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Abstract: In this paper, we present the simulation results of a Lagrangian particle tracking model
that computes the motion of saltating sediment particles, which is considered the most important
mode of bedload transport in rivers and channels. The model is one-way coupled to a validated
turbulent LES-WALE (Large Eddy Simulation – Wall-Adapting Local Eddy-viscosity) channel flow,
i.e., the particles do not affect the computation of the flow velocities and pressures, as suggested
for dilute flows. The model addresses the particle trajectories, the collision of the particles with the
bottom wall, and collision among particles. The focus of this work is placed on the effect of different
particle concentrations and flow intensities (different flow shear stresses) on jump statistics and
particle diffusion. Numerical results are validated with experimental laboratory data obtained from
the literature for particle diameters in the range of sands. The present results indicate that, at particle
concentrations up to 2%, the diffusion coefficients in the streamwise and spanwise directions, γx and
γz, for the local range are nearly constants with a value close to one, corresponding to the ballistic
regime. At a concentration of 4%, the largest concentration studied herein, values of γx and γz for the
local range are slightly smaller, with a representative value of 0.9 regardless of flow intensities. For
the intermediate regime, it was found that, on average, γx ∼ 1.2γz with γx ranging from 0.6 to 0.85
and γz within the range 0.45–0.70. For a fixed flow intensity, both diffusion coefficients increase with
the particle concentration, which is an indication of the contribution of the collision among particles
to particle diffusion. For highly controlled simulation conditions, the differences in particle velocity
at a given concentration may change drastically, which should translate to important fluctuations
in the computation of sediment transport rates. Finally, the employed computational resources are
described as a function of particle concentration. Although the number of total collisions increases
linearly with the number of particles, the number of collisions per particle reaches a plateau, thus
indicating that there exists an upper limiting value for the number of collisions per particle.

Keywords: sediment; bedload transport; particle diffusion; particle concentration; saltation; Eulerian–
Lagrangian model

1. Introduction

Many natural systems and industrial activities rely on the proper quantification of the
transport rates of solid particles [1]. Riverbed erosion and the transport of slurries in the
mining industry are examples of processes for which estimations of sediment fluxes are
crucial [2,3].

Sediment transport is generally classified as suspended load and bedload [4,5]. In
bedload transport, particles are transported either by sliding/rolling or jumping over the
bed surface. This last transport mechanism is called saltation and, under natural flow
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conditions, is one of the driving forms of bedload motion [4–8]. In most cases, bedload
transport is either associated with sand or gravel particles [5]. This paper addresses the
mode of particle saltation, which, despite occurring in a layer whose height is approximately
two to four particle diameters, plays a key role in river morphology and aquatic habitat [1,5].

To estimate bedload transport rates in gravel and sand bed rivers, many expressions
have been developed since the early work of Meyer-Peter–Müller [9]. These expressions
typically employ the Shields criterion to compute a dimensionless bedload transport
rate q∗ = f (τ∗, τ∗c, R) as a function of the Shields parameter τ∗, the critical Shields
parameter τ∗c, and the submerged specific gravity R. Due to their simplicity, these types of
formulations applied to quantify bedload sediment transport are usually preferred over the
detailed descriptions of Lagrangian models. However, the estimation of bedload transport
rates by semi-empirical formulas based on the Shields criterion may lead to differences
between one and two orders of magnitude from laboratory and field observations [10–12].
Therefore, further understanding on the dynamic interaction among sediment particles,
turbulent flow, and the bed will help to improve the prediction capacity of bedload transport
rates [12–14].

In past decades, researchers have focused on understanding bedload mechanics mainly
through experimental observations [15]. The assessment of all the different processes under-
lying bedload transport has proven quite challenging with experimental techniques [16–19].
This challenge is countered by an increased computational power that is of great help
for understanding the interplay between particle motion and near bed turbulent struc-
tures [15]. To that end, different numerical approaches have been used in the study of
bedload transport, such as Eulerian–Eulerian and Eulerian–Lagrangian methods [20]. The
former treats both fluid and particles as continuous phases (Eulerian), whereas the latter
treats sediment particles as a dispersed phase (Lagrangian) [21,22]. The Eulerian–Eulerian
approach requires appropriate closure laws to describe the physical processes related to
the fluid–particle and interparticle interactions [23]. The Eulerian–Eulerian description
has been primarily applied to dense bedload transport (i.e., sheet flows) with three main
frameworks to close the system [20]: the Bagnold formula [24], the µ(I)-rheology [25,26],
and the kinetic theory [27,28]. The Eulerian–Lagrangian approach, also known as compu-
tational fluid dynamics–discrete element method (CFD-DEM), provides better results in
terms of resolution of the particle–fluid interaction and particle–particle interaction, and
no closure laws are required [23,29]. Eulerian–Lagrangian models can use resolved and
unresolved methodologies. The resolved methods employ direct numerical simulation
(DNS) for solving the flow, whereas surface stresses around each particle are solved by
using either arbitrary Lagrangian–Eulerian (ALE) or immersed boundary method (IBM)
techniques [29–31]. Although the level of detail achieved by this approach is desired, it
is computationally very expensive and limited to small computational domains, small
number of particles, and, up to now, unsuitable for large Reynolds numbers. The un-
resolved methods, instead, use empirical formulas to describe the change of linear and
angular momentum for each particle, coupled with formulas that treat the wall–particle
and interparticle interactions. The particles are treated as points to which mass, forces, and
torques are assigned, which is why this methodology is called the point–particle approach.
The point–particle approach has the advantage of explicitly predicting the fluid–particle,
particle–particle, and wall–particle interactions with good accuracy, which is very impor-
tant for studying bedload transport, significantly reducing the computational costs and
limitations of the resolved approach [23,29,32].

In this paper, we present numerical results obtained by our in-house C++ code for the
Lagrangian calculations of particle saltation, focusing on the combined effects of particle
concentration and flow intensity on particle jump statistics and particle diffusion. Given
the moderate Reynolds number of the flow (104), a large eddy simulation (LES) model was
considered for the turbulent channel. Several particle concentrations and flow intensities
were considered that cover a range of values for which experimental measurements were
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available. Details of the computational resources employed for various concentrations are
also presented and discussed.

2. Description of the Lagrangian Model
2.1. Description of the Forces Included in the Saltation Model

According to Newton’s second law, a particle of mass m that moves at velocity up in a
flow of velocity uf has an acceleration determined by the addition of several forces acting
on it. The employed forces selected for this model are submerged weight (Fsw), drag (Fdr),
lift
(
Flf
)
, Basset (Fbs), Magnus (Fmg), added mass (Fam), and fluid acceleration (Ffa). Thus,

the equation of motion for saltating particles can be written as:

m
dup

dt
= Fsw + Fdr + Flf + Fbs + Fmg + Fam + Ffa (1)

Most of the terms in Equation (1) for calculating forces are taken from [33]. Equation (1)
does not include the effect of collisions during the event of saltation. The interchange of
momentum due to collision of two particles is included in the model by using other
equations. The selected forces are briefly described below.

2.1.1. Submerged Weight (Fsw)

The submerged weight for a spherical particle can be calculated as the difference
between the gravitational force and the buoyancy force due to the displaced volume.

Fsw =
π

6
(
ρp − ρ

)
gdp

3 (2)

where g is the acceleration of gravity, ρ and ρp are the water and particle densities, respec-
tively; and dp is the particle diameter.

