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Abstract: Gauge-measured precipitation data have long been recognized to underestimate actual
precipitation due to wind-induced error, trace precipitation, and wetting loss, which affects the
spatial and temporal characteristics of precipitation. In this study, we examined spatial and temporal
differences in wet and dry spell indices based on original (Po) and corrected (Pc) precipitation
data and their correlations with large-scale circulation indices (LSCIs) in Southwest China during
1961–2019. The main conclusions were: (1) Pc-based trends in wet/dry spell indices were generally
more pronounced than Po-based. Specifically, when Pc-based, more stations had significant changes
in the MWS, MLWS, MPWS, PWS95, FWW, FDW, MDS, MLDS, NLDS, and DDS95 indices, while
fewer had significant changes in the NWS, NDS, FDD, and FWD indices. (2) Spearman’s results
showed that more LSCIs were significantly related to the Pc-based wet/dry spell indices than Po-
based. Po-based and Pc-based MWS, Po-based MDS, and Pc-based NLDS were significantly related to
the most LSCIs. Therefore, taking them as examples, wavelet transform coherence (WTC) and partial
wavelet coherence (PWC) were used to explore the coherence with LSCIs. WTC results showed
South Asian Summer Monsoon Index (SASMI) + Po-based MWS, Arctic Oscillation (AO) + Po-based
MDS, SASMI + Pc-based MWS, Asia Polar Vortex Intensity Index (APVI) + Pc-based NLDS exhibited
the most obvious periodic resonance with main resonance periods of 2.13~7.8 year, 2.19~10.41 year,
2.13~12.13 year, 2.75~18.56 year, respectively. Since WTC may arbitrarily ignore the interaction
between LSCIs, PWC is adopted for further analysis. PWC results showed the coherence of AO +Po-
based MDS significantly increased after eliminating the Nino Eastern Pacific index (NEP) influence,
with the main resonance period of 6.56~18.56 year. This study clearly demonstrated that corrected
precipitation data should be used to improve the accuracy of drought assessments, climate models,
eco-hydrological models, etc.

Keywords: wet and dry spells; original and corrected precipitation; spatiotemporal change;
large-scale circulation indices; Southwest China

1. Introduction

Climate warming is intensifying the global water cycle, strengthening the contrast
between wet and dry seasons, and increasing the intensity while decreasing the frequency
of sub-seasonal precipitation [1–4]. Wet/dry spells, or periods of consecutive rainy/rainless
days, respectively, can be used to represent the weather patterns of a region [5]. Large
anomalies in the occurrences and durations of wet/dry spells can have large impacts on
hydrological extremes as well as vegetation growth and food production [4–7]. Therefore,
characterizing the evolution and causes of wet/dry spells is central to understanding,
anticipating extreme hydrological events, and managing climate-related risks [8]. High
spatiotemporal variability in wet/dry spells has been observed in Southern Africa [6], North
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America [7], South Asia [8], Europe [9], Mediterranean countries [10], the western Ama-
zon [11], Northern Ghana [12], and India [13], among others. This has also been observed
in some regions across China, with studies showing increased dry spells in Mainland
China [14], prolongations in the maximum consecutive wet days in North China dur-
ing winter [15], downward trends in heavy precipitation days in Southwest China [16],
increased in consecutive extreme dry days in the Yangtze River region [17], increased
frequency of 2~5-day wet spells in the Pearl River basin [18], decreasing/increasing trends
in wet/dry spells in the Sichuan basin [19], decreases/increases in wet/dry spells in the
South Mongolian Plateau [20], and so on. Furthermore, Wang et al. [20] focused on the
alternating frequency between wet and dry spells in the South Mongolian Plateau by using
the F(w-w), F(d-d), F(w-d), and F(d-w) indices, and they found that the frequencies of
wet-to-dry spells and dry-to-wet spells were both low and tended to decrease due to the
increases in continuous dry days. By defining wet and dry spells on annual scales, most
recent studies have provided useful information about the spatial variability and temporal
trends in wet and dry spells and improved their stochastic modeling. Furthermore, changes
in wet and dry spells have been linked to low frequency large-scale oscillations such as the
El Nino Southern Oscillation (ENSO), which are closely related to human influence, and
changes in land-use resulting from anthropogenic invasion [6,16,19,21,22].

Accurate gauge-measured precipitation data is critical to climate and hydrological
research. In the 19th century, liquid precipitation measurement gauges were evaluated
in St. Petersburg, and it was determined that the gauges underestimated the actual pre-
cipitation [23]. This means it is necessary to conduct bias corrections before using gauge-
measured precipitation data in meteorological research and hydrological research [24–29].
Original precipitation (Po) and corrected precipitation (Pc) data exhibit obvious differ-
ences when analyzed for precipitation amounts, change trends, intensities, and regional
differences [24,27,30,31]. For example, Li et al. [24] concluded that the required correction
amounts for annual precipitation were less than 100 mm in northwestern China, but more
than 150 mm in southeastern China. Zhang et al. [27] found that annual precipitation
amounts and intensities increased by varying degrees after precipitation bias correction,
with the maximum percentage increase being about 35%. Ding et al. [30] found that
the monthly/annual trends of Pc were stronger than those in the Po data. Despite the
recognition of the bias in gauge-measured precipitation, most recent wet and dry spell
studies use Po at various timescales or in different regions, which may lead to erroneous
conclusions [5,7,19,20,32].

Southwest China is a typical climate-sensitive region and fragile ecological area that
has a complex meteorological environment due to the tropical ocean effect, low latitudes,
and highly variable topography [33]. However, little is known about the spatiotempo-
ral variability in wet/dry spells in Southwest China. To date, only the study by Huang
et al. [19] has investigated changes in wet and dry spells from 1961–2008 in Sichuan
Province, Southwest China, but their work was based on Po data and no research has
compared Po and Pc data when examining changes in wet and dry spells in this region.
Therefore, it is important to investigate the effects of bias correction on the spatial and tem-
poral characteristics of wet/dry spells, as well as on the responses to large-scale circulation
anomalies, to better understand regional climate extremes. The aims of this study were as
follows: (1) to compare the spatial and temporal variability in wet and dry spells based on
Po and Pc; and (2) to reveal how Po- and Pc-based wet/dry spells correlate with large-scale
circulation patterns.

