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Abstract: Aridity and drought, which are determined by climatic and temporary water scarcity,
respectively, are important limiting factors for plant gross primary production. These phenomena
are commonly assessed and/or monitored by means of weather indices, most of which are based
on observations of precipitation and potential evapotranspiration. The estimation of such indices
over large areas can be carried out using multiple datasets, i.e., those derived from weather stations,
satellite images, and ground radars. The possibility of using interpolated or remotely sensed datasets
in place of ground measurements was currently investigated for Tuscany, a region in Central Italy,
showing complex and heterogeneous environmental features. The former weather datasets were
first evaluated versus corresponding ground measurements. Next, the basic weather variables were
combined and cumulated over 30–60 days to yield synthetic indicators of water deficit, which were
assessed in the same way. Finally, these indicators were evaluated to predict the soil water conditions
of a meadow and an olive grove during the 2021 summer period. The results obtained indicate that
the use of the multi-source weather datasets induces only a minor deterioration of the water stress
indicators and is therefore efficient to monitor the water status of different ecosystems with high
spatial (200 m) and temporal (daily) details.

Keywords: water deficit; LSA-SAF; HSAF; ERAD; DAYMET; Sentinel–2; weather radar

1. Introduction

Water is essential for vegetation growth and plays a fundamental role in determining
aridity or drought conditions over land areas. In the context of global warming, changes in
water availability have great impacts on terrestrial ecosystems and human activities, which
must be properly assessed [1].

Aridity, which is a natural permanent imbalance in water availability, is a land char-
acteristic usually defined over relatively long time periods on the basis of the difference
between local water provision by precipitation and water demand by potential evapotran-
spiration [2]. Arid and semi-arid climates are spread over a large part of the earth surface
and are further expanding due to the ongoing climate change, which usually implies an
increase of temperature and a reduction in precipitation [3]. This is the case for Mediter-
ranean areas, where the summer dry period, which is due to the co-occurrence of high
temperatures and low precipitation, is becoming more intense [4]. Climatic studies carried
out in this area, in fact, indicate that air temperature is expected to increase between 2 and
4 ◦C, while precipitation is expected to decrease both in total amounts and in number of
rainy days [5].

The assessment of aridity conditions in terrestrial ecosystems is usually performed by
the use of specific indices [6]. In particular, the degree of water deficiency can be evaluated
by the ratio of long-term (often annual) precipitation (PREC) to potential evapotranspi-
ration (ET0) observations in the same time interval [7]. The PREC/ET0 ratio, in fact, is
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a quantitative aridity index (AI), which can approach zero in the desert but can exceed
unity in wet climates [8]. Following the definition of the United Nations Environmental
Programme (UNEP), an annual AI value below 0.65 is used for classifying drylands or
characterizing different subtypes of aridity: hyperarid (AI < 0.05), arid (0.05 ≤ AI < 0.2),
semiarid (0.2 ≤ AI < 0.5), and dry sub-humid (0.5 ≤ AI < 0.65) [9].

A related concept is that of drought, which corresponds to an unusual, prolonged dry
weather period due to the lack of precipitation and can occur anywhere in the world [10].
Unlike aridity, which is a permanent characteristic of regions with low precipitation,
drought is a temporary feature and occurs only when precipitation falls appreciably below
the climatic average. The impacts of drought must therefore be seen as dynamic, resulting
from interactions between water supply and demand. From a disciplinary perspective,
four drought types are usually defined: meteorological, agricultural, hydrological, and
socio-economic drought [11,12]. Hence, drought is a complex phenomenon, and even if it
is closely related to lack of water in the ground, it is not directly measurable by a single
physical variable [13].

Drought conditions, however, can be also described by indicators or parameters, such
as precipitation, temperature, evapotranspiration, and soil moisture. Drought indices allow
to identify, prevent, or mitigate the conditions and impacts of drought events at the most
varied spatio-temporal scales, and they are used in drought early warning systems. A large
collection of these indices, classified according to the degree of difficulty of application, is
reported in the Handbook of Drought Indicators and Indices [14]. Widely used indices for
meteorological and agricultural droughts are described in [13,15,16].