2.1.2. Drag Force (Fdr)

This force comes from the effect of pressure and viscous forces acting on the surface of
the particle in the direction of the relative flow velocity. The drag force, expressed in terms
of the relative particle velocity in the flow direction ur, can be written as:

Fdr = −
3
4

CD
ρ

ρp

A|ur|Ur

dp
(3)

where CD is the drag coefficient, A is the particle cross section in the direction of ur, and Ur
is the magnitude of ur. The relative velocity of the particle can be estimated as ur = up − uf.

2.1.3. Lift Force (Flf)

For spherical particles under the presence of shear stresses, a pressure gradient normal
to shear stresses will be generated, which produces lift. This force can be written as:

Flf =
3
4

ρ
CL
dp

(
|ur|2T − |ur|2B

)
(4)

where CL is the lift coefficient, and |ur|T and |ur|B represent the relative velocity at the top
and bottom regions of the particle, respectively.

2.1.4. Basset Force (Fbs)

The Basset force or history force accounts for the delay in boundary layer development
due to the instability of the flow around an accelerating particle, and it can be computed as:
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Fbs = −
9
dp

(ρµ

π

)0.5 ∫ t

0

dur

dτ

dτ

(t− τ)0.5 (5)

where t is time, µ is the dynamic fluid viscosity, and τ is the integration variable. The above
equation must be solved carefully because the upper integration limit is singular (see, for
example, [34]).

2.1.5. Magnus Force (Fmg)

The particle rotation under the effect of a flow field generates a force that is perpendic-
ular to the direction of the particle motion and rotation. It is also called rotation lift force. A
basic form of Magnus force for high Reynolds numbers corresponds to:

Fmg = CMπρ
dp

3

8
(
Ωp × ur

)
(6)

where Ωp represents the angular velocity of the particle, and CM (ranging from 0.4 to 0.55)
is the Magnus coefficient that relates the Magnus force with the Reynolds number, and
rotation with the particle relative velocity.

2.1.6. Added Mass Force (Fam)

The particle motion in a fluid necessarily requires the displacement of the fluid sur-
rounding the particle. This effect is quantified through the added mass force or virtual
mass. For a spherical particle immersed in a high Reynolds number flow, this force can be
written as follows:

Fam = ρCm
d
dt
(
uf − up

)
(7)

where Cm = 0.5 is the added mass coefficient.

2.1.7. Fluid Acceleration Force (Ffa)

This force is attributed to the fluid motion away from the particle when the control
volume analysis is applied. It can be written as:

Ffa = ρ
Duf

Dt
(8)

2.2. Sub-Model for the Particle Free-Flight

The 3D sub-model proposed herein describes the trajectory and velocity of free flying
particles by describing the hydrodynamic forces responsible for the particle motion. The
equations are combined with an angular momentum equation devoted to follow in time
the particle rotation.

The equations of the sub-model provide the non-dimensional particle velocities in the
streamwise, wall normal, and spanwise directions, respectively, as it can be seen in Figure 1
(up, vp, and wp). In addition, each particle has an angular velocity, and it can collide with
the bed or other particles. The channel bed has an inclination with respect to the horizontal
plane (θ), where particles can move and collide with the wall (formed with packed particles
of the same diameter) and other moving particles, as shown in the following figure.
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The momentum equations presented below are written in non-dimensional form and 

include the particle diameter as length scale and the shear velocity 𝑢∗ as a velocity scale. 

𝑑𝑢𝑝

𝑑𝑡
= 𝛼

𝑠𝑖𝑛 𝜃

𝜏∗

−
3

4
𝛼𝐶𝐷(𝑢𝑝 − 𝑢𝑓)|𝒖𝒓| + 𝛼𝐶𝑚𝑤𝑝

𝑑𝑢𝑓

𝑑𝑧
+

9𝛼

√𝜋𝑅𝑝𝜏∗

1
4⁄

∫
𝑑

𝑑𝜏
(𝑢𝑓 − 𝑢𝑝)

𝑑𝜏

√𝑡 − 𝜏

𝑡

0

+
𝛼𝐷𝑢𝑓

𝐷𝑡
 (9) 

𝑑𝑣𝑝

𝑑𝑡
= −

3

4
𝛼𝐶𝐷(𝑣𝑝 − 𝑣𝑓)|𝒖𝒓| + 𝛼𝐶𝑚

𝑑𝑣𝑓

𝑑𝑡
+

9𝛼

√𝜋𝑅𝑝𝜏∗

1
4⁄

∫
𝑑

𝑑𝜏
(𝑣𝑓 − 𝑣𝑝)

𝑑𝜏

√𝑡 − 𝜏

𝑡

0

+
𝛼𝐷𝑣𝑓

𝐷𝑡
 (10) 

𝑑𝑤𝑝

𝑑𝑡
= −𝛼

𝑐𝑜𝑠 𝜃

𝜏∗

−
3

4
𝛼𝐶𝐷(𝑤𝑝 − 𝑤𝑓)|𝒖𝒓| + 𝛼𝐶𝑚

𝑑𝑤𝑓

𝑑𝑡
+

9𝛼

√𝜋𝑅𝑝𝜏∗

1
4⁄

∫
𝑑

𝑑𝜏
(𝑤𝑓 − 𝑤𝑝)

𝑑𝜏

√𝑡 − 𝜏

𝑡

0

+
𝛼𝐷𝑤𝑓

𝐷𝑡

+
3

4
𝛼𝐶𝐿(|𝒖𝒓|2

𝑇
− |𝒖𝒓|2

𝐵
) +

3

4
𝛼|𝑢𝑟| (𝜛𝑦 −

1

2

𝑑𝑢𝑓

𝑑𝑧
) 

(11) 

In Equations (9)–(11), 𝑢𝑓 is the streamwise velocity component of the fluid, 𝛼 is defined 

as (1 + 𝑅 + 𝐶𝑚)−1, and 𝑅 is the submerged specific gravity of the particle, which is de-

fined as (𝜌𝑠 𝜌⁄ − 1); 𝜏∗ is calculated as 𝑢∗
2 (𝑔𝑅𝑑𝑝)⁄ ; 𝑔 is gravity; 𝑅𝑝 = (𝑔𝑅𝑑𝑝

3)
0.5

𝜈⁄  is 

the explicit Reynolds number of the particle; 𝜈 is the kinematic viscosity of water; 𝜃 is 

the angle of the bed with respect to the horizontal plane; 𝜛𝑦 = 𝜔𝑦𝑑𝑝 𝑢∗⁄  denotes the non-

dimensional component of the rotation vector in the spanwise direction; 𝜔𝑦 represents 

the angular rotation of the particle along the spanwise direction; and 𝑦 corresponds to the 

direction normal to the bottom of the channel. 

The terms on the right-hand side of the Equation (9) correspond to the following 

forces per unit mass: submerged weight or buoyant force; non-linear drag force; the re-

minder of the added mass or virtual mass force; Basset force, and fluid acceleration force, 

respectively. In Equation (10), the right-hand side terms are non-linear drag force, the re-

minder of the added mass or virtual force, Basset force, and fluid acceleration force, re-

spectively. Finally, in Equation (11), the terms represent the submerged weight or buoyant 

force, the non-linear drag force, the reminder of the added force, Basset force, fluid accel-

eration force, the lift force, and the Magnus force, respectively. The operator 𝑑(∙)/𝑑𝑡 indi-

cates the material derivative using the particle velocity. A value of 𝐶𝑚 = 0.5 for the coef-

ficient of virtual mass was employed as in other particle tracking models. As suggested 

by [35], the selected lift coefficient was 𝐶𝐿 = 0.2. 

The drag coefficient, 𝐶𝐷, was calculated using the expression proposed by [36]: 

Figure 1. Schematic of the 3D particle jumps.