2. Data and Methods
2.1. Study Area

Southwest China (20~35◦ N, 98~110◦ E) lies between China’s first altitudinal step—the
Tibetan Plateau (≥4000 m above sea level, hereafter m)—and the third step, the middle-
lower Yangtze Plain (≤500 m); the regional elevation generally increases from the southeast
to the northwest [34]. Using geomorphic classifications, the region can be partitioned into
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three sub-regions: the Sichuan Basin, the Hengduan Mountains, and the Yunnan-Guizhou
Plateau (Figure 1). The Sichuan Basin is ringed by mountains ranging from 1000~3000 m
in elevation and the floor of the basin is at an average elevation of 500 m; Hengduan
mountains are an important part of the longitudinal ridge valley area with a 300~6000 m
elevation range; Yunnan-Guizhou Plateau is known for its limestone karst landscape and
has an average elevation of 2000 m [35,36]. The climate is driven by the East Asian monsoon
and the Indian monsoon, and altitudinal climates range from subtropical to temperate,
alpine, and frigid [33,37,38]. Across this expansive region, the mean precipitation varies
strongly depending on the geographical region [36].
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Figure 1. The locational distribution of weather stations in Southwest China.

2.2. Data Sets

Daily precipitation data from 264 weather stations covering 1961–2019 were obtained
from the National Climate Center (NCC) of the China Meteorological Administration
(CMA) (Figure 1). Weather stations were selected according to three criteria: (1) the
observation period should cover 1961–2019 to facilitate the comparison of results across
the whole study area; (2) stations missing >5% of the data during the observation period
were excluded, otherwise missing data from a station were filled in using the average
value of the preceding 2 days from that station; and (3) stations with a straight-line site
migration distance exceeding 20 km or a vertical site migration distance exceeding 100 m
were removed [39]. Overall, 26 of the 290 sites were removed from this study to ensure that
missing data and weather station relocation did not impact the results.

The large-scale circulation indices (LSCIs) used in this paper were acquired from the
NOAA Earth System Research Laboratories (https://www.esrl.noaa.gov/ accessed on
2 May 2022), National Climate Center (China, http://ncc-cma.net/cn/ accessed on 2 May
2022), and Li’s Monsoon index data set (http://lijianping.cn/dct/page/1 accessed on
2 May 2022). The LSCIs are shown in Table 1.

2.3. Methods
2.3.1. Definition of Wet and Dry Spells

According to Expert Team on Climate Change Detection and Indices (ETCCDI), if the
daily precipitation ≥1 mm, the day is considered as a wet day; otherwise, it is regarded as
a dry day [40]. The wet/dry spells with length x is defined as a period of x consecutive
wet/dry days, the minimum length of the single wet/dry spells are both 1 day [19,41].
To comprehensively quantify the spatial and temporal characteristics of wet/dry spells,
based on four aspects of wet/dry spells frequency, extremes, structural characteristics, and
conversion frequency (i.e., wet spell interrupts to dry spell or dry spell interrupts to wet
spell), 9 wet/dry spell indices were selected, with a total of 18 indices, as shown in Table 2.

https://www.esrl.noaa.gov/
http://ncc-cma.net/cn/
http://lijianping.cn/dct/page/1
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Table 1. Large-scale circulation indices (LSCIs) used in the study.

LSCIs Abbreviations

Northern Hemisphere Subtropical High Area Index NHSHA
Indian Subtropical High Area Index ISHA

Western Pacific Subtropical High Area Index WPSHA
Northern Hemisphere Subtropical High Intensity Index NHSHI

Indian Subtropical High Intensity Index ISHI
Western Pacific Subtropical High Intensity Index WPSHI

Asia Polar Vortex Area Index APVA
Pacific Polar Vortex Area Index PPVA

Asia Polar Vortex Intensity Index APVI
Pacific Polar Vortex Intensity Index PPVI

Tibet Plateau Region 1 Index TP1
Tibet Plateau Region 2 Index TP2

Arctic Oscillation AO
North Atlantic Oscillation NAO
Nino Eastern Pacific index NEP
Nino Central Pacific index NCP

Tropic Indian Ocean Dipole Index TDO
Southern Oscillation Index SOI

South Asian Summer Monsoon Index SASMI
East Asian Summer Monsoon Index EASMI

Table 2. Definition of wet and dry spell indices.

Type Indices Definitions Units

Wet spell

NWS Number of wet spells Events
MWS Mean length of wet spells Days

MPWS Annual maximum precipitation of wet spells mm
MLWS Annual maximum length of wet spells Days

PWS95
Total precipitation amount of extreme wet spells (an extreme wet

spell can be defined as a wet spell with the days exceeding
95th percentile of length of WS during a year)

mm

FWW Fractional contribution of times when a wet day is preceded by a
wet day to the annual days %

FDW Fractional contribution of times when a wet day is preceded by a
dry day to the annual days %

OWS Occurrence frequency of wet spells with different durations %

CWS Fractional contribution of wet spells with different durations to the
annual total precipitation amount %

Dry spell

NDS Number of dry spells Events
MDS Mean length of dry spells Days

MLDS Annual maximum length of dry spells Days

NLDS Annual number of long dry spells (annual number of dry spells
with length ≥30 days) Events

DDS95
Total days of extreme dry spells (an extreme dry spell can be

defined as a dry spell with the days exceeding 95th percentile of
length of DS during a year)

Days

FWD Fractional contribution of times when a dry day is preceded by a
wet day to the annual days %

FDD Fractional contribution of times when a dry day is preceded by a
dry day to the annual days %

ODS Occurrence frequency of dry spells with different durations %

CDS Fractional contribution of dry spells with different durations to the
annual total dry days %
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2.3.2. Precipitation Bias Correction Method

Bias correction for Po mainly accounts for wetting losses (Pw), evaporation losses (∆Pe),
trace precipitation (∆Pt), and wind under-catch errors (∆Pw) [27]. The general formula for
precipitation bias correction was modified as follows [42]:

Pc = K(Po + ∆Pe + ∆Pt + ∆Pw) (1)

where Po is the gauge-measured precipitation; K(≥ 1) is the correction coefficient for wind-
induced errors, defined as K = 1/CR; ∆Pt is trace precipitation, set at =0.1 mm in this re-
search [24]; and ∆Pw is wetting loss of the bucket, when Po > 0.1 mm,
∆Pw = 0.30 mm for daily Tm < −2 ◦C, ∆Pw = 0.29 mm for Tm > 2 ◦C, and ∆Pw = 0.23 mm for
−2 ◦C ≤ Tm ≤ 2 ◦C [26]. Considering the difficulty of direct monitoring and small value of
∆Pe, no correction for ∆Pe was made here [24,26,43].

