
 
 

 

 
Water 2022, 14, 3101. https://doi.org/10.3390/w14193101 www.mdpi.com/journal/water 

Article 

Assessment of Water Stress Conditions in Central Italy by the 
Use of Ground and Remotely Sensed Weather Datasets 
Maurizio Pieri 1,2,*, Marta Chiesi 1, Luca Fibbi 1,2, Piero Battista 1, Andrea Antonini 2, Bernardo Rapi 1,  
Francesco Sabatini 1, Bernardo Gozzini 1,2 and Fabio Maselli 1 

1 National Research Council-Institute of BioEconomy, 50019 Sesto Fiorentino (Firenze), Italy 
2 Consorzio LaMMA (Laboratorio di Meteorologia e Modellistica Ambientale per lo Sviluppo Sostenibile), 

50019 Sesto Fiorentino (Firenze), Italy 
* Correspondence: maurizio.pieri@ibe.cnr.it 

Abstract: Aridity and drought, which are determined by climatic and temporary water scarcity, 
respectively, are important limiting factors for plant gross primary production. These phenomena 
are commonly assessed and/or monitored by means of weather indices, most of which are based on 
observations of precipitation and potential evapotranspiration. The estimation of such indices over 
large areas can be carried out using multiple datasets, i.e., those derived from weather stations, 
satellite images, and ground radars. The possibility of using interpolated or remotely sensed da-
tasets in place of ground measurements was currently investigated for Tuscany, a region in Central 
Italy, showing complex and heterogeneous environmental features. The former weather datasets 
were first evaluated versus corresponding ground measurements. Next, the basic weather variables 
were combined and cumulated over 30–60 days to yield synthetic indicators of water deficit, which 
were assessed in the same way. Finally, these indicators were evaluated to predict the soil water 
conditions of a meadow and an olive grove during the 2021 summer period. The results obtained 
indicate that the use of the multi-source weather datasets induces only a minor deterioration of the 
water stress indicators and is therefore efficient to monitor the water status of different ecosystems 
with high spatial (200 m) and temporal (daily) details. 
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1. Introduction 
Water is essential for vegetation growth and plays a fundamental role in determining 

aridity or drought conditions over land areas. In the context of global warming, changes 
in water availability have great impacts on terrestrial ecosystems and human activities, 
which must be properly assessed [1].  

Aridity, which is a natural permanent imbalance in water availability, is a land char-
acteristic usually defined over relatively long time periods on the basis of the difference 
between local water provision by precipitation and water demand by potential evapo-
transpiration [2]. Arid and semi-arid climates are spread over a large part of the earth 
surface and are further expanding due to the ongoing climate change, which usually im-
plies an increase of temperature and a reduction in precipitation [3]. This is the case for 
Mediterranean areas, where the summer dry period, which is due to the co-occurrence of 
high temperatures and low precipitation, is becoming more intense [4]. Climatic studies 
carried out in this area, in fact, indicate that air temperature is expected to increase be-
tween 2 and 4 °C, while precipitation is expected to decrease both in total amounts and in 
number of rainy days [5].  

The assessment of aridity conditions in terrestrial ecosystems is usually performed 
by the use of specific indices [6]. In particular, the degree of water deficiency can be eval-
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uated by the ratio of long-term (often annual) precipitation (PREC) to potential evapo-
transpiration (ET0) observations in the same time interval [7]. The PREC/ET0 ratio, in fact, 
is a quantitative aridity index (AI), which can approach zero in the desert but can exceed 
unity in wet climates [8]. Following the definition of the United Nations Environmental 
Programme (UNEP), an annual AI value below 0.65 is used for classifying drylands or 
characterizing different subtypes of aridity: hyperarid (AI < 0.05), arid (0.05 ≤ AI < 0.2), 
semiarid (0.2 ≤ AI < 0.5), and dry sub-humid (0.5 ≤ AI < 0.65) [9]. 

A related concept is that of drought, which corresponds to an unusual, prolonged 
dry weather period due to the lack of precipitation and can occur anywhere in the world 
[10]. Unlike aridity, which is a permanent characteristic of regions with low precipitation, 
drought is a temporary feature and occurs only when precipitation falls appreciably be-
low the climatic average. The impacts of drought must therefore be seen as dynamic, re-
sulting from interactions between water supply and demand. From a disciplinary per-
spective, four drought types are usually defined: meteorological, agricultural, hydrologi-
cal, and socio-economic drought [11,12]. Hence, drought is a complex phenomenon, and 
even if it is closely related to lack of water in the ground, it is not directly measurable by 
a single physical variable [13].  

Drought conditions, however, can be also described by indicators or parameters, 
such as precipitation, temperature, evapotranspiration, and soil moisture. Drought indi-
ces allow to identify, prevent, or mitigate the conditions and impacts of drought events at 
the most varied spatio-temporal scales, and they are used in drought early warning sys-
tems. A large collection of these indices, classified according to the degree of difficulty of 
application, is reported in the Handbook of Drought Indicators and Indices [14]. Widely 
used indices for meteorological and agricultural droughts are described in [13,15,16]. 

Among these indices, the previously described PREC/ET0 ratio can be cumulated 
over shorter time periods (mostly one to few months) in order to effectively define transi-
ent water stress conditions, particularly in Mediterranean areas. This is the case for the 
water stress index proposed by [17], which is derived from the ratio of PREC over ET0 
cumulated over one and two months for grasses and trees, respectively. This index is spe-
cifically related to the soil water conditions, which can limit plant transpiration and pho-
tosynthesis and can therefore be used to incorporate the effects of water deficit in the es-
timation of land water and carbon cycles [17–19]. 

