenization [51,61,67,68].

In addition to the loss of many historical wetlands, the conversion of uplands to
farmland and consolidation of runoff from wetland drainage networks further altered
the ecohydrological variability of remaining wetlands [57,59,69]. Most of the historical
wetland drainage in the PPR in the form of surface ditching, which works by moving
water from numerous small wetlands into a single, larger, terminal waterbody, i.e., wetland
consolidation [69]. The increased water inputs results in increased ponded-water extent
and duration in the terminal waterbody [57,59]. Along with consolidation, runoff rates
have increased in the region due to the conversion of native uplands to cropland [31,61].
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An estimated 90% of native grasslands in the PPR have been converted to other landcover
types, typically cropland [70]. By contrast, widespread establishment of monotypic stands
of invasive grasses in grassland-covered uplands surrounding wetlands can reduce runoff
rates resulting in increased drying of wetland ponds [35]. Non-native grasses, primarily
smooth brome (Bromus inermis) and Kentucky bluegrass (Poa pratensis), have invaded many
remaining grasslands in the region [71–73]. Even in areas where wetlands and grasslands
are restored, the revegetation of wetlands is limited to occurring seedbanks and the seeding
of upland grass seed mixes [74]. In North Dakota, the absence of wetland-specific seed
mixes during restoration has likely facilitated the replacement of native vegetation with
non-native cool season grasses and other invasive species [74].

In the absence of prairie buffers (surrounding wetlands), agricultural runoff into
wetlands is associated with greater rates of sedimentation, increased nutrient loads, and
pesticide impacts [50,75–77], which in turn can alter the chemical and biotic composition
of affected wetlands. The loss of surrounding grasslands also becomes a loss of habitat
and inter-wetland connectivity for species that require grasslands in addition to ponded
wetlands to complete their lifecycle, e.g., waterfowl, amphibians [78–81]. The cumulative
effects of wetland loss and the conversion of prairie to cropland in the PPR have simplified
the spatial distribution of wetland basins and the upland landscapes in which they are
embedded, and reduced ponded-water variability in remaining wetlands. In the context
of our ecosystem homogenization conceptual model, these changes also influence the
sensitivity to climate of the remaining wetlands within this altered landscape (Figure 1).

Beginning in 1993, parts of the PPR experienced an extended multi-decadal wet pe-
riod [56,82]. The combination of prolonged, uncharacteristically wet conditions (Figures 3–5),
and landscape modifications have resulted in many prairie-potholes reaching high surface-
water levels that have not likely been experienced within the last 500 years [30]. Even in the
absence of anthropogenic land-use change, the magnitude of precipitation increases has
resulted in cascading effects. The combination of rising groundwater tables and increased
soil moisture in the region has resulted in increased surface-water runoff and reduced losses
of water from wetlands to groundwater [56,83]. However, most of the PPR still experiences
anthropogenic change, and the timing of this wet period coincided with continued loss of
grasslands, an increase in row-crop agriculture, and an increase in tile drainage [56,66,84].
This observed directional shift in climate and land-use change, combined with the non-
random losses of wetlands, has led to a shift towards reduced ecohydrological variability
for much of the PPR [25,55,56,85,86].

3. Evidence for Ecosystem Homogenization

The response of prairie-pothole wetland ecosystems to increased precipitation has
been highly variable and spatially dependent [87,88]. Based on our conceptual model,
these patterns are intuitive considering that wetland loss, land-use change, and rela-
tive climates are regionally variable [62,63,85,89]. While some areas might experience
greater change than others, most long-term studies in the PPR have indicated increases
in hydroperiod, ponded-water surface area, depth, and connectivity over the last 15 to
30 years [56,62,68,83,85–88,90,91]. McLean et al. (2019 and 2022 [54,92]), also found that
temporal variability (i.e., year to year variation) in wetland ponded-water area, vegeta-
tion structure, and certain biological communities might have also become less dynamic
over time. While current wet conditions in the U.S. portion of the PPR have likely not
been experienced in the last 500 years [30] there is also paleo-limnological evidence that
historically semi-permanently ponded wetlands did not typically contain vegetative com-
munities associated with permanent waterbodies for about 8000–10,000 years [93]. This
change to more permanent hydrological conditions has also been indicated by changes
in diatom assemblages and daphnia ephippia in sediment cores of prairie-pothole wet-
lands [94] Linking the recently observed increases in depressional ponds and surface-water
area to ecosystem homogenization is not necessarily intuitive. However, the ecosystem
functions of these wetlands typically have less to do with the amount of water and are
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more connected to the period of time they pond water and their location on the landscape
(spatial organization and hydrogeologic setting), determining many of their physical and
biological characteristics. These observed hydrological shifts often resulted in decreased
variability of ponded-water regimes, homogenized water chemistries, and altered biotic
communities [54,69,83,95–97].