CRs = exp(−0.056Ws) , Tm < −2 ◦C (2)

CRr = exp(−0.041Ws) , Tm > 2 ◦C (3)

CRm = CRs − (CRs − CRr)× (Td + 2)/4 , −2 ◦C ≤ Tm ≤ 2◦C (4)

where CRs, CRr, and CRm are the catch ratios for snow, rain, and mixed precipitation,
respectively; Ws is the wind speed at 10 m height (m/s); Tm is the daily average temperature;
and Td is the corrected Tm, where Tm < −2 ◦C is snowfall (Td = −2 ◦C), Tm > 2 ◦C is rainfall
(Td = 2 ◦C); and −2 ◦C ≤ Tm ≤ 2 ◦C is mixed precipitation (Td = Tm).

In this paper, the trend relative errors of wet/dry spell indices were calculated using
the following formula:

Trendrelative−error = (TrendPc − TrendPo)/TrendPo × 100% (5)

2.3.3. Other Methods

The trend analysis adopted Sen’s slope + modified Mann–Kendall [44,45] and Spear-
man correlation [46] to reveal the correlations between wet/dry spell indices and LSCIs.
Based on the Spearman correlation analysis, wavelet transform coherence (WTC) and
partial wavelet coherence (PWC) were used to further analyze the relationship between
wet/dry spell indices and LSCIs, with 3000 Monte Carlo simulations to calculate the aver-
age wavelet coherence value (AWC) and significant coherence area percentage (%, PASC)
of wet/dry spell indices and LSCIs, and to calculate the wavelet significant coherence
area difference (%, PASCG) according to PWC PASC and WTC PASC. If PASCG ≥ 5%, the
interpretation degree of LSCI1 to the wet/dry spell indices under the influence of eliminat-
ing variable LSCI2 is considered effective [47]. For more details, please see Torrence and
Compo [48], Grinsted et al. [49,50], Hu and Si [47], and Ng and Chan [51].

3. Results
3.1. Spatial and Temporal Variability in Wet and Dry Spell Indices
3.1.1. Temporal Variability

As shown in Table 3, the Po- and Pc- based MWS, MLWS, MPWS, PWS95, and FWW all
exhibited significant decreasing trends, FDW exhibited a significant increasing trend, and
only NWS had no significant trend, but it did appear to decrease. Compared with Po-based
trends, the Pc-based trends in NWS, MWS, MLWS, MPWS, PWS95, FWW, and FDW were
all more pronounced with slope relative error of 2.51~41.44%. In the Sichuan Basin, the
Po- and Pc-based MWS, MLWS, PWS95, and FWW tended to decrease significantly and
FDW tended to increase significantly, while NWS and MPWS had no significant change
but appeared to decrease. The Pc-based trends in the NWS had slope relative errors that
were −62.34% of the Po-based trends, while the trends in MWS, MLWS, MPWS, PWS95,
FWW, and FDW became more pronounced with slope relative error of 6.45~60.39%. In the
Hengduan Mountains, Po- and Pc-based MWS and MLWS tended to significantly decrease,
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while all others had no significant trends, but NWS and FDW appeared to increase and
MPWS, PWS95, and FWW appeared to decrease. The Pc-based trends of NWS and MLWS
diminished with slope relative error of −22.22~−13.46%, while the changes in MWS,
MPWS, PWS95, FWW, and FDW were more pronounced with slope relative errors of
17.21~114.71%. In the Yunnan-Guizhou Plateau, Po- and Pc-based MWS, MLWS, PWS95,
and FWW significantly decreased and FDW significantly increased, while NWS and MPWS
showed no significant change but appeared to decrease. The Pc-based trend in NWS was
weaker than its Po-based trend, with a slope relative error of −17.83%, the trends in MWS,
MLWS, MPWS, PWS95, FWW, and FDW became more pronounced when Pc-based, with
slope relative errors of 14.44~27.14%.

Table 3. Slopes and slope relative errors in wet/dry spell indices using corrected (Pc) and original
(Po) precipitation data during 1961–2019 in Southwest China.

Southwest China Sichuan Basin Hengduan Mountains Yunnan-Guizhou Plateau

Slope (Decade) Relative
Error (%) Slope (Decade) Relative Error

(%) Slope (Decade) Relative
Error (%) Slope (Decade) Relative

Error (%)

NWS −0.15 (−0.15) 2.51 −0.05 (−0.02) −62.34 0.21 (0.17) −22.22 −0.25 (−0.2) −17.83
MWS −0.02 * (−0.03 *) 18.50 −0.02 * (−0.02 *) 28.32 −0.01 * (−0.02 *) 17.21 −0.03 * (−0.04 *) 19.25

MLWS −0.21 * (−0.27 *) 28.68 −0.18 * (−0.22 *) 23.53 −0.11 * (−0.09 *) −13.46 −0.29 * (−0.35 *) 19.85
MPWS −2.1 * (−2.97 *) 41.44 −1.73 (−2.77) 60.39 −0.57 (−0.66) 15.95 −2.7 (−3.35) 24.17
PWS95 −5.46 * (−6.62 *) 21.22 −5.21 * (−8.08 *) 55.10 −0.76 (−1.13) 47.34 −5.6 * (−7.12 *) 27.14
FWW −0.37 * (−0.47 *) 27.26 −0.3 * (−0.37 *) 21.20 −0.1 (−0.14) 33.20 −0.49 * (−0.61 *) 24.34
FDW 0.48 * (0.56*) 14.56 0.36 * (0.38 *) 6.45 0.06 (0.14) 114.71 0.64 * (0.73 *) 14.44
NDS −0.13 (−0.13) −2.78 −0.05 (−0.03) −39.69 0.24 (0.18) −25.00 −0.23 (−0.22) −3.45
MDS 0.07 * (0.07 *) 1.49 0.03 (0.03) 2.16 0.02 (0.03) 35.52 0.1 * (0.09 *) −3.19