Among these indices, the previously described PREC/ET0 ratio can be cumulated
over shorter time periods (mostly one to few months) in order to effectively define transient
water stress conditions, particularly in Mediterranean areas. This is the case for the water
stress index proposed by [17], which is derived from the ratio of PREC over ET0 cumulated
over one and two months for grasses and trees, respectively. This index is specifically
related to the soil water conditions, which can limit plant transpiration and photosynthesis
and can therefore be used to incorporate the effects of water deficit in the estimation of
land water and carbon cycles [17–19].

As can be easily understood, the assessment of this or similar indices over wide
areas requires the estimation of ET0 and precipitation with sufficient spatial and temporal
resolutions. This task encounters different levels of complexity for the two basic weather
variables. Relatively accurate estimates of ET0, in fact, can be derived from observations of
temperature and solar radiation, which are interpolated or extrapolated quite effectively
by various techniques. An example is given by the interpolation of daily temperature
measurements by statistical tools such as the DAYMET algorithm [20], which has been
effectively applied in central Italy by [21]. Solar radiation can instead be predicted using
semi-empirical methods based on observations from meteorological satellites [22].

The case is different for precipitation, which is extremely variable both in space
and in time and is more complexly linked to the main land features, such as orography,
continentality, etc. This makes the inter/extrapolation of precipitation quite difficult to
perform without the use of extremely dense networks of rain gauges, which are not
always available. This issue actually affects the gridded precipitation datasets produced by
such techniques, as the Pan-European E–OBS product, which has been evaluated in Italy
both at national and regional scales [23,24]. A valid alternative could be represented by
precipitation observations taken by ground-based weather radars, which are now available
in a pre-processed format.

These different datasets could therefore be combined to predict land water deficit
with sufficient spatial detail (few hundred meters) and temporal frequency (daily). The
current paper assesses this possibility by examining the combination of datasets measured
on the ground and derived from remote sensing platforms. The study was performed in a
region of central Italy (Tuscany), whose extremely complex and irregular environmental
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features represent a particular challenge for estimating the spatio-temporal evolution and
the impact of water deficit phenomena.

The paper is organized as follows. First, the main features of the study region are
introduced, together with the ground and remote sensing data used. The following sections
describe the processing steps applied and the results obtained. Finally, discussion and
conclusion sections report on the critical issues of the study and on the prospects for
future activities.

2. Materials and Methods
2.1. Study Area

Tuscany (42–45◦ north latitude and 8–13◦ east longitude) is a region situated in central
Italy (Figure 1). Its territory is characterized by the presence of hilly areas (about 66% of the
whole territory) and mountain zones (about 25%), with altitude varying from 0 to about
2100 m above sea level (i.e., Monte Prado, 2054 m a.s.l.). The climate is consequently very
variable, ranging from Mediterranean warm to cool temperate, following the latitudinal
and altitudinal gradients and the distance from the sea. The mean annual temperature
ranges from about 16.5 ◦C in the southern plains to 10.5 ◦C in the mountainous areas; the
mean annual precipitation varies from about 450 mm in the south to more than 2000 mm
in the north, reaching its maximum on the north-western Apuan Alps [25]. About half
of the regional territory is occupied by forests, while the rest is covered by agricultural
lands (mostly annual crops in the plains and olive groves/vineyards on the hills) and
urban areas.
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Figure 1. Digital elevation model of the study region (Tuscany) with position of the 20 weather
stations considered (red dots). The lower left box shows the position of Tuscany in Italy.