Even though many, especially smaller, prairie-pothole wetlands have been drained
or filled, in more contemporary time periods (i.e., the last 50 years) the mean number
of wetland ponds and ponded-water surface area in the US PPR has increased over the
last 15 to 30 years in response to wetter climate conditions [68,98–100]. Mushet et al.,
2020 [91] described how wetlands can shift to different ecohydrological states. Using
this framework it is also expected that small depressions that did not previously exhibit
wetland characteristics could also shift to a wetland state if wet conditions persists for long
periods of time. In fact, long-term monitoring efforts in central North Dakota have observed
this phenomenon of terrestrial habitats developing wetland hydrology, soils, and plant
communities [101]. However, without well-developed plant and invertebrate seed banks,
it is still uncertain if these “new” wetlands produce the same functions as well-established
systems. Many wetland inventory efforts that use satellite or aerial inventory often only
detect the ponding of surface water, which does not necessarily indicate that they have other
wetland characteristics (e.g., soils and wetland biota), which could lead to an overestimation
of small wetland basins in wet years. The greater ponded-water area observed in recent
years is predominately driven by an increased distribution of large-ponded basins [85].
This is in part due to the extreme saturation of wetlands on the landscape. As wetland
basins become increasingly ponded, they fill until water spills into the next wetland basin.
This dynamic is called “fill-and-spill” [102]. In the case where a larger lower-elevation
basin increases in surface area and engulfs higher-elevation wetlands [62,85,99], it is called
“fill-and-merge” [103]. Cressey et al., 2016 [88] compared ponded-water surface area, depth,
and salinity for 80 prairie-pothole wetlands between two periods (1961–1966 and 2013–2014)
and found that even at relatively small spatial scales (i.e., central ND) wetland complexes
responded differently to changing hydroclimatic conditions. For example, wetland areas
with low topographic relief and an absence of defined outlets typically had greater area
for ponded water to expand and merge with nearby wetlands, and therefore exhibited
the greatest hydrologic changes [88]. In contrast, wetlands with high topographic relief
and defined outlets often exhibit less surface-water variability [54,88]. Vanderhoof and
Alexander, 2016, [91] found through Landsat-derived surface-water maps from 1990 to
2011 that lake expansion in the PPR caused increased surface-water connectivity to nearby
wetlands and sometime the inundation of wetlands tens of kms away by the expanding lake.
At a smaller scale, long-term monitoring beginning in 1979 at the Cottonwood Lake Study
Area in south central North Dakota indicated that after 1993 the 16 wetlands monitored
had increased in surface-water depth, permanency, and connectivity compared to the
previous two-decade averages [56,96,103]. Both climate driven fill-and-spill/fill-and-merge
dynamics and consolidation of wetlands through drainage networks not only influence
associated wetland ponded-water regimes but can also homogenize the composition and
concentration of dissolved ions, nutrients levels, and biota found in the newly merged
wetlands [53,88,103–106]. Similar increases in surface-water depth and permanency were
observed in the Canadian portion of the PPR [31].

Increased atmospheric water inputs into wetlands and the merging of previously
separate basins can have profound influences on the water chemistry of a wetland. Water
chemistry, specifically dissolved-ion concentrations, in prairie-pothole wetlands is highly
variable in space and time [83,96,107]. As dissolved-ion concentrations increase, biotic
communities often shift to more salt tolerant taxa [27,41]. The increases in surface-water
runoff and connectivity observed throughout much of the PPR have reduced the salinity
gradient length and among wetland variability [83,107].