MLDS 0.51 (0.52) 2.99 0.13 (0.17) 36.90 0.22 (0.2) −6.62 0.83 (0.92 *) 11.20
NLDS −0.03 (−0.15 *) 351.53 −0.03 (−0.07) 183.20 −0.06 * (−0.23 *) 266.34 −0.08 * (−0.23 *) 201.86
DDS95 0.53 (0.67 *) 25.98 0.29 (0.4) 37.56 0.88 (0.73) −16.67 0.87 (1.14) * 30.69
FWD −0.04 (−0.04) 3.27 −0.01 (0.01) 151.57 0.06 (0.05) −17.64 −0.06 (−0.05) −13.96
FDD −0.04 (−0.04) −1.54 −0.02 (−0.01) −40.29 0.06 (0.05) −21.37 −0.06 (−0.06) 0.56

Note: * indicates |Z value| ≥ 1.96.

As shown in Table 3, Po- and Pc-based MDS and Pc-based DDS95 showed significant
increasing trends; Pc-based NLDS showed a significant decreasing trend; Po- and Pc-based
NDS, FWD, and FDD and Po-based NLDS showed no significant change but appeared
to decrease; Po- and Pc-based MLDS and Po-based DDS95 showed no significant change
but appeared to increase. Pc-based trends in NDS and FDD were less obvious than Po-
based, with slope relative errors of −2.78~−1.54%, while the trends in MDS, MLDS, NLDS,
DDS95, and FWD became more pronounced with slope relative errors of 1.49%, 2.99%,
351.53%, 25.98%, and 3.27%, respectively. In the Sichuan Basin, none of the Po- and Pc-
based dry spell indices tended to change significantly, but the Po- and Pc-based NDS,
NLDS, FDD and Po-based FWD appeared to decrease, and the Po- and Pc-based trends
in MDS, MLDS, DDS95, Pc-based FWD appeared to increase. Pc-based trends in NDS
and FDD were less pronounced compared to Po-based trends, with slope relative errors
of −40.29~−39.69%, respectively, while those the trends in MDS, MLDS, NLDS, DDS95
became more obvious with slope relative errors of 2.16%, 36.9%, 183.2%, and 37.56%, and
FWD showed the opposite trend. In the Hengduan Mountains, the Po- and Pc-based
NLDS exhibited significant decreasing trends, while NDS, MDS, MLDS, DDS95, FWD, and
FDD exhibited no significant changes but appeared to increase. The Pc-based trends in
NDS, MLDS, DDS95, FWD, and FDD were less pronounced than the Po-based, with slope
relative errors of −25%, −6.62%, −16.67%, −17.64%, and −21.37%, respectively, while
those of MDS and NLDS became more obvious, with slope relative errors of 35.52% and
266.34%. In the Yunnan-Guizhou Plateau, the Po- and Pc-based MDS and Pc-based MLDS
and DDS95 exhibited significant increasing trends, Po- and Pc-based NLDS exhibited
significant decreasing trends, Po- and Pc-based NDS, FWD, and FDD did not significantly
change but appeared to decrease, and Po-based MLDS and DDS95 did not significantly
change but appeared to increase. The Pc-based trends of NDS, MDS, and FWD were less
pronounced than their Po-based trends, with slope relative errors of −3.45%, −3.19%, and
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−13.96%, respectively, while MLDS, NLDS, DDS95, and FDD became more obvious with
slope relative errors of 11.2%, 201.86%, 30.69%, and 0.56%.

Figure 2 shows OWS and CWS of the study area, which reflect relative proportions
and rainfall contribution rates of different lengths of wet spells, respectively. Pc-based OWS
identified longer wet spells than Po-based, with maximum durations extended from 44 to
62 days (Figure 2a). In the Sichuan Basin, Hengduan Mountains, and Yunnan-Guizhou
Plateau, the maximum durations of wet spells were extended from 18 to 32 days, 28 to
32 days, and 44 to 62 days, respectively (Figure 2b–d). This was because more 1-day wet
spells were combined into longer wet spells.
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After precipitation correction, correspondingly, Pc-based CWS with short wet spells
(1–3 days) were lower with differences of −2.42~−0.23%, while middle length and long
wet spells (≥4 days) were generally higher, with the maximum difference reaching 0.59%
compared with Po-based CWS (Figure 2e). In the Sichuan Basin, Pc-based CWS with
1–2-day wet spells were lower than Po-based, with differences of −2.57~−1.34%, and wet
spells >3 days were higher than Po-based, with the maximum difference reaching 0.76%
(Figure 2f). In the Hengduan Mountains and Yunnan-Guizhou Plateau, Pc-based short wet
spells were lower than Po-based, with differences of −2.28~−0.68% and −2.37~−0.4%,
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while Pc-based middle-length and long wet spells were both higher than Po-based, with
maximum differences reaching 0.54% and 0.58%, respectively (Figure 2g,h).

Figure 3 shows the trends in characteristics of OWS and CWS with different duration
wet spells. Po- and Pc-based OWS trends with 1–17-day wet spells identified. Po- and
Pc-based OWS with 1-day wet spells tended to increase significantly, while 5–15-day wet
spells tended to significantly decrease (Figure 3a). In the Sichuan Basin (Figure 3b), Pc-
based OWS with 5-, 10-, and 12-day wet spells and Po- and Pc-based OWS with 6-, 7-, and
11-day wet spells tended to significantly decrease. In the Hengduan Mountains (Figure 3c),
Pc-based OWS with 1-day wet spells tended to significantly increase, Po-based OWS with
6- and 12-day wet spells and Po- and Pc-based OWS with 6-day wet spells tended to
significantly decrease. In the Yunnan-Guizhou Plateau (Figure 3d), Po- and Pc-based OWS
with 1–2-day wet spells tended to significantly increase, with 3–15–day wet spells generally
tending to significantly decrease. As shown in Figure 3e, The Po-based trends in CWS with
1–18-day wet spells and Pc-based CWS trends with 1–20-day wet spells were also examined.
Po- and Pc-based CWS with 1–3-day wet spells tended to significantly increase, but with
1–18-day wet spells tended to significantly decrease. In the Sichuan Basin (Figure 3f),
Po- and Pc-based CWS with 2-day wet spells tended to significantly increase, while Po-
and Pc-based CWS with 5-, 6-, 10-, and 11-day wet spells, Po-based CWS with 8-day wet
spells, and Pc-based CWS with 12-day wet spells tended to significantly decrease. In the
Hengduan mountain (Figure 3g), Po- and Pc-based CWS with 1–3-day wet spells tended to
significantly increase, while Po- and Pc-based CWS with 5–12-day wet spells and Po-based
CWS with 6–8-day wet spells tended to significantly decrease. In the Yunnan-Guizhou
Plateau (Figure 3h), Po- and Pc based CWS with 1–3-day wet spells tended significantly
increase, but with 5–16-day wet spells they tended to significantly decrease.