The momentum equations presented below are written in non-dimensional form and
include the particle diameter as length scale and the shear velocity u∗ as a velocity scale.

dup

dt
= α

sin θ

τ∗
− 3

4
αCD

(
up − u f

)
|ur|+ αCmwp

du f

dz
+

9α√
πRpτ

1
4∗

∫ t

0

d
dτ

(
u f − up

) dτ√
t− τ

+
αDu f

Dt
(9)

dvp

dt
= −3

4
αCD

(
vp − v f

)
|ur|+ αCm

dv f

dt
+

9α√
πRpτ

1
4∗

∫ t

0

d
dτ

(
v f − vp

) dτ√
t− τ

+
αDv f

Dt
(10)

dwp
dt = −α cos θ

τ∗
− 3

4 αCD

(
wp − w f

)
|ur|+ αCm

dw f
dt + 9α

√
πRpτ

1
4∗

∫ t
0

d
dτ

(
w f − wp

)
dτ√
t−τ

+
αDw f

Dt

+ 3
4 αCL

(
|ur|2T − |ur|2B

)
+ 3

4 α|ur|
(

vy − 1
2

du f
dz

) (11)

In Equations (9)–(11), u f is the streamwise velocity component of the fluid, α is defined
as (1 + R + Cm)

−1, and R is the submerged specific gravity of the particle, which is defined

as (ρs/ρ− 1); τ∗ is calculated as u∗2/
(

gRdp
)
; g is gravity; Rp =

(
gRd3

p

)0.5
/ν is the explicit

Reynolds number of the particle; ν is the kinematic viscosity of water; θ is the angle of
the bed with respect to the horizontal plane; vy = ωydp/u∗ denotes the non-dimensional
component of the rotation vector in the spanwise direction; ωy represents the angular
rotation of the particle along the spanwise direction; and y corresponds to the direction
normal to the bottom of the channel.

The terms on the right-hand side of the Equation (9) correspond to the following forces
per unit mass: submerged weight or buoyant force; non-linear drag force; the reminder of
the added mass or virtual mass force; Basset force, and fluid acceleration force, respectively.
In Equation (10), the right-hand side terms are non-linear drag force, the reminder of
the added mass or virtual force, Basset force, and fluid acceleration force, respectively.
Finally, in Equation (11), the terms represent the submerged weight or buoyant force, the
non-linear drag force, the reminder of the added force, Basset force, fluid acceleration force,
the lift force, and the Magnus force, respectively. The operator d(·)/dt indicates the material
derivative using the particle velocity. A value of Cm = 0.5 for the coefficient of virtual mass
was employed as in other particle tracking models. As suggested by [35], the selected lift
coefficient was CL = 0.2.
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The drag coefficient, CD, was calculated using the expression proposed by [36]:

CD =
24

Rep

(
1 + 0.15

√
Rep + 0.017Rep

)
− 0.208

1 + 104Re−0.5
p

(12)

where Rep = vsdp/ν is the particle Reynolds number, and vs is the particle fall velocity.
The non-dimensional rotation vector v is numerically calculated at each time step using
the expression proposed by [37]:

dv

dt
= −Ct

15
16π
|vr|vr (13)

where Ct = C1/
√

Rer + C2/Rer + C3Rer; the Reynolds number associated to the rotation
motion is a non-dimensional coefficient written as Rer = d2

p|vr|/4ν; the coefficients C1, C2,
and C3 are taken from the table presented in [37]; and vr is the non-dimensional vector of
relative rotation of the particle with respect to the fluid vorticity.

Equations (9)–(11) are a 3D extension of the equations presented by [33]. They
are based on the point–particle approach [21], and they include all forces explained in
Section 2.1 of the present paper (see [4]). Except for the Basset term, Equations (9)–(11),
are solved by using the standard fourth order Runge–Kutta method. The Basset force
is treated differently because the integral is singular at the upper integration limit. The
second order methodology analyzed in [32] has been used to circumvent this problem.
The simplifications applied to the above equations are (a) the stream-wise and span-wise
components of the lift force are close to zero; and (b) the stream-wise and wall-normal
components of the Magnus force are negligible, an assumption that has been corroborated
through many computations (see [4]).

2.3. Sub-Model for Collision of Particles with the Bottom Wall

The numerical simulation for the process of particles colliding with the bottom wall is
usually separated into three sub-models that represent the following features: the rebound
of the particle and the representation of the roughness of the bottom wall.

The rebound sub-model allows one to calculate the linear and angular velocities of the
particle after the collision based on the linear and angular velocity just before the collision
with the wall. In addition, the energy loss during the semi-elastic collision between particles
and wall is considered by using the friction and restitution coefficients. The irregularities of
the bottom wall inherent to any streambed are modeled through expressions that include
geometric and random terms, allowing the variability of jump lengths and jump heights,
as well as the global diffusion of the particles.

The 3D model employed in this work was proposed by [38]. The model includes
the conservation of linear and angular momentum before and after the collision with the
bottom wall. The post-collision velocity, expressed as a function of the particle velocity
immediately before the collision, is calculated depending on whether the particle slides
over the bottom wall. The equation was developed for the contact with the horizontal
plane among the particle and the bottom wall [22]. An advantage of this model is that it
can be easily extended to simulate the collision among particles.

2.4. Sub-Model for Collision among Particles

When two or more particles in very close proximity are about to collide, then a
subroutine for calculating the linear and angular velocities after the collision is used. For
collision among particles, two classes of models are generally considered: the hard-sphere
model and the soft-sphere model [22]. The first model includes collision between only
two particles (binary collision), which is a good approximation for flows with low particle
concentrations. This model includes the use of restitution, e, and friction, f , coefficients
to calculate the interchange of linear and angular momentum. In contrast, the soft-sphere
approach employs elements from mechanics to simulate collisions among multiple particles
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and to estimate the post-collision linear and angular velocities. This feature makes the
model very useful when the particle concentration is high, given that, in this case, multiple
particles may collide at the same time. However, the computational cost is larger than
that needed for the hard-sphere model. Given that particle concentrations as high as 5%
are considered in this work, the soft-sphere model will be applied. For more information
regarding both collision models, please refer to [22].

2.5. Diffusion

A particle moving as bedload can be at rest or in motion (either rolling/sliding or
saltating). A particle moving in saltation mode moves due to the hydrodynamic forces
acting on it. At some point, this particle may be trapped during the collision with the bed.
Another reason for a particle to remain in the bed is simply due to a significant decrease in
the flow intensity. In this case, the flow is not strong enough to set the particle in motion.
The particle can then be in suspension again due to an increase in the net hydrodynamic
force acting on it locally. Therefore, in the long-term trajectory of a particle in saltation
mode, there are many collisions with the bed, periods of rest, and resuspensions to consider.
If a particle transported by the flow substantially changes its position in time, there is said
to be great diffusion in a certain axis (X and Z-axes in our case). If a particle follows a nearly
straight line in the X-axis, then diffusion in the Z-axis is zero. The authors in [39] suggest a
conceptual model to estimate diffusion of particles for bedload transport, identifying three
ranges of spatial and temporal scales with different diffusion regimes, namely: local range,
intermediate range, and global range. By diffusion, it is meant the rate in time at which
particles disperse in plan view (X-Z plane). No diffusion is considered in the Y-axis.