As can be easily understood, the assessment of this or similar indices over wide areas 
requires the estimation of ET0 and precipitation with sufficient spatial and temporal reso-
lutions. This task encounters different levels of complexity for the two basic weather var-
iables. Relatively accurate estimates of ET0, in fact, can be derived from observations of 
temperature and solar radiation, which are interpolated or extrapolated quite effectively 
by various techniques. An example is given by the interpolation of daily temperature 
measurements by statistical tools such as the DAYMET algorithm [20], which has been 
effectively applied in central Italy by [21]. Solar radiation can instead be predicted using 
semi-empirical methods based on observations from meteorological satellites [22].  

The case is different for precipitation, which is extremely variable both in space and 
in time and is more complexly linked to the main land features, such as orography, conti-
nentality, etc. This makes the inter/extrapolation of precipitation quite difficult to perform 
without the use of extremely dense networks of rain gauges, which are not always avail-
able. This issue actually affects the gridded precipitation datasets produced by such tech-
niques, as the Pan-European E–OBS product, which has been evaluated in Italy both at 
national and regional scales [23,24]. A valid alternative could be represented by precipi-
tation observations taken by ground-based weather radars, which are now available in a 
pre-processed format. 

These different datasets could therefore be combined to predict land water deficit 
with sufficient spatial detail (few hundred meters) and temporal frequency (daily). The 
current paper assesses this possibility by examining the combination of datasets measured 
on the ground and derived from remote sensing platforms. The study was performed in 
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a region of central Italy (Tuscany), whose extremely complex and irregular environmental 
features represent a particular challenge for estimating the spatio-temporal evolution and 
the impact of water deficit phenomena. 

The paper is organized as follows. First, the main features of the study region are 
introduced, together with the ground and remote sensing data used. The following sec-
tions describe the processing steps applied and the results obtained. Finally, discussion 
and conclusion sections report on the critical issues of the study and on the prospects for 
future activities. 

2. Materials and Methods 
2.1. Study Area 

Tuscany (42°–45° north latitude and 8°–13° east longitude) is a region situated in cen-
tral Italy (Figure 1). Its territory is characterized by the presence of hilly areas (about 66% 
of the whole territory) and mountain zones (about 25%), with altitude varying from 0 to 
about 2100 m above sea level (i.e., Monte Prado, 2054 m a.s.l.). The climate is consequently 
very variable, ranging from Mediterranean warm to cool temperate, following the latitu-
dinal and altitudinal gradients and the distance from the sea. The mean annual tempera-
ture ranges from about 16.5 °C in the southern plains to 10.5 °C in the mountainous areas; 
the mean annual precipitation varies from about 450 mm in the south to more than 2000 
mm in the north, reaching its maximum on the north-western Apuan Alps [25]. About 
half of the regional territory is occupied by forests, while the rest is covered by agricultural 
lands (mostly annual crops in the plains and olive groves/vineyards on the hills) and ur-
ban areas. 

 
Figure 1. Digital elevation model of the study region (Tuscany) with position of the 20 weather 
stations considered (red dots). The lower left box shows the position of Tuscany in Italy. 

A specific experiment was conducted in a meadow and an olive grove located within 
the urban park of Cascine (Firenze, Figure 2) [26]. This area is close to the Arno River, at 
an altitude of about 45 m a.s.l.. The climate is temperate sub-humid, with mean annual 
precipitation around 800 mm and mean annual temperature of about 15 °C; precipitation 
is concentrated in autumn and spring, while summer is usually hot and dry. The soil is 
sandy clay loam (i.e., 52% sand, 24% silt, and 24% clay) and has a depth over 2 m. The 
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meadow, which is about 30×40 m2 wide, is usually grown with spontaneous herbaceous 
species, while in the olive grove, which extends over about 80×55 m2, trees are 5×5 m 
spaced and have a height around 4 m. Both fields are rainfed and managed following local 
agricultural habits. 

 
(a) 

 
(b) 

Figure 2. (a) Sentinel-2 MSI NDVI image of June 2021 showing the position of the meadow (blue) 
and the olive grove (violet) within the Cascine urban Park in Firenze; (b) Google Earth true colour 
composite taken in June 2021 showing the position of the SWC probes within the meadow (A) and 
the olive grove (B). 

2.2. Study Data 
2.2.1. Ground Meteorological Data 

Daily meteorological data (i.e., minimum and maximum air temperature, precipita-
tion, and solar radiation) were taken from twenty ground weather stations distributed 
over the entire regional territory as shown in Figure 1. These stations were selected to 
cover all local geographical, morphological, and climatic heterogeneities of the region (Ta-
ble 1). The station of Firenze is placed within the urban park of Cascine (Figure 2). Data 
were collected from March to November 2021 to be consistent with the period for which 
radar data are available. 
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Table 1. Main features of the 20 selected ground weather stations. Mean air temperature and total 
precipitation refer to the investigated study period, i.e., March–November 2021. 

Station 
ID Name Geographical position 

(° Lat N, ° Long. E) 
Elevation  
(m a.s.l.) 