Figure 4 shows the ODS and CDS with different duration dry spells, which reflect
proportion and dry-day contribution rates, respectively. The ODS identified shorter dry
spells when using Pc-based data than Po-based, with the maximum dry spell duration
being shortened from 191–195 to 171–175 days (Figure 4a). In the Sichuan Basin, Hengduan
Mountains, and Yunnan-Guizhou Plateau, the maximum durations were shortened from
131–135 to 121–125 days, 191–195 to 171–175 days, 126–130 to 116–120 days, respectively
(Figure 4b–d). Correspondingly, Pc-based CDS with short dry spells (1–5 days) were higher
than Po-based with differences of 2.06%, while Pc-based CDS with middle-length and
long dry spells (≥6 days) were generally lower with maximum differences reaching 0.74%
(Figure 4e). In the Sichuan Basin, Hengduan Mountains, and Yunnan-Guizhou Plateau,
Pc-based CDS with short dry spells were higher by 2.41%, 1.54%, and 2.14% than Po-based,
while Pc-based CDS with middle-length and long dry spells were lower with maximum
differences reaching 0.94%, 0.3%, and 0.71%, respectively (Figure 4f–h).

Figure 5 shows the trends in ODS and CDS with different durations of dry spells. As
shown in Figure 5a, Po- and Pc-based ODS trends with 1–80-day dry spells were identified.
Po- and Pc-based ODS with 1–5-day dry spells and Po-based ODS with 46–50-day dry
spells tended to significantly decrease. In the Sichuan Basin (Figure 5b), almost no Po-
and Pc-based ODS trends with apparent differences passed the significance test. In the
Hengduan Mountains (Figure 5c), Po- and Pc-based ODS with 11–15-day dry spells tended
to significantly decrease, but with 46–50-day dry spells they tended to significantly increase.
In the Yunnan-Guizhou Plateau (Figure 5d), Po- and Pc-based ODS with 1–5-day dry spells
tended to significantly decrease, with 46–50-day dry spells tending to significantly increase.
As shown in Figure 5e, Po- and Pc-based CDS with 1–80-day dry spells were identified,
but only with 1–5-day dry spells did they pass the significant test. In the Sichuan Masin
(Figure 5f), none of the Po- and Pc-based CDS with different duration dry spells passed
the significant test. In the Hengduan Mountains (Figure 5g), Po- and Pc-based CDS with
16–20-day dry spells, Pc-based CDS with 11–15-day dry spells, and Po-based CDS with
31–35-day dry spells tended to significantly decrease, while Po- and Pc-based CDS with
46–50-day dry spells tended to significantly increase. In the Yunnan-Guizhou Plateau
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(Figure 5h), Po- and Pc-based CDS with 1–5-day dry spells tended to significantly decrease,
while Po-based CDS with 6–10-day dry spells tended to significantly increase.
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3.1.2. Spatial Variability

As shown in Figure 6, the spatial distributions of the annual mean wet spell indices
identified using Pc were generally consistent with those identified using Po. The MWS
generally increased from east to west. MWS and MLWS decreased from west to east. MPWS
and PWS95 decreased from southeast to northwest. FWW was higher in the Hengduan
Mountains, as well as in the eastern region of the Yunnan-Guizhou Plateau and the south-
west edge of Yunnan-Guizhou Plateau, but lower in the Sichuan Basin and the middle of
the Yunnan-Guizhou Plateau. FDW was higher in the Hengduan Mountains, northwest
Sichuan Basin, and western central Yunnan-Guizhou Plateau, but lower in southwest and
east Yunnan-Guizhou Plateau and south Sichuan Basin. Before and after precipitation cor-
rection, NWS, MWS, MLWS, MPWS, PWS95, and FWW showed increases at 60.61~91.29%
of stations, while the trends at 2.65~21.69% of stations were reversed after precipitation
correction; FDW showed decreases at 85.61~88.26% of stations, and about 3.03% of the
stations had opposite trends after precipitation correction. After precipitation correction,
NWS, MWS, MLWS, MPWS, PWS95, and FWW tended to significantly decrease at 6.82%,
40.91%, 32.2%, 12.12%, 17.05%, and 54.17% of stations, respectively, with differences of
−1.89%, 6.06%, 2.65%, 2.65%, 6.82%, and 6.06% compared with Po. FDW tended to sig-
nificantly decrease at 43.94% of stations, which were mainly located in the Sichuan Basin
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and Yunnan-Guizhou Plateau, with a difference of 6.82% compared with Po. NWS, MWS,
MLWS, MPWS, PWS95, and FWW tended to significantly increase at 3.03%, 0.38%, 0.38%,
2.27%, 0.76%, and 1.14% of stations, with differences of −0.76%, 0.38%, 0.38%, 0.75%,
−0.76%, and 0 compared with Po, while FDW tended to significantly decrease at 2.65% of
stations, which were concentrated in the northern part of Southwest China and especially
in the northern Hengduan Mountains, with a difference of −0.38% compared with Po.

Water 2022, 14, x FOR PEER REVIEW 10 of 22 
 

 

 
Figure 4. Occurrences (ODS, a–d) and fractional contributions (CDS, e–h) of dry spells of different 
durations for corrected (Pc) and original (Po) precipitation data during 1961–2019 in Southwest 
China. 