The local range corresponds to ballistic trajectories of particles, which occur between
two successive collisions with the bottom wall (γx ≈ γz ≈ 1). These trajectories are the
result of the inertial motion of the particle, with no rests or abrupt changes in particle
position. The intermediate range corresponds to trajectories of particles between two
successive rests or periods of rest. Trajectories in this range consist of many local trajectories,
including dozens or hundreds of collisions with the channel bed. In the intermediate
range, diffusion can, in principle, be slow/sub-diffusive (γx, γz < 0.5), normal/Gaussian
(γx = γz = 0.5), fast/superdiffusive (γx, γz > 0.5), or a mixture of values depending on
factors driving the transport process. For example, the bed bathymetry and turbulence close
to the bed may have opposite effects on the diffusion of particles in saltating mode. The
bed roughness can slow the process of diffusion, whereas turbulence can enhance it. The
global range of scales corresponds to particle trajectories that consist of many intermediate
trajectories, as intermediate trajectories consist of many local trajectories. The behavior of
the particle in the global range of scales is most probably sub-diffusive (γ < 0.5), because
of multiple periods of rest. The local, intermediate, and global ranges are taken from
the conceptual model of [39], and the curves in that model are given by the following
regression equations:

〈X′2〉 = αxt2γx (14)

〈Z′2〉 = αzt2γz (15)

where X′2 and Z′2 are the second order moment of the particle position in X and Z,
respectively; αx, and αz are constants; t is time; X′ = X − X, Z′ = Z − Z, with X and Z
being mean values. The exponents γx and γz denote the state of diffusion, and 〈 〉 indicate
ensemble average.

According to the experimental values found by [39,40], it is expected that diffusion
in the spanwise direction (Z) should be approximately ballistic in the local range and
super-diffusive in the intermediate range. In this work, the global range is not modeled
because the saltation code does not include particle rests. The conceptual model of [39],
together with the average values of jump height and jump length, allow the validation of
the tridimensional model.
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3. Study Case

The experimental data, the main features of the computational simulations, the de-
scription of the Lagrangian model, and a brief description of the analyzed cases are pre-
sented below.

3.1. Experimental Information for Validation

To validate the saltation model, it is necessary to check that our numerical results are
coherent with the experimental results available in the literature. Experimental information
for sediment transport with diameters in the range of sands can be found in [8,41–43]. As
presented in Table 1, those articles contain detailed information on trajectories of saltating
particles, including particle diameter, number of jumps, shear velocity as a measure of the
flow intensity, and statistics of jumps; H and L represent non-dimensional values for mean
particle height and length, respectively, obtained from experiments.

Table 1. Characteristics of experimental information for particle jumps.

Authors Recording
Method

Particle Size
(mm) Number of Jumps u* (m/s) Statistics for H, L, and up

Lee et al.
(2006) [41]

Standard video
camera 0.6 Not available 0.039–0.068 Mean values

Lee et al.
(2000) [44]

Standard video
camera 6 Not available 0.038–0.054 Mean values

Niño and
García (1998) [42]

High-speed
video camera 0.5–0.8 1–2 jumps every

100 particles 0.021–0.026 Mean and standard
deviation

Niño et al.
(1994) [43]

Standard video
camera 15–31 80 0.14–0.23 Mean and standard

deviation

Lee and Hsu
(1994) [8]

Standard video
camera 1.36–2.47 Not available 0.036–0.105 Mean values

The experiments were carried out by using sands
(
dp = 0.0625− 2 mm

)
and gravels(

dp = 2− 64 mm
)
, which correspond to the most common type of non-cohesive sediments

transported in natural streams via saltation.
In Table 2, the recommended values for the friction and restitution coefficients ac-

cording to three authors are presented. These coefficients are employed in the collision
sub-models, and their values strongly depend on the material of the saltating particle
and the flow conditions, thus no universal values are available. In this work, the values
suggested by [45] are employed, based on [4], who analyzed a large dataset of particle
jump heights for two sizes of sands, confirming the use of the values given by [45].

Table 2. Values for friction and restitution coefficients.

Authors Restitution Coefficient e Friction Coefficient f

Niño and García (1994) [33] 0.75−0.25 τ∗/τ∗c 0.89
Schmeeckle et al. (2001) [45] 0.65 0.10

Tsuji et al. (1987) [46] 0.80 0.40

3.2. Computational Implementation

The simulation was performed with the open-source software OpenFOAM 5.x, which
consists of more than 100 libraries written in C++. The particle code was modified and
optimized to run in parallel to substantially increase the number of particles, and it cor-
responds to an extension from a previous saltation code, written in Fortran 90 [4]. For
that purpose, the new code has been written in C++ and parallelized using OpenMP and
a cell-based space partitioning algorithm. Space is subdivided into sub-volumes or cells,
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which contain the particles, and each cell is assigned to a process to compute the state
update of its particles in parallel. In all these processes, for each cell belonging to the
process, the particle–particle collision subroutine only verifies particle collisions for those
particles that are within the cell or on neighboring cells, which significantly reduces compu-
tational complexity of checking collisions on all pairs of particles. The code is extendable to
run in two-way coupling mode (with OpenFOAM) by applying a few modifications. The
algorithmic speedup thus obtained allows the simulation of dilute particle flows (particle
concentrations by volume up to 5%) for orders of O(100000) particles in a conventional
server. The study of higher concentrations within the dilute particle flow range and on the
non-dilute flow regime (concentrations above 5% by volume) requires the use of particle
tracking codes with parallel capabilities, and an efficient use of memory to manage the large
amounts of data storage needed at each time-step for high particle concentrations. This
work is the first step on the use of this code on the study of higher concentration particle
laden flows, which are of interest in industrial and natural flow studies. The modeled
particles are in the range of sands with a particle diameter of dp = 0.69 mm. The model
was validated with experimental observations given by [42]. The employed friction and
restitution coefficients correspond to the ones suggested by [45], which agree with the
numerical tests developed by [4].

The Reynolds number of the flow, based on a friction velocity of u∗ = 0.024 m/s
and the channel height h = 0.028 m, is Reτ = 590 corresponding to a moderate Reynolds
number

(
Re ∼ 104). In view of this, an LES model is used for reproducing the turbulent

channel flow. The sub-grid eddy viscosity is obtained from the WALE model [47]. Periodic
boundary conditions were employed at the inlet, outlet, and at the sides of the compu-
tational domain. The size of the computational domain is equal to 2πh× πh× 2h in the
streamwise, spanwise, and vertical directions, respectively, as shown in Figure 2a. The
number of computational cells was equal to 1.32 × 106 with 120 × 100 × 110 volumes
in the streamwise, spanwise, and vertical directions, respectively. The same cell size was
employed in the streamwise and spanwise directions, whereas in the vertical direction,
normal to the bottom wall, an expansion ratio of 1.20 was included. The first grid cell
was located at y+1 = u∗y1/ν ∼ 0.5 (where y1 corresponds to the distance from the wall to
half of the first finite volume). The computational domain, depicted in Figure 2a, shows
a very fine grid distribution near the walls. This distribution is chosen to obtain a good
resolution of the velocity gradients where the sediment particles move. The WALE sub-grid
model was applied herein as it gives good results near the wall, where sediment transport
takes place. Therefore, the mesh is more refined near the wall, until having finite volumes
within the viscous sublayer (y+ less than 5) and being able to capture the different scales of
turbulence. Once the turbulent flow is solved, the velocity field for each time is stored. The
information is then used for running the one-way coupled Lagrangian model for particle
saltation. Figure 2b shows the velocity magnitude resolution achieved by the LES-WALE
model near the wall. The flow simulation has been setup to mimic the experimental flow
conditions achieved in the simulations by Niño and García [42], which will be used to
validate the particle jump statistics.