A specific experiment was conducted in a meadow and an olive grove located within
the urban park of Cascine (Firenze, Figure 2) [26]. This area is close to the Arno River, at
an altitude of about 45 m a.s.l.. The climate is temperate sub-humid, with mean annual
precipitation around 800 mm and mean annual temperature of about 15 ◦C; precipitation
is concentrated in autumn and spring, while summer is usually hot and dry. The soil is
sandy clay loam (i.e., 52% sand, 24% silt, and 24% clay) and has a depth over 2 m. The
meadow, which is about 30 × 40 m2 wide, is usually grown with spontaneous herbaceous
species, while in the olive grove, which extends over about 80 × 55 m2, trees are 5 × 5 m
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spaced and have a height around 4 m. Both fields are rainfed and managed following local
agricultural habits.
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Figure 2. (a) Sentinel-2 MSI NDVI image of June 2021 showing the position of the meadow (blue)
and the olive grove (violet) within the Cascine urban Park in Firenze; (b) Google Earth true colour
composite taken in June 2021 showing the position of the SWC probes within the meadow (A) and
the olive grove (B).

2.2. Study Data
2.2.1. Ground Meteorological Data

Daily meteorological data (i.e., minimum and maximum air temperature, precipitation,
and solar radiation) were taken from twenty ground weather stations distributed over
the entire regional territory as shown in Figure 1. These stations were selected to cover
all local geographical, morphological, and climatic heterogeneities of the region (Table 1).
The station of Firenze is placed within the urban park of Cascine (Figure 2). Data were
collected from March to November 2021 to be consistent with the period for which radar
data are available.
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Table 1. Main features of the 20 selected ground weather stations. Mean air temperature and total
precipitation refer to the investigated study period, i.e., March–November 2021.

Station ID Name Geographical Position
(◦ Lat N, ◦ Long. E)

Elevation
(m a.s.l.)

Temperature
(◦C)

Precipitation
(mm)

1 Firenze 43.785, 11.218 40 18.4 421
2 Lido di Camaiore 43.898, 10.243 5 17.1 519

3 San Vincenzo 43.051, 10.555 11 17.8 271

4 Legoli 43.565, 10.801 180 17.8 331

5 Buonconvento 43.092, 11.439 188 17.0 211

6 Quercianella 43.480, 10.348 244 18.6 266

7 Cesa 43.309, 11.825 246 16.3 297

8 Borgo S. Lorenzo 43.986, 11.390 280 15.9 508

9 Pontremoli 44.370, 9.893 340 15.9 874

10 Poppi 43.736, 11.783 417 16.3 424

11 Pentolina 43.210, 11.180 450 17.0 536

12 Lamole 43.542, 11.355 536 15.9 477

13 Radicofani 42.948, 11.733 618 16.4 275

14 Pratomagno 43.570, 11.724 695 15.6 430

15 Pieve S. Stefano 43.674, 12.102 750 13.7 534

16 Castelnuovo Val di
Cecina 43.204, 10.881 770 14.5 482

17 Monte Serra 43.747, 10.555 890 13.7 670

18 Campocecina 44.116. 10.104 960 13.7 984

19 Passo delle Radici 44.195, 10.486 1612 8.0 1116

20 Monte Amiata 42.890, 11.625 1678 8.9 454

2.2.2. Ancillary Data

A digital elevation model (DEM) of Tuscany was derived from the database of the
LaMMA Consortium; this DEM has a spatial resolution of about 200 m.

Daily soil water content (SWC) measurements were taken both within the olive grove
and in the meadow at the Cascine site (Figure 2). The former measurements were collected
by means of a Sentek probe (Sentek Sensor Technologies Stepney, Australia) at 0.3 m depth
during the period from May to November 2021, while the latter were collected at 0.15 m soil
depth by means of a Meter 10HS probe (Meter, Pullman, Washington, USA) from March
until November of the same year.