Temperature 
(°C) 

Precipitation  
(mm) 

1 Firenze 43.785, 11.218 40 18.4 421 
2 Lido di Camaiore 43.898, 10.243 5 17.1 519 
3 San Vincenzo 43.051, 10.555 11 17.8 271 
4 Legoli 43.565, 10.801 180 17.8 331 
5 Buonconvento 43.092, 11.439 188 17.0 211 
6 Quercianella 43.480, 10.348 244 18.6 266 
7 Cesa 43.309, 11.825 246 16.3 297 
8 Borgo S. Lorenzo 43.986, 11.390 280 15.9 508 
9 Pontremoli 44.370, 9.893 340 15.9 874 

10 Poppi 43.736, 11.783 417 16.3 424 
11 Pentolina 43.210, 11.180 450 17.0 536 
12 Lamole 43.542, 11.355 536 15.9 477 
13 Radicofani 42.948, 11.733 618 16.4 275 
14 Pratomagno 43.570, 11.724 695 15.6 430 
15 Pieve S. Stefano 43.674, 12.102 750 13.7 534 
16 Castelnuovo Val di Cecina 43.204, 10.881 770 14.5 482 
17 Monte Serra 43.747, 10.555 890 13.7 670 
18 Campocecina 44.116. 10.104 960 13.7 984 
19 Passo delle Radici 44.195, 10.486 1612 8.0 1116 
20 Monte Amiata 42.890, 11.625 1678 8.9 454 

2.2.2. Ancillary Data 
A digital elevation model (DEM) of Tuscany was derived from the database of the 

LaMMA Consortium; this DEM has a spatial resolution of about 200 m. 
Daily soil water content (SWC) measurements were taken both within the olive grove 

and in the meadow at the Cascine site (Figure 2). The former measurements were collected 
by means of a Sentek probe (Sentek Sensor Technologies Stepney, Australia) at 0.3 m 
depth during the period from May to November 2021, while the latter were collected at 
0.15 m soil depth by means of a Meter 10HS probe (Meter, Pullman, Washington, USA) 
from March until November of the same year. 

2.2.3. Satellite Data 
High spatial resolution (10 m) MultiSpectral Instrument (MSI) images acquired by 

the twin Copernicus Sentinel-2 (S-2) A and B satellites were utilized to produce the used 
NDVI imagery. All available MSI images of 2021 covering the Cascine site (Figure 2) were 
downloaded in an ortho-rectified, pre-processed L2A format from the European Space 
Agency website (https://sentinel.esa.int/web/sentinel/sentinel-data-access; accessed on 30 
August 2022). These images were further processed by performing a maximum value 
composite (MVC) operation over 15-day periods and by applying two filtering operations 
aiming at reducing residual disturbances. More specifically, a spatial filtering was applied 
to remove isolated pixels having anomalous NDVI values; next, a temporal filtering based 
on an upper envelope algorithm was applied to further reduce atmospheric effects (see 
[27] for further details). 

The spinning-enhanced visible and infrared imager (SEVIRI) images, generated by 
Meteosat second-generation (MSG) geostationary meteorological satellite, were used to 
estimate daily solar radiation. These images are provided by the European Organization 
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for the Exploitation of Meteorological Satellites (EUMETSAT)—Satellite Application Fa-
cility on Land Surface Analysis (LSA SAF, https://landsaf.ipma.pt/; accessed on 30 August 
2022). The currently used total and diffuse downward surface shortwave flux (MDSSFTD, 
LSA-207) product is updated every 15 minutes and provides images of DSSF reaching the 
Earth’s surface with a resolution of 3 km at nadir and about 4 x 6 km over Italy [28,29]. 

Daily precipitation fields were derived from EUMETSAT on Support to Operational 
Hydrology and Water Management (HSAF, http://hsaf.meteoam.it/; accessed on 30 Au-
gust 2022). In particular, the accumulated precipitation product (H61B, P-AC-SEVIRI-
PMW) obtained by blended MSG data with various low Earth orbit (LEO) satellites was 
used. The H61B product integrates the instantaneous precipitation maps generated every 
15 minutes by the H60B product [30,31]. The original resolution of these products is the 
same of the MSG imagery. 

2.2.4. Radar Data 
Radar data obtained from the Italian national ground-based weather radars network 

were used as 2D precipitation fields. This network is managed by the national Civil Pro-
tection Department (DPC). Currently, the network consists of 21 radars distributed 
throughout the entire Italian territory with several overlapping coverage areas. The 
weather radars are managed by national and regional institutions including the DPC, the 
regional weather services, the National Aviation Authority, and the Italian Air Force 
[32,33]. 

The raw radar data, according to a shared synchronized schedule, were acquired by 
various systems and sent to the Central Functional Centre (CFC) of DPC in Rome, where 
they were merged (mosaicking process) to generate several derived products covering the 
entire national territory. The products generated every 5 minutes were distributed as 
georeferenced data grids (at 1 km spatial resolution), by, for example, the portal website: 
https://radar.protezionecivile.it/radar-dpc (accessed on 30 August 2022). 

All products are the result of operational chains that merge radar data with those of 
the rain gauge network and data from other instruments (e.g., satellite data, lightning 
strikes, etc.). The instantaneous precipitation data are then cumulated in surface rainfall 
total (SRT) products for different time interval (1, 3, 6, 12, and 24 hours). All these products 
were obtained considering the data acquired in real time by the weather stations (about 
3000 stations) and available at CFC. A further correction was performed on cumulative 
precipitation data by combining SRT products with rain gauge observations through a 
modified conditional merging approach; the resulting rainfall fields are SRTadj [34,35]. 

The daily cumulative data (expressed in solar time) used in this work were obtained 
from the hourly SRT1adj and resampled to 200 m spatial resolution for the study area. 

2.3. Data Processing 
The regional weather datasets currently used were created by the application of dif-

ferent procedures depending on the parameter to consider. All data referred to the period 
March–November 2021. 

Daily minimum and maximum temperatures were interpolated by the application of 
the DAYMET algorithm [20]. This algorithm is based on the spatially weighted regression 
concept, i.e., the closer is the observation to the estimation point, the higher its weight, 
and includes a relationship with elevation, which is derived from the DEM of the region. 
The application of DAYMET over Tuscany was performed as described in [21]. 