To validate the Lagrangian model, the same experimental conditions presented by [42]
were simulated. These experiments provide statistics of mean and standard deviation for
three non-dimensional parameters: the particle jump length (L), jump height (H), and
stream-wise velocity (up). A single particle trajectory was simulated for a value of Rp = 73.
Three different flow intensities were simulated; corresponding non-dimensional shear
stresses of τ∗/τ∗c = 1.79, 2.43, and 2.67 were employed to that end, where τ∗c is the critical
shear stress associated with the incipient motion of the particle. For the particle size utilized
in this study, τ∗c = 0.032.



Water 2022, 14, 3105 10 of 25Water 2022, 14, 3105 10 of 26 
 

 

  

(a) (b) 

Figure 2. Grid and computational domain employed in the LES simulation using periodical flow. 

(a) Grid distribution and dimensions of the computational domain, (b) sample of LES velocity mag-

nitude (m/s) at a given time step. 

To validate the Lagrangian model, the same experimental conditions presented by 

[42] were simulated. These experiments provide statistics of mean and standard deviation 

for three non-dimensional parameters: the particle jump length (𝐿), jump height (𝐻), and 

stream-wise velocity (𝑢𝑝). A single particle trajectory was simulated for a value of 𝑅𝑝 =

73. Three different flow intensities were simulated; corresponding non-dimensional shear 

stresses of 𝜏∗ 𝜏∗𝑐⁄ = 1.79, 2.43, and 2.67 were employed to that end, where 𝜏∗𝑐 is the crit-

ical shear stress associated with the incipient motion of the particle. For the particle size 

utilized in this study, 𝜏∗𝑐 = 0.032. 

As an initial condition, the particle has a predefined angular and linear velocity. Par-

ticles located at the bottom wall are of the same diameter as the particles in motion. For 

simplicity, all particles are perfect spheres with the same diameter. Simulation time was 

200 s, where an average of 120 jumps were obtained for each case. To remove the effect of 

the initial conditions, the first 10 jumps were removed from the statistical analysis. Both 

mean values and standard deviation were calculated with the same methodology. In Fig-

ure 3, an example of the particle trajectories (top view), plotted in MATLAB, is presented, 

where the differences of particle mobility are very clear as particle concentration changes. 

Diffusion of particles on the transverse direction is also evident, where particles use a 
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Figure 2. Grid and computational domain employed in the LES simulation using periodical flow.
(a) Grid distribution and dimensions of the computational domain, (b) sample of LES velocity
magnitude (m/s) at a given time step.

As an initial condition, the particle has a predefined angular and linear velocity.
Particles located at the bottom wall are of the same diameter as the particles in motion.
For simplicity, all particles are perfect spheres with the same diameter. Simulation time
was 200 s, where an average of 120 jumps were obtained for each case. To remove the
effect of the initial conditions, the first 10 jumps were removed from the statistical analysis.
Both mean values and standard deviation were calculated with the same methodology. In
Figure 3, an example of the particle trajectories (top view), plotted in MATLAB, is presented,
where the differences of particle mobility are very clear as particle concentration changes.
Diffusion of particles on the transverse direction is also evident, where particles use a wider
section of the computational domain as the particle concentration increases.
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3.3. Description of How the Model Works

To begin, the computational domain where the process of saltating particles will take
place is defined (see Figure 1). Because the process is one-way coupled, the flow is solved
first and then the obtained velocity fields are employed to simulate the particle motion. The
Lagrangian code to follow the particles is employed in the same computational domain
used for simulating the turbulent flow. By creating the cells, each one will have its own
properties, such as flow velocity and vorticity, in the three spatial coordinates. The cell
number, cell location and dimensions, and the number of particles inside each cell are also
defined. The following step is to create the particles. To that end, a cell (near the wall) is
chosen randomly and a particle is created inside that cell. Each particle will have properties,
such as velocity and rotation, where assigned initial values have been generated randomly
within the range of the experimental values of [39]. Likewise, the simulation time, particle
number, and particle location are predefined as simulation input. The simulation can then
be carried out. The particle algorithm goes through each cell until a particle is found. Once
all particles have been identified, their new velocity is computed and time is updated. By
doing this, we avoid moving a particle twice during the same time step.

In order to compute the particle new velocity, there are three different options linked
to the three sub-models depending on whether the particle hits the bottom wall, the
particle hits another particle, or the particle moves in a free trajectory. In this last case, the
hydrodynamic forces are responsible for modifying the particle velocity. This sequence
is repeated until the simulation time is completed. During these processes, important
information is stored as text files. This includes jump height, jump length, and number of
jumps. Values of position, velocity, and rotation of the particles are also stored. Once the
simulation is finished, the relevant statistics are calculated. It is noteworthy that the model
was built to run in parallel with more than one processor, so the calculation time is reduced,
allowing for the computation of thousands of particles.

The input values defined for the model before each run are: number of particles,
total simulation time, particle id, number of processors, to activate/deactivate selected
forces, to activate/deactivate collisions among particles, source of flow velocity field (either
logarithmic velocity profile or simulated turbulent flow (OpenFOAM)), and, finally, the
corresponding flow shear stress (τ∗).

There are two types of simulation results provided by the model: mean and instan-
taneous values. Mean values include average jump length and jump height, with the
corresponding standard deviation values. Instantaneous values include the position and
the linear and angular velocity for each particle. Fluid velocity and vorticity values for
each cell where a particle is located are also stored. Finally, the number of collisions among
particles for each particle is also obtained.

3.4. Cases to Be Analyzed

The effect of increasing particle concentration per unit volume was analyzed. Simu-
lations using eight different particle concentrations (by volume) were carried out: 0.04%
(1000 particles), 0.12% (3000 particles), 0.18% (4500 particles), 0.26% (6500 particles), 0.52%
(13,000 particles), 1.03% (26,000 particles), 2.07% (52,000 particles), and 3.94% (99,000 par-
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ticles), which are concentrations in the dilute range (up to 5% per volume). Various flow
shear stresses were also included to validate the model.

To estimate particle concentration, the computational domain used one half of the
distance between the parallel plates. The effects of increasing particle concentration on the
jump statistics, motion of particles, and computational resources spent in the simulation
are analyzed in what follows.

The statistical characterization of jumps includes the dimensionless mean value of
jump height and jump length and their corresponding standard deviations. The parameters
of particle motion are the particle velocity and rotation. The computational effort was
assessed by comparing the resulting execution time among the two main functions of the
model. The first one is the required time to calculate the new positions for each particle,
and the second one is the required time to calculate velocities for the next time step. The
latter includes collisions among particles and collisions with the bottom wall. In Table 3,
the central processing unit (CPU) time spent on simulations is presented.

Table 3. CPU time (s) to carry out simulations.

Number of Particles Particle Concentration (%) * CPU Time (s)

1000 0.04 3251
3000 0.12 3548
4500 0.18 3761
6500 0.26 4053

13,000 0.52 5088
26,000 1.03 7662
52,000 2.07 14,543
99,000 3.94 31,858

Note: * indicates Concentration by volume.

Diffusion analysis is conducted in the X-Z plane, where X, Y, and Z are the streamwise,
wall-normal, and spanwise directions.

4. Results and Discussion
4.1. Model Validation

The numerical results for the 3D saltating motion of particles in a turbulent open
channel are presented below. In Figure 4, the statistics of dimensionless jump height, jump
length, and stream-wise particle velocity are presented. Numerical values are compared
with the experimental results presented in [42]. The range of values for two standard devia-
tions is also presented. Particle statistics were calculated from the information gathered for
all simulated particles, where all particles have experienced at least one hundred jumps.
From the experimental values presented in [39], jump height and length slightly increase
with increasing flow intensity. This trend is also observed in the numerical results (see
Figure 4a,b). Figure 4b shows good agreement of particle jump length with the experimen-
tal results for flow intensities (τ∗/τ∗c) between 2.43 and 2.67. For moderate flow intensities
(τ∗/τ∗c = 1.79 and 1.87), numerical results tend to underpredict when compared with the
experimental information.