2.2.3. Satellite Data

High spatial resolution (10 m) MultiSpectral Instrument (MSI) images acquired by
the twin Copernicus Sentinel-2 (S-2) A and B satellites were utilized to produce the used
NDVI imagery. All available MSI images of 2021 covering the Cascine site (Figure 2) were
downloaded in an ortho-rectified, pre-processed L2A format from the European Space
Agency website (https://sentinel.esa.int/web/sentinel/sentinel-data-access; accessed on
30 August 2022). These images were further processed by performing a maximum value
composite (MVC) operation over 15-day periods and by applying two filtering operations
aiming at reducing residual disturbances. More specifically, a spatial filtering was applied
to remove isolated pixels having anomalous NDVI values; next, a temporal filtering based
on an upper envelope algorithm was applied to further reduce atmospheric effects (see [27]
for further details).

https://sentinel.esa.int/web/sentinel/sentinel-data-access
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The spinning-enhanced visible and infrared imager (SEVIRI) images, generated by
Meteosat second-generation (MSG) geostationary meteorological satellite, were used to
estimate daily solar radiation. These images are provided by the European Organization for
the Exploitation of Meteorological Satellites (EUMETSAT)—Satellite Application Facility
on Land Surface Analysis (LSA SAF, https://landsaf.ipma.pt/; accessed on 30 August
2022). The currently used total and diffuse downward surface shortwave flux (MDSSFTD,
LSA-207) product is updated every 15 min and provides images of DSSF reaching the
Earth’s surface with a resolution of 3 km at nadir and about 4 × 6 km over Italy [28,29].

Daily precipitation fields were derived from EUMETSAT on Support to Operational
Hydrology and Water Management (HSAF, http://hsaf.meteoam.it/; accessed on 30 Au-
gust 2022). In particular, the accumulated precipitation product (H61B, P-AC-SEVIRI-PMW)
obtained by blended MSG data with various low Earth orbit (LEO) satellites was used.
The H61B product integrates the instantaneous precipitation maps generated every 15 min
by the H60B product [30,31]. The original resolution of these products is the same of the
MSG imagery.

2.2.4. Radar Data

Radar data obtained from the Italian national ground-based weather radars network
were used as 2D precipitation fields. This network is managed by the national Civil
Protection Department (DPC). Currently, the network consists of 21 radars distributed
throughout the entire Italian territory with several overlapping coverage areas. The weather
radars are managed by national and regional institutions including the DPC, the regional
weather services, the National Aviation Authority, and the Italian Air Force [32,33].

The raw radar data, according to a shared synchronized schedule, were acquired by
various systems and sent to the Central Functional Centre (CFC) of DPC in Rome, where
they were merged (mosaicking process) to generate several derived products covering
the entire national territory. The products generated every 5 min were distributed as
georeferenced data grids (at 1 km spatial resolution), by, for example, the portal website:
https://radar.protezionecivile.it/radar-dpc (accessed on 30 August 2022).

All products are the result of operational chains that merge radar data with those
of the rain gauge network and data from other instruments (e.g., satellite data, lightning
strikes, etc.). The instantaneous precipitation data are then cumulated in surface rainfall
total (SRT) products for different time interval (1, 3, 6, 12, and 24 h). All these products
were obtained considering the data acquired in real time by the weather stations (about
3000 stations) and available at CFC. A further correction was performed on cumulative
precipitation data by combining SRT products with rain gauge observations through a
modified conditional merging approach; the resulting rainfall fields are SRTadj [34,35].

The daily cumulative data (expressed in solar time) used in this work were obtained
from the hourly SRT1adj and resampled to 200 m spatial resolution for the study area.

2.3. Data Processing

The regional weather datasets currently used were created by the application of
different procedures depending on the parameter to consider. All data referred to the
period March–November 2021.

Daily minimum and maximum temperatures were interpolated by the application of
the DAYMET algorithm [20]. This algorithm is based on the spatially weighted regression
concept, i.e., the closer is the observation to the estimation point, the higher its weight, and
includes a relationship with elevation, which is derived from the DEM of the region. The
application of DAYMET over Tuscany was performed as described in [21].