Dissolved-ion concentrations in wetlands are driven by salt inputs and losses, com-
bined with dilution and concentration effects. Typically, wetlands situated above local
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groundwater flows lose ponded water and dissolved salts to the soil, recharging the ground-
water. By contrast, wetlands located at or below groundwater flows receive salts through
groundwater discharge [23,27]. Atmospheric-water inputs (i.e., direct precipitation or pre-
cipitation driven runoff inputs) dilute the concentration of dissolved ions within a wetland,
while evaporation and transpiration result in increased ion concentrations. When fill-and-
spill or fill-and-merge dynamics are incorporated, dissolved ions mix, typically resulting
in the saltier of the newly connected wetlands becoming fresher and the fresher wetland
becoming more saline [83,88,103]. Two separate multi-county studies in central North
Dakota found that since the 1960s and 1970s, saline wetlands have become significantly
fresher and fresh wetlands have either remained static or slightly increased in salinity,
resulting in less variability in salinity and a more homogenous salinity gradient [83,88].
Mushet et al., 2015, [83] found that for 167 large central North Dakota prairie-potholes
sampled in the 1960s and 1970s, and resampled in 2012 and 2013, the specific conductance
range between wetlands was 365 µS/cm to 70,300 µS/cm with a mean of 8376 µS/cm in
the earlier time period and decreased to a range of 449 to 40,350 µS/cm with a mean of
2897 µS/cm in the more recent sampling. Similarly Cressey et al., 2016 [88] found that
for 80 central North Dakota wetlands with variable ponded-water regimes, wetlands that
were saline in the 1961 to 1966 sampling period were much fresher during the 2013 to 2014
sampling period, and many of the smaller, historically fresher wetlands increased in salinity,
which resulted in a much narrower and more homogenous salinity gradient in the later
period. The cumulative changes in ponded water; volume, duration, extent, and chemistry
have already started to alter species assemblages in the region [54,95,105,106,108].

The concept of biotic homogenization has a rich and still growing literature base in the
aquatic sciences [109–111]. The dominant mechanisms that drive biotic homogenization
are habitat simplification due to anthropogenic modification and the spread of invasive
species [109,111]. These two mechanisms work hand in hand since habitat simplification
can result in a loss of specialist taxa which provide an opportunity for non-endemic
or other generalist taxa to replace them [110]. While habitat simplification of wetland
ecosystems has occurred in the PPR, investigations of biotic responses in the context
of biotic homogenization are limited [54]. The research that has indicated evidence for
biotic homogenization in the PPR are mostly observations of decreased-beta diversity in
wetland plant communities [95,112,113]. The potential homogenization of wetland animal
communities, e.g., invertebrates and amphibians, is likely less understood due to the
limited availability of long-term monitoring data [105].

Prairie-wetland vegetation dynamics and diversity are highly dependent on hydro-
logic dynamics [113]. Contemporary shifts towards larger, deeper, more connected wetland
ponds in the PPR and the conversion of many uplands to cropland can simplify both the
structure and taxonomical composition of wetland plant communities. Depending on a wet-
land’s ponded-water regime, prairie-pothole wetlands can have open-water, deep-marsh,
shallow-marsh, and wet-meadow vegetation zones [114]. Vegetation structure is different
in each zone. For example, open-water zones in wetlands contain submergent vegetation,
deep-marsh zones contain tall emergent species, shallow-marsh zones contain mid-height
emergent vegetation, and wet-meadow zones contain shorter sedges [115]. When multiple
vegetation zones are present, even minor changes in surface water can significantly change
a wetlands vegetation structure [116]. The shift towards larger, deeper, more permanently
ponded wetlands can lead to the loss of shallow marsh and wet meadow zones, which
results with most of the wetland being in open-water or deep-marsh vegetation ([54];
Figure 4). Another widespread mechanism for loss in wetland vegetation structure has
been the cultivation of wetland edges [85,117]. The simplification of vegetative structure
through loss of vegetation zones, can in turn result in a loss of plant (and animal) species
unique to the specific vegetation zones.