Figure 5 shows the trends in ODS and CDS with different durations of dry spells. As 
shown in Figure 5a, Po- and Pc-based ODS trends with 1–80-day dry spells were identi-
fied. Po- and Pc-based ODS with 1–5-day dry spells and Po-based ODS with 46–50-day 
dry spells tended to significantly decrease. In the Sichuan Basin (Figure 5b), almost no Po- 
and Pc-based ODS trends with apparent differences passed the significance test. In the 
Hengduan Mountains (Figure 5c), Po- and Pc-based ODS with 11–15-day dry spells 
tended to significantly decrease, but with 46–50-day dry spells they tended to significantly 
increase. In the Yunnan-Guizhou Plateau (Figure 5d), Po- and Pc-based ODS with 1–5-day 
dry spells tended to significantly decrease, with 46–50-day dry spells tending to signifi-
cantly increase. As shown in Figure 5e, Po- and Pc-based CDS with 1–80-day dry spells 
were identified, but only with 1–5-day dry spells did they pass the significant test. In the 
Sichuan Masin (Figure 5f), none of the Po- and Pc-based CDS with different duration dry 
spells passed the significant test. In the Hengduan Mountains (Figure 5g), Po- and Pc-
based CDS with 16–20-day dry spells, Pc-based CDS with 11–15-day dry spells, and Po-
based CDS with 31–35-day dry spells tended to significantly decrease, while Po- and Pc-
based CDS with 46–50-day dry spells tended to significantly increase. In the Yunnan-Gui-
zhou Plateau (Figure 5h), Po- and Pc-based CDS with 1–5-day dry spells tended to signif-
icantly decrease, while Po-based CDS with 6–10-day dry spells tended to significantly in-
crease. 

Figure 4. Occurrences (ODS, a–d) and fractional contributions (CDS, e–h) of dry spells of different
durations for corrected (Pc) and original (Po) precipitation data during 1961–2019 in Southwest China.

As shown in Figure 7, the spatial distributions of the annual mean dry spell indices
identified by Pc were generally consistent with Po: NDS, FWD, and FDD generally showed
distributions that decreased from east to west; MDS, MLDS, NLDS, and DDS95 generally
showed distributions with high values in the west and low in the east. After precipitation
correction, NDS, NLDS, FWD, and FDD showed increases at 59.85~70.08% of stations and
decreases at 26.89~38.26% of stations, and the trends at about 12.12~21.97% of stations were
reversed compared with Po. MDS, MLDS, and DDS95 showed increases at 62.12~82.58%
of stations and decreases at 17.05~34.85% of stations, and the trends at about 6.82~19.69%
of stations were reversed compared with Po. After precipitation correction, NDS, FWD,
and FDD showed significant decreases at 6.44%, 19.7%, 6.06%, and 7.95% of stations, MDS,
MLDS, and DDS95 showed significant increases at 25%, 9.09%, 9.47% of stations, and
most of the significantly changed stations were located in the Sichuan Basin and Yunnan-
Guizhou Plateau, with differences of −2.65%, −3.03%, −1.9%, 3.03%, 1.14%, and 3.03%
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compared to Po. Moreover, NDS, FWD, and FDD showed significant increases at 3.41%,
3.03%, and 3.41% of stations, which were concentrated in the northern part of Southwest
China, with differences of 0, −0.38%, and 0.76% compared to Po; and MDS, MLDS, and
DDS95 showed significant decreases at 1.14%, 3.03%, and 1.52% of stations, which were
concentrated in the northeast part of Southwest China, with differences of 0.38%, 1.51%,
and 1.14% compared to Po. NLDS was different, 19.7% of stations showed significant
decreases, with most concentrated in the Hengduan Mountains and the eastern part of
Yunnan-Guizhou Plateau, with an average difference of 7.9% compared with Po; few sites
tended to show significant increases.
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Figure 6. Spatial characteristics of wet spell indices NWS (a), MWS (b), MLWS (c), MPWS (d),
PWS95 (e), FWW (f), FDW (g) for corrected (Pc) and original (Po) precipitation data during 1961–2019
in Southwest China. In the legend display, outside the bracket is the multi-year average value of the
Pc-based wet spell indices, and inside the bracket is the multi-year average value of the Po-based wet
spell indices.
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Figure 7. Spatial characteristics of dry spell indices NDS (a), MDS (b), MLDS (c), NLDS (d), DDS95 (e),
FWD (f), FDD (g) for corrected (Pc) and original (Po) precipitation data during 1961–2019 in Southwest
China. In the legend display, outside the bracket is the multi-year average value of the Pc-based dry
spell indices, and inside the bracket is the multi-year average value of the Po-based dry spell indices.

The trends in wet and dry spell indices were assessed within different altitude ranges
(500 m intervals) (Figures 6 and 7). After precipitation correction, the differences in trends
of wet/dry spell indices at different altitudes were generally more pronounced. For most
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wet (except MWS, MLWS, and FWW) and dry (except NLDS) spell indices in the 2186–
2686 m or 2686–3186 m altitude ranges, the trends were reversed (i.e., negative to positive
or positive to negative) (Figure 6a,d,e,g; Figure 7a–c,e–g). The trends in MWS (NLDS)
increased (decreased) initially and then decreased (increased) with altitude; the MLWS
(FWW) trends decreased (increased) with altitude (Figure 6b,c,f; Figure 7d).

3.2. Correlations between Wet and Dry Spell Indices and Large-Scale Circulation Indices
3.2.1. Spearman Correlation Analysis

After precipitation correction (Figure 8a,b), MWS, MLWS, FWW, MPWS, PWS95,
FWW, FDW, MDS, and NLDS were significantly correlated with at least one large-scale
circulation index (LSCI), but NWS, NDS, and MLDS were not. Compared with before pre-
cipitation correction, PWS95, FDW, MDS, and NLDS increased by 3, 1, 2, and 9 significantly
related LSCIs, respectively, including PPVA, PPVI, TP1, ISHI, ISHA, APVA, TP2, NEP, NCP,
and SOI.
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In the Sichuan Basin (Figure 8c,d) after precipitation correction, MWS, MLWS, MPWS,
PWS95, FWW, FDW, MDS, MLDS, NLDS, and DDS95 were significantly correlated with
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at least one LSCI, but NWS, NDS, FWD, and FDD were not. Compared with the before
precipitation correction, MLWS, MPWS, PWS95, FWW, FDW, MDS, and MLDS increased
by 1, 1, 1, 1, 2, 1, and 1, significantly related LSCIs, respectively, which included PPVA, NCP,
TP2, APVA, WPSHA, WPSHI, TP1, and TP2. PWS95 deceased by 1 significantly related
LSCI (NCP).