Simulated mean jump heights and lengths are within the range of one standard
deviation observed in the experimental results. It is worth noting that numerical results
have better agreement with experiments at higher flow intensities.

As for jump height and length, particle velocities in the streamwise direction increase
with increasing flow intensities (see Figure 4c). For moderate flow intensities, numeri-
cal and experimental results are in excellent agreement when comparing mean particle
velocities, whereas for larger flow intensities, the numerical results slightly overpredict
the experimental values. Nevertheless, the numerical values are within the range of one
standard deviation.
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Figure 4. Comparison of simulation results with experimental results from Niño and García
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4.2. Particle Concentration

As the number of transported particles increases, the likelihood of collision among
them also increases. During this process, particles loose energy and change their direction
of motion. As concentration increases, particle trajectories are hampered by the action
of other particles. In Figure 5, results of jump height, jump length, particle velocity, and
rotation are presented. Only three different concentrations per volume are shown, for the
sake of clarity, where the effects of increasing concentration on jump statistics, even at small
concentrations, can be clearly observed.
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In Figure 5a, particle jump height values seem to be less affected by particle concen-
tration as flow intensities increase. It can also be noticed that for the same flow intensity
(shear stress), larger particle concentrations generate smaller mean particle jump heights.
This is explained by the fact that as particle concentration increases, inter particle collisions
also increase, limiting particle motion and therefore reducing the jump height reached
by particles.

The effects of particle concentration for different particle intensities on mean particle
jump length is illustrated in Figure 5b. An increase in particle concentration results in
smaller jump lengths for a fixed flow intensity; however, the effect is reduced as flow shear
stresses rise. It may be concluded that at large flow intensities, the momentum exerted by
the flow to the particles become more important than the momentum exchange caused by
collision among particles, counteracting its effect in terms of mean particle jump length.
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The numerical results for the mean particle velocity in the streamwise direction are
presented in Figure 5c. At lower particle concentrations at a given flow intensity, it is
observed that the effect on particle velocity is very limited. However, for a concentration of
0.26%, there is a clear decrease in mean particle velocity for all flow intensities. This is an
indication that a certain threshold for particle concentration should be exceeded to influence
velocities and this threshold is close to 0.26%, which is still a very low concentration.

Finally, the magnitude of the particle rotation with respect to the Y-axis is presented
in Figure 5d. It is observed that particle rotation decreases with increasing flow shear
stresses, showing an inverse proportionality. This is true for all concentrations. At particle
concentrations of 0.26% at any given flow intensity, the particle rotation is clearly increased.
In other words, at low particle concentrations and a fixed flow intensity, there is no clear
trend for the values of particle rotation, except for the 0.26% particle concentration.

Figure 6a shows that a change in particle mean velocity (± one standard deviation)
is significant as the concentration of particles increases. From concentrations of 0.52%, a
change in the mean velocity can be observed. Furthermore, the variation of particle veloci-
ties becomes much larger as particle concentration increases. This has a very important
effect on the bedload transport, as different particle velocities may cause fluctuations on the
rates of bedload transport. This kind of effect is not captured by Meyer-Peter–Müller [9]
sediment-transport-type equations. Figure 6b shows boxplots of the dimensionless particle
velocity statistics, where median values (red lines) and the 25th and 75th percentiles (top
and bottom lines of the blue boxes) are contrasted with the extreme values (vertical dashed
lines) obtained by the simulations as the particle concentration changes. The beauty of
the boxplot is that it shows extreme values that are not captured by standard deviations
(Figure 6a). Figure 6b shows that dimensionless particle velocities, for the same particle
concentration, for some particles may be as low as less than one dimensionless unit, and for
others as large as nine dimensionless units. This is in line with the findings of many authors
(for example, see reviews by [10,13]), where even at very controlled flume experiments,
bedload transport rates show large fluctuations, causing great difficulties in the prediction
of transport rates in uncontrolled, more realistic conditions, such us rivers and streams.
According to the results presented herein, particle velocity fluctuations may be one of the
reasons for these fluctuations, all the time that the bedload transport rates (this is how many
particles move through a predefined area) are directly correlated to the particle velocity.
As sediment transport rate estimations are commonly computed considering the mean
particle statistics, thus not including the particle velocity fluctuations, the estimations may
differ from the real statistics in several orders of magnitude, even for strictly controlled
flow conditions. Simulations with larger particle domains, with more realistic stream beds,
and with a realistic sediment granulometry will most likely increase these fluctuations.
The use of particle algorithms such as the one presented in this study may help with
understanding those variables causing the fluctuations, and contribute to putting forward
new expressions to estimate bedload transport rates, new expressions that make a better
effort on incorporating the complexities of the flow, turbulence–particle, particle–particle,
and particle–wall interactions. However, to achieve this, it is mandatory to have access to
efficient particle tracking algorithms able to carry out all these computations for millions
of particles.
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Figure 6. Change of dimensionless particle velocity for a single particle and different particle
concentrations. (a) Mean dimensionless particle velocity (blue square), where vertical blue lines
represent two standard deviations. (b) Boxplot of dimensionless particle velocity; the red line depicts
the median, whereas the box bottom and top blue lines indicate the 25th and 75th percentiles; vertical
dash lines represent the most extreme values not considering outliers.

4.3. Computational Resources

The sub-models that form the proposed saltation model consist of the free flight of
particles, the collision of particles with the bottom wall, and collisions among particles.
Each one of them consumes computational resources that translate to computational time
consumption. Sub-models may require more or less time depending on model considerations.

The analysis of the employed computational resources for running the simulations
are quantified as computing time and presented in Figure 7. Four cases were investigated
to address the proportion of time employed for calculating the velocity in a free-flight
particle motion and the corresponding proportion of time employed for updating velocities
after a collision with the bottom wall or after collision among particles. The four cases
represent different concentrations. Case 1 includes 1000 particles and 0.04% concentration;
case 2 considers 3000 particles and 0.12% concentration; case 3 corresponds to 6500 particles
and 0.26% concentration, and, finally, case 4 does not include any type of collisions with
500 particles simulated.

Cases 1 to 3 include collisions among particles. For case 4, the collision sub-routine
was turned off, to avoid particles colliding when they share the same position. For this
latter case, the code assumes that particles overlap, without affecting their trajectories (there
is no collision), as if they were ghost particles.

For the case where particles move freely, without collisions between them, 70% of
computing time is employed to compute particle movement, whereas the remaining 30% is
used to calculate particle velocities due to collisions with the wall.

For case 1, or 0.04% concentration, only 4.5% of the time is used to move particles
while the remaining 95.5% is consumed to compute particle collisions (with the wall and
between particles). The collision subroutine is activated whenever two particles collide, and
velocities after collisions are modified based on the momentum exchange, thus modifying
the particles trajectories. For case 2, 0.12% particle concentration, 98.4% of time is consumed
on particle collisions. Finally, for case 3, 0.26% particle concentration, a modest 0.86% of
time is used to move particles, while more than 99% of computing time is devoted to
compute particle collisions.
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Figure 7. Computational time devoted to the simulation. (a) Comparison of computational time used
calculating particle collisions (orange) and particle movement (blue), for 4 cases: 1000 (1), 3000 (2),
6500 (3), and 500 (4) particles, respectively, where in case 4 no interparticle collisions are allowed by
the model; (b) number of interparticle collisions versus number of particles simulated; (c) number of
interparticle collisions normalized by number of particles simulated; and (d) CPU time (in seconds)
devoted to each multiparticle simulation.