Daily solar radiation was estimated by the application of the ERAD algorithm [22]. 
ERAD is based on the disaggregation of DSSF data by DEM and was applied to the entire 
Italian territory with a time step of 1 min and a spatial resolution of about 200 m. Recently, 
this methodology was modified to accept as input the new MDSSFTD LSA-207 in place of 
the LSA-201 product, thus avoiding the need to compute the fraction of diffuse solar ra-
diation. 
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Daily precipitation estimates were derived from the ground radar observations and, 
in case of missing data, from the HSAF satellite images, both resampled to the spatial 
resolution of 200 m. 

All these ground, interpolated, and remotely sensed datasets were used to perform 
three kinds of statistical analysis, which are described in the following paragraphs. 

2.3.1. Estimation and Assessment of Daily Precipitation 
The first analysis concerned the daily precipitation maps obtained from the remotely 

sensed data, i.e., the radar observations and the HSAF images. The precipitation estimates 
were extracted from the pixels corresponding to the 20 weather stations and assessed ver-
sus the respective measurements by means of common accuracy statistics, i.e., the deter-
mination coefficient (r2), the root mean square error (RMSE), and the mean bias error 
(MBE). 

2.3.2. Estimation and Assessment of AW 
The second analysis was aimed at evaluating the impact of the combined weather 

dataset on the computation of the water stress factor proposed by [17]. This factor, named 
available water (AW), is obtained from the ratio between precipitation and potential evap-
otranspiration as: 

AW = PREC / ET0   (1) 

where PREC is precipitation, and ET0 is potential evapotranspiration computed on 
the basis of mean air temperature and solar radiation [36]; both terms are cumulated over 
one moth for grasses and two months for trees. The theoretical background at the basis of 
these choices are related to the different behaviours of these plant functional types (e.g., 
grasses are more quickly affected by soil water shortage than trees because they have lim-
ited access to deep storage); more details on this issue can be found in [17] and [37]. As 
fully described in the same papers, the computation of the final water stress coefficient, 
named Cws, implies the bounding of AW to 1 and its rescaling between 0 and 0.5. In this 
way, Cws accounts for the possible impact of water stress on major ecosystem processes 
(actual evapotranspiration and gross primary production), reducing them to half of their 
potential value occurring in fully watered conditions [17,18]. 

Following this theoretical basis, AW over 30 and 60 days cumulation periods were 
computed for the 20 weather stations using both the ground measurements and the inter-
polated plus remotely sensed (hereinafter called combined) datasets; the accuracy of the 
latter was evaluated by inter-comparing the two data series and summarized by means of 
r2 and MBE statistics. 

2.3.3. Estimation and Assessment of RSWC for Grass and Olive Trees 
The third analysis was focused on the prediction of relative soil water content 

(RSWC), defined as the SWC normalized between possible minimum and maximum val-
ues. This indicator is functionally equivalent to the soil water stress coefficient (Ks) de-
scribed in the Food and Agriculture Organization Paper No. 56 (FAO–56) by [38]. Specif-
ically, the analysis was aimed at evaluating the impact of the combined dataset on the 
estimation of RSWC in different ecosystems. 

To accomplish this task, reference daily RSWC values were obtained from SWC 
measurements taken within the meadow and the olive grove in the Cascine area. This 
conversion was carried out as fully described in [39] considering different effective soil 
depths, i.e., around 0.4 m for the meadow and 1 m for the olive grove. 

The estimation of the same quantity was instead performed by applying the method 
proposed by [19] to the combined datasets. That method predicts daily RSWC by 
weighting the AW factors of vegetation and soil for the respective cover fractions: 
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RSWC = FVC (0.5 + 0.5 AW) + (1 − FVC) AW   (2) 

Within this formulation, the fractional vegetation cover (FVC) is considered to be re-
sponsive to the soil water condition integrated over a sufficient time period (one or two 
months) and was consequently used to modulate the intensity of SWC variations. Equa-
tion (2) was therefore applied to estimate the RSWC for the Cascine meadow and olive 
grove deriving the respective FVC from the NDVI MSI images, as fully described in [24]. 
The AW meteorological factors were computed using both the ground and combined da-
tasets cumulated over 1 or 2 months, respectively. The accuracy of the two estimated se-
ries was finally assessed versus the reference RSWC observations using the same statistics 
as above. 

3. Results 
3.1. Daily Precipitation Estimates 

The combination of radar and HSAF precipitation data yields a complete daily da-
taset over the entire regional territory. Fortunately, in fact, only few radar precipitation 
observations are missing during the study period, and in all these cases, HSAF estimates 
are present. 

Table 2 shows the accuracy statistics obtained comparing the precipitation measure-
ments collected at the 20 weather stations to the corresponding remotely sensed estimates. 
Most determination coefficients are higher than 0.63, while seven coefficients vary be-
tween 0.27 and 0.57. The lowest correlation is obtained for a mountain station (Passo delle 
Radici), which is also characterized by high errors. In general, the accordance between 
daily measurements and estimates is moderate for all stations, with a mean determination 
coefficient of 0.52 and a slight tendency to underestimation (the mean MBE is 0.27 mm). 

Table 2. Accuracy statistics of the remotely sensed daily precipitation estimates for the 20 ground 
weather stations over the study period (March–November 2021). 