The stabilization of ponded-water regimes can result in a loss of plant communities
that prefer dynamic surface-water fluctuations, which in turn can facilitate their replace-
ment with exotic species [21,104,118]. Increased sedimentation and nutrient transport
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into wetlands from surrounding croplands has also been attributed to the establishment
of invasive wetland plants such as the non-native cattail Typha angustifolia and hybrid
cattail (Typha × glauca), reed canarygrass (Phalarus arundinacaea), and common reed (Phrag-
mites australis), which are known to spread rapidly and can choke out entire wetland
basins [112,118]. For restored wetlands in the southeastern portion of the PPR, Aronson
and Galatoswitch, 2008, [113] found that beta diversity began to decrease after 12-years
post reflooding when extinction rates began to exceeded colonization rates. A major mech-
anism in these losses was the invasion of reed canary grass and hybrid cattails. The rise
of invasive cattails and reed canary grass in shallow-marsh and wet-meadow zones has
been observed in other studies within the region as well [94,104]. Jones, 2022, [74]) found
that for many wetlands restored in North Dakota where heavily invaded by non-native
cool season grasses, this was likely attributed to weak, natural wetland seed banks and
mechanically seeding the upland areas to cool season gasses that make up dense nesting
cover. While the observed loss of vegetation structure and native species and increases in
invasive species in prairie-pothole wetland plant communities appears to be a common
pattern, the response of aquatic animal communities to habitat simplification has been less
predictable [54], although shifts in aquatic plant communities would affect other organisms
within these wetlands [119,120]. Hu et al., 2022 [94] used a paleolimnological approach to
identify compositional changes in diatom communities in North Dakota Prairie pothole
wetlands, and found increased abundances of more pelagic taxa that occurred around 1993
(i.e., start of current wet period), indicating a shift toward more lacustrine habitats that
were novel to the 178-year period assessed.

McLean et al., 2019 [54] used long-term monitoring data from 16 wetlands in the
PPR of North Dakota to investigate the simplification of ponded-water regimes observed
through a shift towards more permanently ponded wetlands, and to determine if the shifts
were correlated with decreases in aquatic-macroinvertebrate beta diversity. Overall, among-
wetland beta diversity did not change over time (1992 to 2015). However, for the wetlands
that shifted to more lake-like ponded-water regimes, they observed a clear shift towards
a more novel and less dynamic invertebrate community composition [54]. Unfortunately,
for the sites included in McLean et al., 2019 [54], aquatic-macroinvertebrate sampling did
not begin until the start of an extended wet period, and consequently, their study was not
able to quantify community composition that occurred in the more hydrologically dynamic
periods that occurred before the start of the wet period (i.e., prior to 1993). The temporal
limitations of this study can be expanded across the PPR, where there are very few, if any,
aquatic-invertebrate studies that capture the taxonomic variability observed before and
after 1993 [105]. Additionally, the wetlands sampled in McLean et al., 2019 [54], were also
located on federal lands that have protected them from drainage, which limits its ability to
generalize patterns that occur on the highly modified surrounding landscape.

Under contemporary ecohydrological conditions in the PPR, most wetland stud-
ies aimed at identifying environmental and surrounding land-use predictors of aquatic
macroinvertebrates and or amphibians have been inconclusive in their findings [121].
However, using the information available, we can put together the pieces and generate
hypotheses as to how climate and land-use driven simplification of wetland ecohydrologi-
cal variability influences regional biodiversity. The preferential loss of small, temporarily
ponded wetlands have likely resulted in localized or even regional loss of plant and animal
communities that are specially adapted to these systems [5,59]. For example, many fairy
shrimp (Anostraca) species require periodic drying of wetlands in order to complete their
lifecycle. In regions outside the PPR, the loss of ephemeral wetland habitats has resulted in
the regional loss or in some cases extinction of specific species [67,122]. However, for the
PPR, there is very little literature that documents wetland macroinvertebrate communities
present prior to the large-scale drainage of wetlands. While some invertebrates leave behind
a record of their occur in wetland sediments, many leave behind no recalcitrant remains.
Therefore, we will likely never know the actual extent of the pre-European-settlement
species lost [123]. Another group of specialist wetland taxa that have likely become less
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abundant on the landscape are the saline tolerant invertebrates (e.g., brine shrimp, brine
flies) and plants [83,105]. The observed decreases in highly saline habitats and the loss
of temporarily ponded wetlands have likely resulted in a loss of these specialist taxa.
The current, fresher and larger wetland ponds have become suitable for a wider range
of generalist taxa, and many can now support taxa that require permanent ponds to per-
sist, e.g., fish that were not historically associated with prairie-pothole wetlands [106,124].
The increased presence of these fish communities has been identified as a major threat to
aquatic-macroinvertebrate and amphibian communities [86,106,121,125–128]. While ex-
treme precipitation events that have become common over the last 30 years likely provide
new habitat for invertebrate communities, if the new ponds did not historically function as
wetlands, it is possible that they do not have established invertebrate seed banks for some
of the short hydroperiod specialist taxa, such as fairy shrimp.