Daily solar radiation was estimated by the application of the ERAD algorithm [22].
ERAD is based on the disaggregation of DSSF data by DEM and was applied to the
entire Italian territory with a time step of 1 min and a spatial resolution of about 200 m.
Recently, this methodology was modified to accept as input the new MDSSFTD LSA-207 in

https://landsaf.ipma.pt/
http://hsaf.meteoam.it/
https://radar.protezionecivile.it/radar-dpc
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place of the LSA-201 product, thus avoiding the need to compute the fraction of diffuse
solar radiation.

Daily precipitation estimates were derived from the ground radar observations and,
in case of missing data, from the HSAF satellite images, both resampled to the spatial
resolution of 200 m.

All these ground, interpolated, and remotely sensed datasets were used to perform
three kinds of statistical analysis, which are described in the following paragraphs.

2.3.1. Estimation and Assessment of Daily Precipitation

The first analysis concerned the daily precipitation maps obtained from the remotely
sensed data, i.e., the radar observations and the HSAF images. The precipitation estimates
were extracted from the pixels corresponding to the 20 weather stations and assessed versus
the respective measurements by means of common accuracy statistics, i.e., the determina-
tion coefficient (r2), the root mean square error (RMSE), and the mean bias error (MBE).

2.3.2. Estimation and Assessment of AW

The second analysis was aimed at evaluating the impact of the combined weather
dataset on the computation of the water stress factor proposed by [17]. This factor, named
available water (AW), is obtained from the ratio between precipitation and potential evapo-
transpiration as:

AW = PREC/ET0 (1)

where PREC is precipitation, and ET0 is potential evapotranspiration computed on the
basis of mean air temperature and solar radiation [36]; both terms are cumulated over one
moth for grasses and two months for trees. The theoretical background at the basis of these
choices are related to the different behaviours of these plant functional types (e.g., grasses
are more quickly affected by soil water shortage than trees because they have limited
access to deep storage); more details on this issue can be found in [17] and [37]. As fully
described in the same papers, the computation of the final water stress coefficient, named
Cws, implies the bounding of AW to 1 and its rescaling between 0 and 0.5. In this way,
Cws accounts for the possible impact of water stress on major ecosystem processes (actual
evapotranspiration and gross primary production), reducing them to half of their potential
value occurring in fully watered conditions [17,18].

Following this theoretical basis, AW over 30 and 60 days cumulation periods were
computed for the 20 weather stations using both the ground measurements and the inter-
polated plus remotely sensed (hereinafter called combined) datasets; the accuracy of the
latter was evaluated by inter-comparing the two data series and summarized by means of
r2 and MBE statistics.

2.3.3. Estimation and Assessment of RSWC for Grass and Olive Trees

The third analysis was focused on the prediction of relative soil water content (RSWC),
defined as the SWC normalized between possible minimum and maximum values. This
indicator is functionally equivalent to the soil water stress coefficient (Ks) described in
the Food and Agriculture Organization Paper No. 56 (FAO–56) by [38]. Specifically, the
analysis was aimed at evaluating the impact of the combined dataset on the estimation of
RSWC in different ecosystems.

To accomplish this task, reference daily RSWC values were obtained from SWC
measurements taken within the meadow and the olive grove in the Cascine area. This
conversion was carried out as fully described in [39] considering different effective soil
depths, i.e., around 0.4 m for the meadow and 1 m for the olive grove.

The estimation of the same quantity was instead performed by applying the method
proposed by [19] to the combined datasets. That method predicts daily RSWC by weighting
the AW factors of vegetation and soil for the respective cover fractions:

RSWC = FVC (0.5 + 0.5 AW) + (1 − FVC) AW (2)
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Within this formulation, the fractional vegetation cover (FVC) is considered to be
responsive to the soil water condition integrated over a sufficient time period (one or
two months) and was consequently used to modulate the intensity of SWC variations.
Equation (2) was therefore applied to estimate the RSWC for the Cascine meadow and
olive grove deriving the respective FVC from the NDVI MSI images, as fully described
in [24]. The AW meteorological factors were computed using both the ground and combined
datasets cumulated over 1 or 2 months, respectively. The accuracy of the two estimated
series was finally assessed versus the reference RSWC observations using the same statistics
as above.