In the Hengduan Mountains (Figure 8e,f) after precipitation correction, only MWS,
MDS, and NLDS were significantly correlated with at least one LSCI. Compared with
before precipitation correction, MWS and NLDS increased by 5 and 1 significantly related
LSCIs, including ISHA, ISHI, WPSHI, TP1, TP2, and PPVI; PWS95 and MDS decreased by
1 and 2 significantly related LSCIs, including AO, NEP, and TDO.

In the Yunnan-Guizhou Plateau (Figure 8g,h) after precipitation correction, MWS,
MLWS, MPWS, PWS95, FWW, FDW, MDS, MLDS, NLDS, and DDS95 were significantly
correlated with at least one LSCI. Compared with before precipitation correction, FWW,
FDW, MDS, MLDS, and NLDS increased by 1, 2, 1, 1, and 5 significantly related LSCIs,
including NCP, ISHI, PPVA, SASMI, ISHA, APVA, PPVI, and NCP; MWS and NLDS both
decreased by 1 significantly related LSCIs, and both were NAO.

In summary, the wet and dry spell indices based on Pc were significantly correlated
with more LSCIs compared to those based on Po. This was due to the increased strength of
the overall absolute correlation coefficients (i.e., >0.15) of wet and dry spell indices with
LSCIs when based on Pc (Figure 8i).

3.2.2. Wavelet Transform Coherence (WTC) and Partial Wavelet Coherence (PWC) Results

Based on Spearman results, the wet/dry spell indices that were significantly related to
the most LSCIs before and after precipitation correction were selected as examples to further
analyze the periodic resonance between wet/dry spell indices and LSCIs which shows
the highest possible degree of interpretation. Figure 9 shows the WTC results, Po-based
MWS + SASMI showed a significant phase-consistent high-energy positive coherence at
a period of 2.13~2.2 year between 1969–1996, but it was not continuous, and after 1990
the resonance period was 3.68~7.8 year (Figure 9a). Pc-based MWS + SASMI showed a
similar resonance period to Po-based MWS + SASMI, but before 1990 the resonance period
was 10.41~12.13 year, additionally (Figure 9c). Po-based MDS + AO showed a negative
coherence period of 2.19~4.38 year before 1990 and 5.11~10.41 year during the whole
study period (Figure 9b). Pc-based NLDS + APVI showed a positive coherence period of
11.03~18.56 year during the whole study period and 2.75~6.74 year after 2006 (Figure 9d).

The aforementioned analysis revealed the possible effects of LSCI on wet/dry spell
indices via WTC analysis. However, it should be highlighted that their effects may only
be apparent because of cross-correlations between the LSCIs themselves [52]; thus, PWC
must be used to detect the degree of interpretation of the LSCIs towards the wet/dry spell
indices under conditions wherein the partial correlations between LSCIs are eliminated. As
shown in Figure 10a, Po-based MWS + (SASMI-TP2; i.e., when the possible influence of TP2
is eliminated from SASMI), Pc-based MWS + (SASMI-TP1), Po-based MDS + (AO-NEP),
and Pc-based NLDS + (APVI-PPVI) had the maximum coherence areas. Po-based MWS +
(SASMI-TP2) showed a positive coherence at a period of 2.08~2.49 year in 1966–1998, but it
was not continuous, and a period of 2.9~7.94 year after 1984. Pc-based MWS + (SASMI-TP1)
showed a similar coherence period to Po-based MWS + (SASMI-TP2) (Figure 10c). Po-based
MDS + (AO-NEP) showed a negative coherence period of 6.56~18.56 year, and 1.04~2.07
year, but was discontinuous throughout the study period (Figure 10b). Pc-based NLDS +
(APVI-PPVI) showed a positive coherence period of 3.9~4.62 year, but it was not continuous
and a period of 12.38~19.95 year during the whole time (Figure 10d).
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indicates negative phase coherence, and the darker the color, the stronger the negative coherence.
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Figure 10. Partial wavelet coherence (PWC) of the MWS (Po, Pc) (a,c), MDS (Po) (b), and NLDS (Pc)
(d) during 1961–2019 in Southwest China. The thick, black solid line represents the 5% significance
level against red noise background. The gray areas with square grids indicate the cones of influence
(COI), which may be influenced by edge effects. The direction of an arrow indicates the phase angle,
and the arrow to the right indicates the positive coherence of the same phase. The arrow to the left
indicates negative phase coherence, and the darker the color, the stronger the negative coherence.

From the observations by Hu et al. [53], eliminating the effects of an additional factor
can be considered significant when it results in an >5% increase in the significant coherence
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area of the wavelet. Only AO was most effective in explaining Po-based MDS when the
possible influence of NEP was eliminated (Table 4).

Table 4. Average wavelet coherence value (AWC) and significant coherence area percentage (PASC)
for the wavelet transform coherence (WTC) and partial wavelet coherence (PWC).

Methods Type Wet Spell Indices Dry Spell Indices

Variables AWC PASC PASCG Variables AWC PASC PASCG

WTC
MWS(Po) + SASMI 0.80 12.24% - MDS(Po) + AO 0.80 16.78% -
MWS(Pc) + SASMI 0.79 12.44% - NLDS(Pc) + APVI 0.79 18.07% -

PWC
MWS(Po) +

(SASMI-TP2)
0.84 12.82% 0.58% MDS(Po) +

(AO-NEP)
0.89 38.4% 21.62%

MWS(Pc) +
(SASMI-TP1)

0.84 12.36% −0.08% NLDS(Pc) +
(APVI-PPVI)