Station ID  Name r2 RMSE (mm) MBE (mm) 
1 Firenze 0.695 2.83 0.45 
2 Lido di Camaiore 0.499 4.72 −1.00 
3 San Vincenzo 0.694 2.26 0.02 
4 Legoli 0.691 2.30 −0.25 
5 Buonconvento 0.689 3.11 0.66 
6 Quercianella 0.673 2.40 0.16 
7 Cesa 0.637 2.08 0.19 
8 Borgo S. Lorenzo 0.672 2.78 −0.23 
9 Pontremoli 0.661 6.52 −0.57 

10 Poppi 0.661 2.52 0.11 
11 Pentolina 0.792 4.45 −0.14 
12 Lamole 0.495 3.86 −0.91 
13 Radicofani 0.718 1.77 0.32 
14 Pratomagno 0.652 2.92 0.13 
15 Pieve S. Stefano 0.572 3.47 −0.16 
16 Castelnuovo Val di Cecina 0.510 4.12 −0.26 
17 Monte Serra 0.635 4.51 −1.18 
18 Campocecina 0.515 8.14 −0.85 
19 Passo delle Radici 0.266 10.41 −1.12 
20 Monte Amiata 0.361 4.31 −0.76 

  



Water 2022, 14, 3101 9 of 15 
 

 

3.2. AW Estimates 
The daily evolutions of the AW computed for grass and olive trees at the Cascine site 

using the ground and the combined meteorological data are shown in Figure 3. These 
water stress factors follow a pattern that is typical for Mediterranean areas, being lowest 
during the hot and dry summer and having a complete recovery during late autumn. 

The different behaviour of grass with respect to olive trees is reflected by the more 
marked and frequent variations in water status characterizing the former plant functional 
type. The use of the combined data in place of the ground meteorological data does not 
induce significant differences in the AW estimates, with the determination coefficient 
equal to 0.945 and 0.980 for grass and olive trees, respectively; both errors are also low 
(i.e., RMSE = 0.093 and MBE = −0.003 for grass and RMSE = 0.056 and MBE = −0.007 for 
olive trees). 

 
     (a) 

 
     (b) 

Figure 3. Daily evolutions of AW obtained from ground (Estimated 1) and combined (Estimated 2) 
meteorological data, computed from March to November 2021 for grass (a) and olive trees (b) at the 
Cascine site (all correlations are highly significant, p < 0.01). 

Figure 4a shows the determination coefficients obtained from the same intercompar-
isons for all 20 study stations. As expected, the accordance between reference and esti-
mated AW computed over one month is slightly lower than that computed over two 
months due to the greater smoothing induced by the latter operation; the same is mostly 
the case for the mean bias errors (Figure 4b). On average, there is a slight tendency to 
underestimation, which derives from the corresponding precipitation pattern seen before. 
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   (a) 

 
      (b) 

Figure 4. Histograms showing the determination coefficient (r2) (a) and the mean bias error (MBE) 
(b) computed between AW computed over 30 and 60 days using ground and combined meteoro-
logical data (all correlations are highly significant, p < 0.01). 

Figure 5 illustrates the spatial distribution of the AW factor obtained using the com-
bined dataset for the driest period of 2021, i.e., July–August. The highest values are con-
centrated in the north-west of the region, which corresponds to a particularly rainy and 
humid mountain zone, the Apuan Alps. Very low AW values characterize most Tuscany 
plains, especially near the coastline, where summer rainfalls are scarce. 

3.3. RSWC estimates 
Figure 6 shows the reference RSWC evolutions of the Cascine meadow and olive 

grove. The different trends of the two vegetation types are mostly due to the respective 
soil depths considered (0.4 and 1.0 m) and highlight their different responses to summer 
water stress, with the RSWC of grass being lower and more variable than that of olive 
trees. 
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Figure 5. AW map of Tuscany obtained using the combined dataset for July–August 2021, with 
position of the 20 weather stations considered (white dots). 

 
     (a) 

 
    (b) 

Figure 6. Reference RSWC evolutions compared to the estimates obtained using ground (Estimated 
1) and combined (Estimated 2) meteorological data for grass (a) and olive trees (b) at the Cascine 
site (all correlations are highly significant, p < 0.01). 
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These RSWC patterns are also partly responsible for the different FVC evolutions of 
grass and olive trees, which are visible in Figure 7. Grass shows an FVC decrease from the 
initial level of about 0.6 until a minimum close to 0.25 in the middle of summer. This is 
followed by a clear recovery during autumn, which leads to values close to 0.8. On the 
contrary, olive trees, which are evergreen, have a nearly stable FVC during the whole year. 

 
Figure 7. FVC evolutions of grass and olive trees at the Cascine site obtained from Sentinel-2 MSI 
NDVI images during the year 2021. 

The application of Equation (2) to these FVC and the AW values of Figure 3 yields 
the RSWC estimates shown again in Figure 6 for the meadow (a) and the olive grove (b). 
In the former case, the estimated RSWC is lower than 1 during some spring and fall dry 
spells, and the minimum values (<0.2) are found in July and August, partly due to the 
summer FVC drop. Similar patterns are predicted using the ground and the combined 
meteorological datasets; in both cases, the determination coefficient between reference 
and estimated RSWC is higher than 0.59, and the errors are comparably low. 

The seasonal RSWC evolution predicted for olive trees is slightly different: its values 
are close to the maximum till the middle of June; after that, they slowly decrease until a 
minimum, which is around 0.6 at the end of summer. A first recovery then occurs, which 
is not sufficient to completely restore the spring values. The use of the ground and com-
bined datasets still produces similar estimates both in terms of correlation and errors. 

4. Discussion 
Water stress has a potentially relevant impact on all aspects of plant growth, among 

which a decrease in plant size, leaf area, and biomass is the most immediate. Judging 
whether plants are suffering for a water shortage should start from the consideration of 
all involved eco-physiological factors, namely soil, climate, and plant conditions. There-
fore, the assessment of water stress effects over large areas is a relevant issue not easily 
achievable using only conventional measurements that are collected over limited areas 
and can represent only local conditions. 