3. Results
3.1. Daily Precipitation Estimates

The combination of radar and HSAF precipitation data yields a complete daily dataset
over the entire regional territory. Fortunately, in fact, only few radar precipitation ob-
servations are missing during the study period, and in all these cases, HSAF estimates
are present.

Table 2 shows the accuracy statistics obtained comparing the precipitation measure-
ments collected at the 20 weather stations to the corresponding remotely sensed estimates.
Most determination coefficients are higher than 0.63, while seven coefficients vary between
0.27 and 0.57. The lowest correlation is obtained for a mountain station (Passo delle Radici),
which is also characterized by high errors. In general, the accordance between daily mea-
surements and estimates is moderate for all stations, with a mean determination coefficient
of 0.52 and a slight tendency to underestimation (the mean MBE is 0.27 mm).

Table 2. Accuracy statistics of the remotely sensed daily precipitation estimates for the 20 ground
weather stations over the study period (March–November 2021).

Station ID Name r2 RMSE (mm) MBE (mm)

1 Firenze 0.695 2.83 0.45

2 Lido di
Camaiore 0.499 4.72 −1.00

3 San Vincenzo 0.694 2.26 0.02
4 Legoli 0.691 2.30 −0.25
5 Buonconvento 0.689 3.11 0.66
6 Quercianella 0.673 2.40 0.16
7 Cesa 0.637 2.08 0.19
8 Borgo S. Lorenzo 0.672 2.78 −0.23
9 Pontremoli 0.661 6.52 −0.57
10 Poppi 0.661 2.52 0.11
11 Pentolina 0.792 4.45 −0.14
12 Lamole 0.495 3.86 −0.91
13 Radicofani 0.718 1.77 0.32
14 Pratomagno 0.652 2.92 0.13
15 Pieve S. Stefano 0.572 3.47 −0.16

16 Castelnuovo Val
di Cecina 0.510 4.12 −0.26

17 Monte Serra 0.635 4.51 −1.18
18 Campocecina 0.515 8.14 −0.85

19 Passo delle
Radici 0.266 10.41 −1.12

20 Monte Amiata 0.361 4.31 −0.76

3.2. AW Estimates

The daily evolutions of the AW computed for grass and olive trees at the Cascine site
using the ground and the combined meteorological data are shown in Figure 3. These
water stress factors follow a pattern that is typical for Mediterranean areas, being lowest
during the hot and dry summer and having a complete recovery during late autumn.



Water 2022, 14, 3101 9 of 15

Water 2022, 14, 3101 9 of 15 
 

 

3.2. AW Estimates 
The daily evolutions of the AW computed for grass and olive trees at the Cascine site 

using the ground and the combined meteorological data are shown in Figure 3. These 
water stress factors follow a pattern that is typical for Mediterranean areas, being lowest 
during the hot and dry summer and having a complete recovery during late autumn. 

The different behaviour of grass with respect to olive trees is reflected by the more 
marked and frequent variations in water status characterizing the former plant functional 
type. The use of the combined data in place of the ground meteorological data does not 
induce significant differences in the AW estimates, with the determination coefficient 
equal to 0.945 and 0.980 for grass and olive trees, respectively; both errors are also low 
(i.e., RMSE = 0.093 and MBE = −0.003 for grass and RMSE = 0.056 and MBE = −0.007 for 
olive trees). 

 
     (a) 

 
     (b) 

Figure 3. Daily evolutions of AW obtained from ground (Estimated 1) and combined (Estimated 2) 
meteorological data, computed from March to November 2021 for grass (a) and olive trees (b) at the 
Cascine site (all correlations are highly significant, p < 0.01). 