For the most part, prairie-pothole wetlands have not been subjected to many exotic
and invasive aquatic animals that have plagued other nearby aquatic ecosystems (e.g., zebra
mussels, rusty crayfish, and faucet snails). The exception is the increased prevalence of fish
communities. While most of the fish taxa associated with prairie-potholes are native to the
region, they would historically be absent from most prairie-pothole wetlands [129]. Prior to
1993, most wetlands in the PPR were likely not consistently deep or fresh enough to support
sustained populations of these fish [106]. It is likely that infrequent colonization of fish
into prairie-pothole wetlands has naturally occurred. However, long-term persistence in
these systems would be rare considering that even some of the largest potholes periodically
dry or become too shallow to overwinter fishes [83,86,106,129]. In addition to historically
being unsuitable for fish population persistence, the lack of surface-water connections
would have limited fish dispersal from adjacent lakes and rivers. The cumulative effect of
decreased ponded-water salinity, increased ponded-water volume and duration, and in-
creased surface-water connectivity currently prevalent in the PPR have likely facilitated the
colonization of fish into prairie-potholes [86,106]. The most prevalent fish species observed
in prairie-pothole wetlands is the fathead minnow (Pimephales promelas). Gamefish, e.g.,
yellow perch (Perca flavescens), have also become increasingly prevalent in many wetlands
in the U.S. portion of the PPR. In addition to dispersal through surface-water connections,
the commercial and recreational value of baitfish such as minnows and gamefish such as
perch has led to an increase in stocking previously fishless habitats. Since prairie-pothole
wetland ecosystems did not evolve with fish, their presence in a wetland can lead to rapid
changes to the native species that live and/or feed in wetlands [125,127,128]. For example,
fathead minnow presence is correlated with decreased macroinvertebrate alpha diversity
and biomass [105]. The presence of fish is also correlated with decreases in native am-
phibian abundance, particularly for barred tiger salamanders (Ambystoma mavortium) and
northern leopard frogs (Lithobates pipiens), which both compete with and become prey to
some fish species [106,108,127].

In addition to their negative effects on aquatic-macroinvertebrate and amphibian
species distributions, the increased presence of fathead minnows also simplifies trophic
networks and results in ecosystem degradation [125–130]. For example, fathead minnows
can deplete small, herbivorous, zooplankton populations, which can often result in a trophic
cascade if algal blooms arise. These algal blooms, in turn, reduce submergent vegetation by
blocking sunlight [125,128,131]. As another example, when in competition with fathead
minnows, brooding ducklings have reduced growth and survival rates [132].

4. Consequences of Ecosystem Homogenization

While the distribution and variability of ecosystem functions provided by prairie-
pothole wetlands has likely decreased due to historical wetland losses and shifting (wetter)
ecohydrological conditions, remaining prairie-potholes still provide valuable habitat for
regional biodiversity and perform critical ecosystem services [126] In other regions where
depressional wetlands occur in croplands dominated regions, such as the subtropical
Pampa grasslands in Brazil, cropland-associated changes in abiotic conditions have been
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attributed to the simplification of some invertebrate communities [133]. Further research
could assess whether these patterns also occur in the PPR. The selective losses of small wet-
lands and saline wetlands in the PPR have likely resulted in a loss on the landscape of the
unique taxa associated with these wetland types. However, the larger, more permanently
ponded wetlands remaining on the landscape often have higher aquatic-macroinvertebrate
taxon richness [134,135]. The increased presence of water on the landscape has also boosted
local duck abundances and fish populations [106,124,136,137]. The increased duck popula-
tions and fishing opportunities in prairie-pothole wetlands have also benefited outdoor
recreation in the region. However, the functional roles of prairie-pothole wetlands ex-
tend beyond wildlife and fisheries conservation. Homogenization of other prairie-pothole
ecosystem attributes threaten their important landscape functions and the societal benefits
they provide. The increased presence of more monotypic stands of non-native vegetative
communities in the wetland marsh zones has been attributed to a decline in native wet-
land plant communities [74,95,112] and has been found to limit the abundance of certain
secretive marsh bird densities [138,139]. However, the impacts of homogenized plant com-
munities dominated by invasive plant species and other land-use related effects on wetland
aquatic animal species (e.g., aquatic invertebrates and amphibians) are relatively unknown.