Valuable alternatives can be offered by the use of interpolated and remotely sensed 
datasets, the latter obtained from satellites or ground radars: by means of these, in fact, 
spatial and synoptic information over large areas can be obtained through limited pro-
cessing and the application of strong methodologies [40–42]. 

The extension of meteorological data over large areas is usually based on interpola-
tion/extrapolation methods that have been widely validated and applied. For instance, in 
the study region, the estimation of daily minimum and maximum air temperature was 
performed by the application of the DAYMET algorithm [20], which yielded limited errors 
and generally satisfactory results [21]. 

As regards solar radiation, the currently applied ERAD algorithm, which is based on 
the use of Meteosat images, has been recently assessed all over Italy against independent 
ground measurements [22]. As previously noted, the current use of this algorithm re-
quired a slight modification to accept the new DSSF product (i.e., the LSA-207 in place of 
the previous LSA-201 version). 
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The main novelty of the present investigation concerned the use of precipitation es-
timates obtained from the national radar network. As previously noted, these estimates 
are expected to provide a decisive step forward with respect to satellite products such as 
HSAF due to their sounder physical basis and their higher spatial and temporal resolu-
tions. This expectation was actually confirmed by the current experimental findings, 
which indicated a notable superiority of the radar over the HSAF precipitation estimates 
(data not shown). 

Nevertheless, the radar estimates are still affected by various shortcomings, which 
should at least be properly known. Since the weather radars predict precipitation through 
the reflectivity in altitude, errors and uncertainty can arise both from the basic measure-
ment of reflectivity and from attempts to relate this to the precipitation actually falling at 
the ground [43]. Moreover, in some areas, the radar coverage can be suboptimal to retrieve 
a good representativeness of the whole territory, especially in mountainous areas where 
the radar beam might be intercepted by the ground [44]. In case of the precipitation prod-
uct SRTadj, however, the impact of these shortcomings is mitigated by the continuous 
adjustment that is routinely performed versus rain gauge measurements, which allows 
for a more reliable quantitative estimation of the areal distribution of precipitation. 

A secondary issue concerns the spatial resolution of the original radar dataset, which 
is about 1 km. This required a resampling of the estimates to the common resolution of 
the other meteorological parameters, i.e., 200 m, the impact of which is difficult to assess. 
An additional problem is related to possible missing values, which was currently over-
come by combining the radar with the corresponding HSAF estimates. 

When evaluated versus rain gauge measurements, the combined precipitation esti-
mates obtained show an accuracy that is comparable to that found by [35] in their assess-
ment of the same dataset over the entire Italian national territory. Such accuracy is suffi-
cient for most operational applications and particularly for the prediction of water stress 
conditions over wide Mediterranean areas. This is confirmed by the final tests performed, 
which demonstrate that the use of the combined precipitation estimates allows to yield 
efficient spatialized indicators of both meteorological and soil water stress conditions. 

5. Conclusions 
The current work has produced and assessed a daily dataset informative on drought 

conditions in Tuscany (central Italy). The dataset was obtained by combining interpolated 
values of temperature with satellite-based simulations of solar radiation and ground radar 
estimates of precipitation. A comparison with the data collected by rain gauges all over 
the region demonstrates that the precipitation estimates reproduce the ground observa-
tions quite faithfully. This property is further enhanced by the composition of the esti-
mates with ET0 observations for the definition of water stress conditions over one two-
month periods. As expected, in fact, the use of these relatively long cumulation periods 
has a positive impact on the accuracy of the meteorological water stress indicators. 

The ecological relevance of these indicators has been demonstrated in numerous pre-
vious publications [17,18], which have shown their efficiency for characterizing the impact 
of water stress on major vegetation processes (i.e., transpiration and photosynthesis). The 
meteorological information brought by these indicators can be combined with remotely 
sensed estimates of vegetation status for predicting soil water conditions, i.e., RSWC. This 
indicator, or its analogous FAO–56 water stress coefficient Ks, is decisive for regulating 
plant photosynthetic activity in arid and semi-arid regions [45]. This enhances the im-
portance of the findings obtained at the Cascine experimental site, where a meadow and 
an olive grove were monitored by means of soil water capacitive probes and a ground 
meteorological station. The results of this experiment confirm that the use of the combined 
weather datasets induces only a minor deterioration in the prediction of RSWC for both 
ecosystem types. 
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It can therefore be concluded that these datasets can be properly utilized to assess the 
water stress condition of different ecosystems in Tuscany as well as in similar environ-
mental situations. 

Author Contributions: M.P., M.C., A.A. and F.M. conceived the structure and wrote the manuscript. 
L.F., P.B., B.R., F.S. and B.G. differently contributed to the collection and analysis of the ground and 
remotely sensed datasets utilized. All authors have read and agreed to the published version of the 
manuscript. 

Funding: This research received no external funding. 

Data Availability Statement: The data used in this study are available from the corresponding au-
thors upon request. 

Acknowledgments: The authors wish to thank the “Istituto Tecnico Agrario” of Firenze for offering 
the experimental site. Three anonymous Water reviewers are thanked for their helpful comments on 
the first draft of the manuscript. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Gudmundsson, L.; Greve, P.; Seneviratne, S.I. The sensitivity of water availability to changes in the aridity index and other 

factors—A probabilistic analysis in the Budyko space. Geophys. Res. Lett. 2016, 43, 6985–6994. 
2. Pereira, L.S.; Oweis, T.; Zairi, A. Irrigation management under water scarcity. Agric. Water Manag. 2002, 57, 175–206. 
3. Wang, T.; Tu, X.; Singh, V.P.; Chen, X.; Lin, K. Global data assessment and analysis of drought characteristics based on CMIP6. 