Figure 4a shows the determination coefficients obtained from the same intercompar-
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The different behaviour of grass with respect to olive trees is reflected by the more
marked and frequent variations in water status characterizing the former plant functional
type. The use of the combined data in place of the ground meteorological data does
not induce significant differences in the AW estimates, with the determination coefficient
equal to 0.945 and 0.980 for grass and olive trees, respectively; both errors are also low
(i.e., RMSE = 0.093 and MBE = −0.003 for grass and RMSE = 0.056 and MBE = −0.007 for
olive trees).

Figure 4a shows the determination coefficients obtained from the same intercompar-
isons for all 20 study stations. As expected, the accordance between reference and estimated
AW computed over one month is slightly lower than that computed over two months due
to the greater smoothing induced by the latter operation; the same is mostly the case for
the mean bias errors (Figure 4b). On average, there is a slight tendency to underestimation,
which derives from the corresponding precipitation pattern seen before.
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Figure 4. Histograms showing the determination coefficient (r2) (a) and the mean bias error (MBE)
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Figure 5 illustrates the spatial distribution of the AW factor obtained using the com-
bined dataset for the driest period of 2021, i.e., July–August. The highest values are
concentrated in the north-west of the region, which corresponds to a particularly rainy and
humid mountain zone, the Apuan Alps. Very low AW values characterize most Tuscany
plains, especially near the coastline, where summer rainfalls are scarce.
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Figure 5. AW map of Tuscany obtained using the combined dataset for July–August 2021, with
position of the 20 weather stations considered (white dots).

3.3. RSWC Estimates

Figure 6 shows the reference RSWC evolutions of the Cascine meadow and olive grove.
The different trends of the two vegetation types are mostly due to the respective soil depths
considered (0.4 and 1.0 m) and highlight their different responses to summer water stress,
with the RSWC of grass being lower and more variable than that of olive trees.
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These RSWC patterns are also partly responsible for the different FVC evolutions of
grass and olive trees, which are visible in Figure 7. Grass shows an FVC decrease from the
initial level of about 0.6 until a minimum close to 0.25 in the middle of summer. This is
followed by a clear recovery during autumn, which leads to values close to 0.8. On the
contrary, olive trees, which are evergreen, have a nearly stable FVC during the whole year.
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The application of Equation (2) to these FVC and the AW values of Figure 3 yields
the RSWC estimates shown again in Figure 6 for the meadow (a) and the olive grove (b).
In the former case, the estimated RSWC is lower than 1 during some spring and fall dry
spells, and the minimum values (<0.2) are found in July and August, partly due to the
summer FVC drop. Similar patterns are predicted using the ground and the combined
meteorological datasets; in both cases, the determination coefficient between reference and
estimated RSWC is higher than 0.59, and the errors are comparably low.

The seasonal RSWC evolution predicted for olive trees is slightly different: its values
are close to the maximum till the middle of June; after that, they slowly decrease until a
minimum, which is around 0.6 at the end of summer. A first recovery then occurs, which is
not sufficient to completely restore the spring values. The use of the ground and combined
datasets still produces similar estimates both in terms of correlation and errors.

4. Discussion

Water stress has a potentially relevant impact on all aspects of plant growth, among
which a decrease in plant size, leaf area, and biomass is the most immediate. Judging
whether plants are suffering for a water shortage should start from the consideration of all
involved eco-physiological factors, namely soil, climate, and plant conditions. Therefore,
the assessment of water stress effects over large areas is a relevant issue not easily achiev-
able using only conventional measurements that are collected over limited areas and can
represent only local conditions.

Valuable alternatives can be offered by the use of interpolated and remotely sensed
datasets, the latter obtained from satellites or ground radars: by means of these, in fact, spa-
tial and synoptic information over large areas can be obtained through limited processing
and the application of strong methodologies [40–42].