The smaller, temporarily ponded wetlands that were once much more common
in the PPR landscape provide many important ecosystem services due to their unique
properties [60]. For example, these smaller wetlands are the primary contributors to
groundwater recharge to an aquifer [24,140] because they store and quickly lose water
to groundwater. They can also capture a disproportionate amount of stormwater runoff
compared to larger discharge wetlands, which helps alleviate overland and downstream
flooding [40,87,141,142]. This is especially important under current climate conditions
when many larger wetlands have remained at or near their spill point which limits their
water-storage capacity. In addition to water storage, smaller wetlands are dispropor-
tionately important for their geochemical functions as well [60]. For example, smaller
wetland basins have proportionally larger reactive zones, which make them more efficient
in biogeochemical cycling [15].

During high precipitation years, such as 2011 (see Figure 5), there can actually be
an increase in small-ponded wetlands, and potentially increased heterogeneity in the
distribution of ponded-water areas among depressions. However, from a jurisdictional
perspective, periodic ponding of water (or other hydrological indicators) is only one of the
three defining characteristics of a wetland, and it is uncertain if many of the small ponds
also have established hydric soils or wetland plant communities. While small depressional
ponds that either have recently established wetland soils and vegetative communities or
only contain hydrologic characteristics (ponds) likely contribute to wetland ecosystem
heterogeneity, more research is needed to understand if they are functionally equivalent to
the small wetlands that existed prior to the ecohydrological state shift that began in 1993.

5. Potential Impacts of Continued Climate Change

While ecohydrological conditions of wetlands in the PPR over the most recent 15
to 25 years have been wetter and resulted in larger wetland ponds than historical aver-
ages [56,83], these conditions are likely to change under future climate scenarios [142,143].
However, there is still much uncertainty as to the magnitude of seasonal and annual
temperature and precipitation changes in the PPR, and how wetland ecosystems will
respond to these changes [144–146]. One commonality in future climate predictions is
that temperatures will continue to increase, and average ponded-wetland densities will
decrease [145,147]. With increases in temperatures come increases in evaporation rates of
wetland ponds. If evaporation and transpiration water losses exceed precipitation inputs
into wetlands, then ponded wetland area will decrease, which could result in a loss of
wetland network connectivity [142]. Considering that evaporation and transpiration rates
decrease as the volume to surface-area ratio increases, and that smaller recharge wetlands
lose more water to the soil during dry periods, short-term droughts could have a dispro-
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portionate influence on the smaller wetland ponds [31,38,141]. LaBaugh et al., 2016 [148]
found that even though salt concentrations in the more permanently ponded wetlands
were decreasing due to dilution, the accumulation of salts has continued to increase over
time in some wetland ponds. This could have serious consequences for local biota if these
larger ponds begin to dry and concentrate these salt additions. Land-use change has also
been a continuous process in the region that can either help or harm wetland ecosystems
depending on our future management decisions. In addition to expected climate-driven
decreases in the amount of time small wetlands pond water due to future changes in cli-
mate, in the absence of ponded water, wetlands will likely be more vulnerable to landscape
modifications (e.g., draining and filling) that would prevent ponding in future years.

6. Conclusions

Depressional wetlands, such as prairie-pothole wetlands, are highly sensitive to adja-
cent landscape modifications and climate shifts [19]. Through our review of the prairie-
pothole wetland literature, we found consistent patterns indicating climate- and land-
use-driven shifts in wetland hydroecological variability. The synergistic effects of climate
and land use are working to pull wetland ecosystems towards one of two stable states,
a dry state or a permanently ponded state [91]. This is because prairie-pothole wetland
systems are typically described as having dynamic or transitory states that would naturally
fluctuate between the two stable states (i.e., terrestrial and permanently ponded). However,
in the presence of climate change-associated patterns (extreme weather) and widespread
anthropogenic modifications, there is enough energy to force these systems into more stable
states [55,91]. Over the last few decades, many larger wetlands have shifted towards being
more permanently ponded lakes. However, in the future, climate warming will likely shift
wetlands towards a dry state, which will disproportionately influence smaller wetlands.
Currently, the smaller temporarily ponded wetlands continue to be the most vulnerable
to future losses and are perhaps the most valuable for maintaining wetland landscape
multifunctionality [13,15,24,60]. While it is hard to predict all of the potential climate
and land-use scenarios and how they might alter prairie-pothole wetland ecosystems in
the future, understanding the vulnerabilities of these systems to potential changes is an
important consideration for proactive conservation planning strategies.
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