J. Hydrol. 2021, 596, 126091. 
4. Barredo, I.; Caudullo, G.; Dosio, A. Mediterranean habitat loss under future climate conditions: Assessing impacts on the Natura 

2000 protected area network. Appl. Geogr. 2016, 75, 83–92. 
5. Giorgi, F.; Raffaele, F.; Coppola, E. The response of precipitation characteristics to global warming from climate projections. 

Earth Syst. Dynam. 2019, 10, 73–89. 
6. Ullah, S.; You, Q.; Sachindra, D.A.; Nowosad, M.; Ullah, W.; Bhatti, A.S.; Jin, Z.; Ali, A. Spatiotemporal changes in global aridity 

in terms of multiple aridity indices: An assessment based on the CRU data. Atmos. Res. 2022, 268, 105988. 
7. Zhang, C.; Yang, Y.; Yang, D.; Wu, X. Multidimensional assessment of global dryland changes under future warming in climate 

projections. J. Hydrol. 2021, 592, 125618. 
8. Fu, Q.; Feng, S. Responses of terrestrial aridity to global warming. J. Geophys. Res. Atmos. 2014, 119, 7863–7875. 
9. Yu, H.; Zhang, Q.; Wei, Y.; Liu, C.; Ren, Y.; Yue, P.; Zhou, J. Bias-corrections on aridity index simulations of climate models by 

observational constraints. Int. J. Climatol. 2022, 42, 889–907. 
10. Wilhite, D.A. Chapter 1 Drought as a Natural Hazard: Concepts and Definitions. In Drought: A Global Assessment; Wilhite, D.A., 

Ed.; Drought Mitigation Center Faculty Publications, 69; Routledge: London, UK, 2000; Volume I, pp. 3–18. 
11. Wilhite, D.A.; Glantz, M.H. Understanding the Drought Phenomenon: The Role of Definitions. Drought Mitig. Cent. Fac. Publ. 

1985, 20, 110–120. 
12. Van Loon, A.F. Hydrological drought explained. WIREs Water 2015, 2, 359–392. 
13. Hološ, S.; Šurda, P. Evaluation of drought—Review of drought indices and their application in the recent studies from Slovakia. 

Acta Hortic. Et Regiotect. Spec. Issue 2021, 24, 97–108. 
14. Svoboda, M.; Fuchs, B. Integrated Drought Management Programme (IDMP). In Handbook of Drought Indicators and Indices; 

Drought Mitigation Center Faculty Publications, 117; World Meteorological Organization: Geneva, Switzerland, 2016. 
15. Cammalleri, C.; Arias-Munoz, C.; Barbosa, P.; De Jager, A.; Magni, D.; Masante, D.; Mazzeschi, M.; McCormick, N.; Naumann, 

G.; Spinoni, J.; et al. A Revision of the Combined Drought Indicator (CDI) used in the European Drought Observatory (EDO). 
Nat. Hazards Earth Syst. Sci. 2021, 21, 481–495. 

16. Azman, R.M.N.R.; Noor, N.A.M.; Abdullah, S.; Mohamed, M. A review on the assessment of drought index. Gading J. Sci. Tech-
nol. 2022, 5, 59–68. 

17. Maselli, F.; Papale, D.; Puletti, N.; Chirici, G.; Corona, P. Combining remote sensing and ancillary data to monitor the gross 
productivity of water-limited forest ecosystems. Remote Sens. Environ. 2009, 113, 657–667. 

18. Maselli, F.; Papale, D.; Chiesi, M.; Matteucci, G.; Angeli, L.; Raschi, A.; Seufert; G. Operational monitoring of daily evapotran-
spiration by the combination of MODIS NDVI and ground meteorological data: Application and validation in Central Italy. 
Remote Sens. Environ. 2014, 152, 279–290. 

19. Gardin, L.; Chiesi, M.; Fibbi, L.; Angeli, L.; Rapi, B.; Battista, P.; Maselli, F. Simulation of soil water content through the combi-
nation of meteorological and satellite data. Geoderma 2021, 393, 115003. 



Water 2022, 14, 3101 15 of 15 
 

 

20. Thornton, P.E.; Running, S.W.; White, M.A. Generating surfaces of daily meteorological variables over large regions of complex 
terrain. J. Hydrol. 1997, 190, 214–251. 

21. Chiesi, M.; Maselli, F.; Moriondo, M.; Fibbi, L.; Bindi, M.; Running, S. Application of BIOME-BGC to simulate Mediterranean 
forest processes. Ecol. Model. 2007, 206, 179–190. 

22. Fibbi, L.; Maselli, F.; Pieri, M. Improved estimation of global solar radiation over rugged terrains by the disaggregation of Sat-
ellite Applications Facility on Land Surface Analysis data (LSA SAF). Meteorol. Appl. 2020, 27, e1940. 

23. Fibbi, L.; Chiesi, M.; Moriondo, M.; Bindi, M.; Chirici, G.; Papale, D.; Maselli, M. Correction of a 1 km daily rainfall dataset for 
modelling forest ecosystem processes in Italy. Meteorol. Appl. 2016, 23, 294–303. 

24. My, L.; Di Bacco, M.; Scorzini, A.R. On the use of gridded data products for trend assessment and aridity classification in a 
Mediterranean context: The case of the Apulia Region. Water 2022, 14, 2203. 

25. Rapetti, F.; Vittorini, S. Carta Climatica Della Toscana; Pacini Editore: Pisa, Italy, 1995. 
26. Chiesi, M.; Costafreda-Aumedes, S.; Argenti, G.; Battista, P.; Fibbi, L.; Leolini, L.; Moriondo, M.; Rapi, B.; Sabatini, F.; Maselli, 

F. Estimating the GPP of olive trees with variable canopy cover by the use of Sentinel-2 MSI images. Eur. J. Agron. 2022, 141, 
126618. 