The extension of meteorological data over large areas is usually based on interpola-
tion/extrapolation methods that have been widely validated and applied. For instance,
in the study region, the estimation of daily minimum and maximum air temperature was
performed by the application of the DAYMET algorithm [20], which yielded limited errors
and generally satisfactory results [21].

As regards solar radiation, the currently applied ERAD algorithm, which is based on
the use of Meteosat images, has been recently assessed all over Italy against independent
ground measurements [22]. As previously noted, the current use of this algorithm required
a slight modification to accept the new DSSF product (i.e., the LSA-207 in place of the
previous LSA-201 version).
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The main novelty of the present investigation concerned the use of precipitation estimates
obtained from the national radar network. As previously noted, these estimates are expected
to provide a decisive step forward with respect to satellite products such as HSAF due to their
sounder physical basis and their higher spatial and temporal resolutions. This expectation was
actually confirmed by the current experimental findings, which indicated a notable superiority
of the radar over the HSAF precipitation estimates (data not shown).

Nevertheless, the radar estimates are still affected by various shortcomings, which
should at least be properly known. Since the weather radars predict precipitation through
the reflectivity in altitude, errors and uncertainty can arise both from the basic measurement
of reflectivity and from attempts to relate this to the precipitation actually falling at the
ground [43]. Moreover, in some areas, the radar coverage can be suboptimal to retrieve
a good representativeness of the whole territory, especially in mountainous areas where
the radar beam might be intercepted by the ground [44]. In case of the precipitation
product SRTadj, however, the impact of these shortcomings is mitigated by the continuous
adjustment that is routinely performed versus rain gauge measurements, which allows for
a more reliable quantitative estimation of the areal distribution of precipitation.

A secondary issue concerns the spatial resolution of the original radar dataset, which
is about 1 km. This required a resampling of the estimates to the common resolution of the
other meteorological parameters, i.e., 200 m, the impact of which is difficult to assess. An
additional problem is related to possible missing values, which was currently overcome by
combining the radar with the corresponding HSAF estimates.

When evaluated versus rain gauge measurements, the combined precipitation esti-
mates obtained show an accuracy that is comparable to that found by [35] in their assess-
ment of the same dataset over the entire Italian national territory. Such accuracy is sufficient
for most operational applications and particularly for the prediction of water stress condi-
tions over wide Mediterranean areas. This is confirmed by the final tests performed, which
demonstrate that the use of the combined precipitation estimates allows to yield efficient
spatialized indicators of both meteorological and soil water stress conditions.

5. Conclusions

The current work has produced and assessed a daily dataset informative on drought
conditions in Tuscany (central Italy). The dataset was obtained by combining interpolated
values of temperature with satellite-based simulations of solar radiation and ground radar
estimates of precipitation. A comparison with the data collected by rain gauges all over the
region demonstrates that the precipitation estimates reproduce the ground observations
quite faithfully. This property is further enhanced by the composition of the estimates with
ET0 observations for the definition of water stress conditions over one two-month periods.
As expected, in fact, the use of these relatively long cumulation periods has a positive
impact on the accuracy of the meteorological water stress indicators.

The ecological relevance of these indicators has been demonstrated in numerous
previous publications [17,18], which have shown their efficiency for characterizing the
impact of water stress on major vegetation processes (i.e., transpiration and photosynthesis).
The meteorological information brought by these indicators can be combined with remotely
sensed estimates of vegetation status for predicting soil water conditions, i.e., RSWC. This
indicator, or its analogous FAO–56 water stress coefficient Ks, is decisive for regulating plant
photosynthetic activity in arid and semi-arid regions [45]. This enhances the importance of
the findings obtained at the Cascine experimental site, where a meadow and an olive grove
were monitored by means of soil water capacitive probes and a ground meteorological
station. The results of this experiment confirm that the use of the combined weather datasets
induces only a minor deterioration in the prediction of RSWC for both ecosystem types.

It can therefore be concluded that these datasets can be properly utilized to as-
sess the water stress condition of different ecosystems in Tuscany as well as in similar
environmental situations.
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