0.87 22.45% 4.38%

4. Discussion
4.1. Wet and Dry Spells between Original and Corrected Precipitation Data

Previous studies have revealed obvious differences between Po and Pc in terms of
change trends, amounts, days, frequencies, and intensities [27,30,31]. Li et al. [24] applied
Po and Pc to identify geoclimatic divisions and compared their differences; Yao et al. [26]
evaluated the differences in drought degree using Erinc’s index based on Po and Pc and
found that the degree of drought was actually reduced in some areas of China after precipi-
tation correction. Clearly, correcting precipitation data for gauge bias can affect the results
of climatology and hydrological analyses. However, taking wet/dry spells as the important
climatic parameters, the differences between Po- and Pc-based spatiotemporal charac-
teristics of wet/dry spells remain relatively understudied [4,9,11,16,17,19,20,31,32,54–57].
Our study found that Po- and Pc-based MWS, MLWS, MPWS, PWS95, and FWW and
Pc-based NLDS tended to significantly decrease, and Po- and Pc-based FDW and MDS and
Pc-based DDS95 tended to significantly increase, while Po- and Pc-based NWS, NDS, FWD,
and FDD, and Po-based NLDS showed no significant change, but appeared to decrease,
and Po- and Pc-based MLDS and Po-based DDS95 also showed no significant change but
appeared to increase. In summary, before and after precipitation correction, the significant
trends in wet spell indices were stronger than those of dry spell indices. Pc did change
the directions of the trends in wet/dry spell indices at 3.03~21.97% of stations. This was
especially true for NLDS and PWS95, indicating that Pc had the most obvious impact on
extreme wet/dry spells.

4.2. Correlations of Wet and Dry Spell Indices with Large-Scale Circulation Indices

Po- and Pc-based MWS, MLWS, MPWS, PWS95, FWW, FDW, MDS, and NLDS were all
significantly correlated with at least one LSCI. Notably, the correlations between wet/dry
spell indices and PPVA, NCP, TP2, APVA, TP1, and TP2 changed from being insignificant
to significant after precipitation correction. Furthermore, Po- and Pc-based MWS, Po-based
MDS, and Pc-based NLDS were significantly correlated with the most LSCIs and were
therefore used for WTC and PWC analysis. SASMI was the best explanatory factor for Po-
and Pc-based MWS, AO with NEP influence eliminated was the best explanatory factor for
Po-based MDS, and APVI with PPVI influence eliminated was the best explanatory factor
for Pc-based NLDS. From the above results, by comparing before and after precipitation
correction, it is clear that the responses of wet spell indices to large-scale circulation
anomalies can be affected by precipitation gauge bias.

4.3. Limitations and Uncertainties

To ensure uniformity in the precipitation data [58,59], 26 relocated sites (site migration
straight-line distance exceeded 20 km or vertical distance exceeded 100 m) were removed,
but this may have affected the results by changing of number and density of meteorological
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stations [31,60,61]. Furthermore, when extending the observation data using automatic
stations (in recent years, China has gradually been increasing coverage using automatic
weather stations), it is necessary to account for the inclusion of automatic and national
stations in further analyses of the differences between Pc and Po in time and space. Mean-
while, the method (i.e., fixed threshold or dynamic threshold) used to distinguish wet/dry
days directly affects research results [10,57]. In China, the fixed thresholds of 1 mm and
0.1 mm have been commonly used in precipitation and drought studies [17,19,32,62–64].
In this study, considering the ETCCDI recommended standards [65], 1 mm was selected as
the threshold for determining wet/dry days. However, the effect of Pc on the trends and
structures of wet/dry spell indices under different fixed thresholds or dynamic thresholds
will be investigated in the future.

Due to limited space, we only considered the wet and dry spell indices which were
significantly related to the most LSCIs as examples when analyzing resonance periods with
the LSCIs which showed the highest degree of interpretation towards the wet/dry spell
indices. In the future, a comprehensive analysis of the periodic resonance of all wet/dry
spell indices and LSCIs, with the influence of LSCI interactions controlled for to more
thoroughly examine the effect of precipitation correction.

Finally, we focused on Southwest China as a case study area, but future work will
need to expand to the whole of China and include more LSCIs. The effects of all these
limitations should be investigated fully to ensure that they are accounted for.

5. Conclusions

Gauge estimates of precipitation have various sources of biases, such as trace precipi-
tation, wetting losses, and wind-induced under-catch. It is necessary to account for these
sources of error to more accurately characterize and identify wet and dry spells. Using data
from 264 stations throughout Southwest China, we analyzed and compared the spatial and
temporal variability in wet and dry spell indices based on Po and Pc data and examined
their correlations with LSCIs. The main conclusions were as follows:

(1) The trends in NWS, MWS, MLWS, MPWS, PWS95, FWW, FDW, MDS, MLDS,
NLDS, DDS95, and FWD were more pronounced when Pc based than when Po-based;
NLDS had the largest change (slope relative error: 351.53%) and MDS had the smallest
(slope relative error: 1.49%); Pc-based NDS and FDD showed weaker trends than Po-based,
with slope differences of −2.78~−1.54%. Specifically, more than 2.65~7.2% of the stations
had significant trends in MWS, MLWS, MPWS, PWS95, FWW, FDW, MDS, MLDS, NLDS,
and DDS95 when Pc based. Less than 1.14~3.41% of the stations in Pc-based NWS, NDS,
FDD, and FWD significantly changed.

(2) Spearman analysis showed that Pc-based FWW, FDW, MDS, MLDS, and NLDS
were significantly correlated with 1~5 more LSCIs than when Po-based, and only Pc-based
MWS and NLDS were significantly correlated with one fewer LSCI than when Po-based.
Po- and Pc-based MWS, Po-based MDS, and Pc-based NLDS, which were significantly
related to the most LSCIs, were selected as examples for further analysis to explore the
periodic resonance relationship between the four wet/dry spell indices and the LSCIs. They
were chosen to obtain the highest possible degree of interpretation. Without considering
the interaction between LSCIs, there was significant periodic resonance with LSCIs and
the Po-based MWS, Pc-based MWS, Po-based MDS, and Pc-based NLDS had resonance
periods of 3.68~7.80 year, 6.3~7.80 year, 4.75~10.41 year, and 11.03~18.56 year, respectively.
Considering the interactions between LSCIs, only AO-NEP significantly improved the
interpretation of Po-based MDS, with a resonance period of 6.56~18.56 year.

In summary, due to the superiority of Pc data for capturing and identifying regional
wet and dry spells and their relationships with LSCIs, Pc data should always be used in
future wet and dry spell–related research.
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