27. Maselli, F.; Battista, P.; Chiesi, M.; Rapi, B.; Angeli, L.; Fibbi, L.; Magno, R.; Gozzini, B. Use of Sentinel-2 MSI data to monitor 
crop irrigation in Mediterranean areas. Int. J. Appl. Earth Obs. Geoinf. 2020, 93, 102216. 

28. Carrer, D.; Ceamanos, X.; Moparthy, S.; Vincent, C.; Freitas, S.C.; Trigo, I.F. Satellite Retrieval of Downwelling Shortwave Sur-
face Flux and Diffuse Fraction under All Sky Conditions in the Framework of the LSA SAF Program (Part 1: Methodology). 
Remote Sens. 2019, 11, 2532. 

29. Carrer, D.; Moparthy, S.; Vincent, C.; Ceamanos, X.C.; Freitas, S.; Trigo, I.F. Satellite Retrieval of Downwelling Shortwave Sur-
face Flux and Diffuse Fraction under All Sky Conditions in the Framework of the LSA SAF Program (Part 2: Evaluation). Remote 
Sens. 2019, 11, 2630. 

30. HSAF. Product Validation Report (PVR) for Products H60B (P-AC-SEVIRI-PMW) and H63 (P-AC-SEVIRI_E); SAF/HSAF/PVR-60-
63, 2.0; EUMETSAT: Darmstadt, Germany, 27 February 2022; pp. 1–112. 

31. HSAF. Product Validation Report (PVR) for Products P-AC-SEVIRI-PMW (H61B) and P-AC-SEVIRI_E (H90); SAF/HSAF/PVR-61-
90, 2.0; EUMETSAT: Darmstadt, Germany, 27 February 2022; pp. 1–122. 

32. Vulpiani, G.; Pagliara, P.; Negri, M.; Rossi, L.; Gioia, A.; Giordano, P.; Alberoni, P.P.; Cremonini, R.; Ferraris, L.; Marzano, F.S. 
The Italian radar network within the national early-warning system for multi-risks management. In Proceedings of the Fifth 
European Conference on Radar in Meteorology and Hydrology (ERAD 2008), Helsinki, Finland, 30 June–4 July 2008; p. 184. 

33. Vulpiani, G.; Montopoli, M.; Passeri, L.D.; Gioia, A.G.; Giordano, P.; Marzano, F.S. On the Use of Dual-Polarized C-Band Radar 
for Operational Rainfall Retrieval in Mountainous Areas. J. Appl. Meteorol. Climatol. 2012, 51, 405–425. 

34. Pignone, F.; Rebora, N.; Silvestro, F.; Castelli, F. GRISO (Generatore Random di Interpolazioni Spaziali da Osservazioni 
incerte)—Piogge, Relazione delle attività del I anno inerente la Convenzione 778/2009 tra Dipartimento di Protezione Civile e 
Fondazione CIMA (Centro Internazionale in Monitoraggio Ambientale). Report 2010, 272, 353. 

35. Bruno, G.; Pignone, F.; Silvestro, F.; Gabellani, S.; Schiavi, F.; Rebora, N.; Giordano, P.; Falzacappa, M. Performing hydrological 
monitoring at a national scale by exploiting rain-gauge and radar networks: The Italian case. Atmosphere 2021, 12, 771. 

36. Jensen, M.E.; Haise, H.R. Estimating evapotranspiration from solar radiation. In Proceedings of the American Society of Civil Engi-
neers; Nabu Press: Charleston, SC, USA, 1963; volume 89, pp. 15–41. 

37. Maselli, F.; Argenti, G.; Chiesi, M.; Angeli, L.; Papale, D. Simulation of grassland productivity by the combination of ground 
and satellite data. Agric. Ecosyst. Environ. 2013, 165, 163–172. 

38. Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO 
Irrigation and Drainage Paper 56; Food and Agricultural Organization of the United Nations: Rome, Italy, 1998. 

39. Chiesi, M.; Battista, P.; Fibbi, L.; Gardin, L.; Pieri, M.; Rapi, B.; Romani, M.; Maselli, F. A semi-empirical method to estimate 
actual evapotranspiration in Mediterranean environments. Adv. Meteorol. 2018, 2018, 9792609. 

40. Levizzani, V.; Cattani, E. Satellite Remote Sensing of Precipitation and the Terrestrial Water Cycle in a Changing Climate. Remote 
Sens. 2019, 11, 2301. 

41. West, H.; Quinn, N.; Horswell, M. Remote sensing for drought monitoring & impact assessment: Progress, past challenges and 
future opportunities. Remote Sens. Environ. 2019, 232, 111291. 

42. Binetti, M.S.; Campanale, C.; Massarelli, C.; Uricchio, V.F. The Use of Weather Radar Data: Possibilities, Challenges and Ad-
vanced Applications. Earth 2022, 3, 157–171. 

43. Sokol, Z.; Szturc, J.; Orellana-Alvear, J.; Popová, J.; Jurczyk, A.; Célleri, R. The Role of Weather Radar in Rainfall Estimation and 
Its Application in Meteorological and Hydrological Modelling—A Review. Remote Sens. 2021, 13, 351. 

44. Harrison, D.L.; Driscoll, S.J.; Kitchen, M. Improving precipitation estimates from weather radar using quality control and cor-
rection techniques. Meteorol. Appl. 2000, 7, 135–144. 

45. Kokkotos, E.; Zotos, A.; Patakas, A. Evaluation of Water Stress Coefficient Ks in Different Olive Orchards. Agronomy 2020, 10, 
1594. 

 