The results reveal that, as concentration increases, more computational resources are
required to calculate new velocities due to collisions. This difference is explained by the
increase in the number of collisions during the simulation. In Figure 7b–d, the statistics
of collisions among particles are presented. The second order polynomial from Figure 7b
illustrates how the number of collisions grows when the concentration increases. In
addition, Figure 7c depicts how the number of collisions experienced by each particle starts
to reach a plateau as concentration increases. Every time there is a collision with another
particle, the particle–particle collision subroutine is activated, increasing the computational
costs. In addition to this, the increase in particles in neighboring cells also increases the
computational efforts, as more particles need to be verified for potential collisions at each
time step. This may become a major issue when increasing the computational domain
and/or the number of particles in a given simulation. Figure 7d shows how CPU time
presents a quadratic growth as particle concentration increases.
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4.4. Particle Diffusion

The diffusion process of sediment particles moving as bedload can be mathematically
described as the time evolution of the variance of the particle location in the streamwise
(X) and spanwise (Z) directions [42,43]. Four (out of 24) examples of time evolution of
the second order moment (variance) of particle location in the spanwise and streamwise
directions at two different concentrations (0.12% and 3.94%) and the same flow intensity
(τ∗/τ∗c = 1.79) are shown in Figure 8. No additional time evolutions are included for the
sake of clarity. The blue and orange circles indicate values from the simulation, whereas
black lines indicate the slope obtained by lineal regression. The exponents of t right
above each slope black line indicate the result of the γ parameter. The time evolution of
the particle location indicates how diffusive the movement of particles are in the local
range (diffusion of particles between collisions with the wall) and in the intermediate
range (diffusion of particles over all jumps, before particles come to rest). According to
Nikora et al., it is expected that the local range diffusion exponents should be closer to
one, i.e., γ ∼ 1 (where ∼ tγ), indicating ballistic diffusion. However, for the intermediate
range, the exponent should be smaller than 1, i.e., γ < 1. Values of γ = 0.5 indicate
normal diffusion, whereas values of γ > 0.5 and γ < 0.5 indicate superdiffusion and
subdiffusion, respectively. Figure 8a,b show the simulation results for extreme cases for
the time evolution of the location of particles in the streamwise direction (X-direction) for
3000 and 99,000 particles. In Figure 8a,b, it is clear that local diffusion is slightly affected
by the increase in concentration, as γ changes from 1 to 0.9, denoting a slight reduction in
local diffusion as concentrations are increased up to ∼ 5%. However, changes in diffusion
at the intermediate rage are larger, as the values of γ increase from 0.6 up to 0.85. The
latter indicates that the increase in particle concentration from 0.12% to nearly 5% causes
a great increase in particle diffusion, moving from nearly normal diffusion up to a solid
superdiffusion. These results indicate that at the local range, changes in particle movement
over time between collisions with the wall in the X-direction slightly restrict the particle
movement, whereas at the intermediate range, particle movement increases importantly as
particle concentrations are augmented. This can be explained by the increase in particle–
particle collisions, which restricts the movement of particles locally, but at the same time
causes a larger change in particle location at the intermediate range. A similar effect
occurs when analyzing the particle movement in the transverse direction (Figure 8c,d).
The increase in particle concentration limits the local movement of particles in Z while
increasing the changes in particle location at the intermediate range, triggered by the
increase in particle–particle collisions.

In Figure 9, the results for the diffusion analysis are shown for a total of 24 cases, which
include eight particle concentrations and three degrees of flow intensity for each particle
concentration. Figure 9a,b, correspond to diffusion in the X-direction for the local and
intermediate ranges, respectively, whereas Figure 9c,d show the diffusion in the Z-direction
for the local and intermediate ranges, respectively. Diffusion figures follow the conceptual
model of diffusion for sedimentary particles proposed by [39,40]. Equations obtained for
each range allow quantification of diffusion through the parameter γ. Tables 4–7 and
Figure 9 summarize values of γx and γz for both the local and the intermediate range,
according to the conceptual model of [39].

Results from Figure 9a show that diffusion in the streamwise direction is only affected
(decreased) at the local range for particle concentrations of∼ 5% for lower shear stresses (or
flow intensities). However, when the flow intensities increase, particle diffusion decreases
for particle concentrations of 1% and above. Instead, for the intermediate range in the
streamwise direction (Figure 9b), the increase in particle diffusion can be seen from low con-
centrations (0.52% and above). Again, all these changes can be explained by the increasing
limitation of movement of particles at the local range as space is being populated by more
particles. Yet, this also causes an intensification of the rate of collisions among particles
as concentrations grow, causing an increase in changes of direction, which translates to a
greater diffusivity. A similar analysis can be obtained from Figure 9c, where local diffusion
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in the spanwise direction is decreased for all flow intensities when particle concentrations
are larger than 2%. Instead, in the intermediate range, in the spanwise direction (Figure 9d),
an increase in particle diffusion can be seen in all flow intensities, even in concentrations
lower than 1%. The same reasoning stated for movement restrictions at the local range and
an increase in the rate of direction changes triggered by particle–particle collisions can be
argued, as previously explained.
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Figure 8. Dimensionless time evolution of the dimensionless particle location variance in the stream-

wise, 〈X′2/d2
p〉, and spanwise, 〈Z′2/d2

p〉, directions, following the conceptual method presented by
Nikora et al. [39]: (a) 3000 particles (concentration of 0.12%); (b) 99,000 particles (concentration of
3.94%); (c) 3000 particles (concentration of 0.12%); and (d) 99,000 particles (concentration of 3.94%).
Blue and red filled circles indicate simulation results, whereas solid black lines depict slopes for the
local (left) and intermediate (right) ranges; τ∗/τ∗c = 1.79.
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Figure 9. Diffusion results in the X and Z directions for local (ballistic) and intermediate ranges at
different particle concentrations. Streamwise diffusion (γx) (a) for the ballistic and (b) the intermediate
range. Spanwise diffusion (γz ) (c) for the local and (d) the intermediate range.

Table 4. Summary of values for γx for particle diffusion in the local range in the X-axis.

Flow Intensity
(τ*/τ*c)

Local Range: γx

Particle Concentration (%)

0.04 0.12 0.18 0.26 0.52 1.03 2.07 3.94

1.79 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.90
2.43 0.98 0.98 0.98 0.98 0.98 0.95 0.90 0.90
2.67 0.98 0.98 0.98 0.98 0.98 0.98 0.95 0.90
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Table 5. Summary of values for γx for particle diffusion in the intermediate range in the X-axis.

Flow Intensity
(τ*/τ*c)

Intermediate Range: γx

Particle Concentration (%)

0.04 0.12 0.18 0.26 0.52 1.03 2.07 3.94

1.79 0.60 0.60 0.60 0.75 0.65 0.65 0.80 0.85
2.43 0.75 0.60 0.60 0.60 0.75 0.65 0.85 0.85
2.67 0.73 0.73 0.60 0.73 0.63 0.65 0.80 0.85

Table 6. Summary of values for γz for particle diffusion in the local range in the Z-axis.

Flow Intensity
(τ*/τ*c)

Local Range: γz

Particle Concentration (%)

0.04 0.12 0.18 0.26 0.52 1.03 2.07 3.94

1.79 0.98 0.98 0.98 0.98 0.98 0.98 0.90 0.90
2.43 0.98 0.98 0.98 0.98 0.98 0.98 0.90 0.90
2.67 0.98 0.98 0.98 0.98 0.98 0.98 0.90 0.90

Table 7. Summary of values for γz for particle diffusion in the intermediate range in the Z-axis.

Flow Intensity
(τ*/τ*c)

Intermediate Range: γz

Particle Concentration (%)

0.04 0.12 0.18 0.26 0.52 1.03 2.07 3.94

1.79 0.50 0.50 0.55 0.60 0.60 0.70 0.70 0.65
2.43 0.45 0.50 0.60 0.60 0.60 0.65 0.70 0.65
2.67 0.55 0.55 0.55 0.55 0.60 0.60 0.65 0.70

From the above results (Tables 4–7), it could be stated that, when analyzing the
increase in the diffusion of particles at the intermediate range for the flow intensities of
τ∗/τ∗c = 2.43, 2.67, the diffusion in the X-direction, γx, is 20% larger than the diffusion in
the Z-direction (γz), whereas for the smallest flow intensity, τ∗/τ∗c = 1.79, the diffusion in
the X-direction, γx, is only 15% larger than the diffusion in the Z-direction (γz), showing
a slight effect of the flow intensities in the particle diffusion. The latter suggests that at
higher flow intensities the flow counteracts the effect of the diffusion in the Z-direction in a
value close to 5%. This makes sense, as the main flow direction is set in the X-direction,
hence the changes in the transverse direction caused by the changes of momentum due to
particle collisions are counteracted by the momentum transferred by the flow to the moving
particles. In addition, when analyzing the effect of diffusion in the intermediate range, for
a fixed flow intensity, there seems to be a trend indicating that, for larger concentrations,
the particles tend to increase the changes in location due to the increase in particle–particle
collisions, which translates to an increase in particle diffusion.

5. Conclusions

A C++ decoupled saltation code has been implemented and validated (for sands)
for a wide range of particle concentrations in the dilute range, from 0.04% to 3.94%,
and three different flow intensities, corresponding to non-dimensional shear stresses of
τ∗/τ∗c = 1.79, 2.43, 2.67. The saltation code has been extended from a previous code and
optimized in terms of computational efforts, making possible the simulation of close to
100,000 particles, while improving the efficiency of the particle–particle collision subroutine
and taking advantage of multiprocessor computing. The following conclusions can be
extracted from the simulations:

1. The particle model results, coupled with a high-resolution LES-WALE model, are
in good agreement with the experimental information available in the literature for
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the saltation motion of sands. The particle-jump statistics follow the mean trend and
variance of experimental results.

2. In the local range and at concentrations smaller than 2%, both diffusion coefficients
γx and γz are equal to 0.98. This value is very close to the theoretical value of 1.0
proposed by Nikora et al. for ballistic motion. At the largest concentration of 3.94%,
both coefficients decrease to a value of 0.9 regardless of the flow intensity. This slightly
smaller value is attributed to the effect of the increase in particle concentration, which
restricts the particle movement al the local scale.

3. In the intermediate range, it is very clear that γx greatly increases, and it is on average
larger than γz, which also increases. For τ∗/τ∗c = 2.43, 2.67, γx ∼ 1.2γz, whereas
for the smallest flow intensity, τ∗/τ∗c = 1.79, γx ∼ 1.15γz. This suggests that the
magnitude of the changes of particle direction in the streamwise direction caused by
the momentum exchange of particle collisions are counteracted by the increase in the
momentum exchange from the flow to the moving particles as the flow intensity rises.

4. For a fixed flow intensity, there is a trend in the intermediate range to have larger
diffusion coefficients as particle concentration increases. This is caused by the increase
in the interparticle collision rates.

5. When the number of particles is greater than 13,000 it was observed that the number
of collisions grows linearly with the number of particles. However, the number of
collisions per particle reaches a plateau, which is an indication that there exists an
upper limiting value for the number of collisions per particle.

6. Larger particle concentrations cause a reduction in mean particle jump height and
length for lower flow intensities. As flow intensities increase, this effect still occurs
but with a smaller magnitude.

7. The computational effort of the model devoted to particle collisions becomes limiting
as the particle concentrations increase within the dilute flow range. This is a very
important aspect to account for when increasing the computational domain (larger
amounts of particles within the dilute range) for real scale engineering structures, or
when trying to mimic non-dilute conditions (concentrations higher than 5%, where
two-way coupling must be also considered).

8. The effect of particle concentration on particle velocity is important in two aspects:
First, a significant reduction on its mean magnitude is computed in flows with sed-
iment concentrations above 0.52%. Second, there is an increase in the variance of
particle velocities for higher particle concentrations. More importantly, given that
one particle may move nine times faster than other particles (under the same flow
intensity for a given particle concentration), it thus introduces larger fluctuations in
the bedload transport rates when compared to mean values. This is a very important
finding, as most of the equations used to estimate sediment transport rates use mean
values, not considering the fluctuations in particle statistics.

9. Particle velocity is an important variable when computing sediment transport rates.
If a small computational domain, limited simulation time, assuming particles of the
same diameter, with fixed particles at the bed, moderate Reynolds numbers, with
no changes of geometry or lateral flows (due to stream spatial changes) generates
large particle velocity fluctuations, one can only imagine how the fluctuations will
(most likely) increase up to a point where differences between sediment transport
estimations and measurements can differ by orders of magnitude.

10. Particle tracking codes such as the one used for this study may help understand the
complex interactions occurring at the microscale (flow–particle, particle–particle, and
particle–wall interactions) to find new expressions for the computation of rates of
sediment transport that take into account its fluctuations.
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Abbreviations

q∗ Dimensionless bedload transport rate
τ∗ Shields parameter
τ∗c Critical Shields parameter
R Submerged specific gravity of the particle
m Particle mass
up, vp, wp Particle velocity in the X, Y and Z directions
u f , v f , w f Flow velocity in the X, Y and Z directions
Fsw Submerged weight
Fdr Drag force
Flf Lift force
Fbs Basset force
Fmg Magnus force
Fam Added mass force
Ffa Fluid acceleration force
ρ Water density
ρp Particle density
g Acceleration of gravity
dp Particle diameter
|ur| Magnitude of the relative particle velocity
CD Drag coefficient
A Particle cross section in the direction of ur
Ur Magnitude of ur
CL Lift coefficient
|ur|T Particle relative velocity at the top region
|ur|B Particle relative velocity at the bottom region
t Time
µ Dynamic fluid viscosity
τ Shear stress
Ωp Angular velocity of the particle
CM Magnus coefficient
Cm Added mass coefficient
u∗ Shear velocity
α Factorization coefficient
Rp Explicit Reynolds number of the particle
ν Kinematic fluid viscosity
θ Angle formed by the bed and the horizontal plane
vy Non-dimensional component of the rotation vector in the spanwise direction
ωy Angular velocity of the particle along the spanwise direction
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y Direction normal to the channel bed
d(·)/dt Material derivate
Rep Particle Reynolds number
vs Particle fall velocity
v Non-dimensional particle rotation vector
Ct Coefficient used in the computation of the particle angular momentum equation
C1, C2, C3 Coefficients used in the computation of the particle angular momentum equation
vr Non-dimensional vector of relative rotation of the particle with respect to the fluid

vorticity
e Restitution coefficient
f Friction coefficient
γx Diffusion factor on the X-axis
γz Diffusion factor on the Z-axis
X′2, Z′2 Second order moments of the particle position in X and Z
αx, αz Constant coefficient used in the computation of the particle diffusion in the X- and

Z-directions
X′, Z′ First order moment of the particle position in X and Z
〈 〉 Ensemble average
H Particle jump height
L Particle jump length
h Channel height
Reτ Friction Reynolds number
Re Reynolds number
y+1 Y-plus mean value measured from the wall to the first finite volume
y1 Distance from the wall to half of the first finite volume
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