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Abstract: With the rapid development of meteorological models, numerical weather prediction is 

increasingly used in flood forecasting and reservoir regulation, but its forecasting ability is limited 

by the large amount of uncertainty from meteorological systems. In this paper, a new, hybrid frame-

work is developed to improve numerical precipitation forecasting by combining the multimodel 

ensemble and probabilistic postprocessing methods. The results show that the multimodel ensem-

ble method used in this paper is an efficient way to reduce prediction errors, especially missing 

alarm errors. In a comparison of the probabilistic postprocessors based the generalized Bayesian 

model (GBM) and bivariate probabilistic model (BPM), the GBM shows better performance from 

the aspects of indicators and is more suitable for real-time applications. Meanwhile, the assessment 

of probabilistic results shows that the skill of probabilistic precipitation forecasts is related to the 

quality of their inputs. According to these results, a new hybrid framework is proposed by taking 

the results from multimodel ensemble as the input of probabilistic postprocessor. Compared to us-

ing the raw numerical in GBM, the hybrid framework improves the accuracy, sharpness, reliability, 

and resolution ability from different lead times by 2–13%, 1–22%, and 0–12% respectively, especially 

when the lead time is less than 4 d, the improvement can reach 9–13%, 10–22%, and 5–12% respec-

tively. In conclusion, the hybrid two-step framework can provide a more skillful precipitation fore-

cast, which can be useful for flood forecasting and reservoir regulation. 

Keywords: TIGGE; precipitation forecast; multimodel ensemble forecast; uncertainty analysis 

 

1. Introduction 

Due to the influence of the monsoon climate, many areas in China face a shortage of 

freshwater during the dry season, and a threat of flood disasters in the wet season [1–3]. 

Many previous studies have pointed out that flood forecasting is one of the key techniques 

for reducing flood damage. However, flood forecasts based on hydrological models forc-

ing by ground stations or remote sensing have very limited lead times, i.e., the time from 

the first observation of rain to the occurrence of a flood peak can only provide a small 

amount of future information and makes it difficult to support reservoir regulation deci-

sions [4,5]. It still remains a challenging task for providing reliable flood forecasts with 

long lead times. As mentioned in many previous studies, numeric precipitation forecast 

(NPF) is an effective way to extend the lead time for flood forecasting [6,7]. 

Flood forecasting based on hydrological models forcing by observed precipitation 

and NPF has a longer lead time and enables the development of reservoir regulation strat-

egies in advance [8,9]. However, due to the uncertainty of meteorology systems, rainfall 

forecasting generally exhibits errors that affect the accuracy of flood forecasting from 
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hydrological models and subsequently may be detrimental to flood control safety [10–12]. 

Therefore, rainfall information from NPF has still not been fully utilized in hydrological 

forecasting. In recent years, a number of researchers have employed different postpro-

cessing methods to reduce the prediction errors of raw NPFs [13,14]. Multimodel ensem-

bles are commonly used methods that build a relationship between independent predic-

tions from different data sources/models and observations [15]. Both linear and nonlinear 

regression methods have been applied to numerical weather forecasting. Linear models, 

such as the linear regression, bias-removed ensemble mean (BREM), have been suggested 

to improve the skill of raw weather forecasts [16,17]. Artificial neural networks (ANNs) 

and support vector machines (SVMs) are the two most popular nonlinear methods for 

multimodel ensemble forecasting [18]. However, most of these models only focus on the 

difference between the true value and forecast value, such as the mean absolute error 

(MAE) or root mean square error (RMSE), but neglect the different impacts of false alarm 

(FA, events that were forecasted but did not occur) and missing alarm (MA, events that 

were not forecasted but did occur) on flood control safety [19]. An FA only reduces the 

potential benefits of reservoir operation, while an MA may be detrimental to flood control 

safety. Therefore, it is necessary to pay more attention to MA errors rather than overall 

errors or FA errors. 

The uncertainty of precipitation forecast is commonly evaluated by the conditional 

distribution obtained from probabilistic forecast models [20,21]. Most of these probabilis-

tic models are based on a bivariate meta-Gaussian distribution developed by Krzyszto-

fowicz and Kelly [22]. Herr and Krzysztofowicz first used this method to assess the un-

certainty in precipitation data through a normal quantile transformation (NQT) [23]. Rob-

ertson et al. [24] proposed a rainfall postprocessing (RPP) method on the basis of the 

Bayesian joint probability approach by Wang and Robertson [25]. Tao et al. evaluated the 

performance of probabilistic forecasts from single-value precipitation forecasts by ensem-

ble pre-processing (EPP) [26]. 

As shown in many former studies, the multimodel ensemble method based on ma-

chine learning models is an effective way to reduce the error of precipitation forecasts 

through a regression of independent predictions from different data sources, but most of 

these methods are deterministic and cannot describe the uncertainty in precipitation fore-

casts [27,28]. In contrast, probabilistic precipitation models can evaluate the uncertainty 

of single-value forecast results via a distribution analysis, and the forecast skill of the prob-

abilistic results is related to the skill of the inputs. From the characteristics of these two 

methods, it is possible to obtain a better precipitation forecast by combining multimodel 

ensemble methods and probabilistic models. To be more specific, it may be feasible to 

employ the outputs from multimodel ensemble method, which has higher accuracy than 

the raw NPF, as the input of probabilistic precipitation models to generate more skillful 

probabilistic precipitation forecasts. However, most current studies only evaluated the 

improvement of precipitation forecasts by a single method, using multimodel ensemble 

method or probabilistic precipitation model, it is still unknown whether we can obtain a 

better probabilistic precipitation forecast by combining the two methods in a hybrid two-

step framework. 

The aim of this study is to establish a hybrid two-step framework to improve the 

performance of precipitation forecasting through a combined multimodel ensemble and 

probabilistic forecast, from the aspect of actual needs of flood forecast and reservoir reg-

ulation. We evaluate the daily control forecast of four forecasting centers from the TIGGE 

(THORPEX Interactive Grand Global Ensemble) over the Meishan Catchment in Huaihe 

Basin of China during the wet season (May to September). As a first step, a nonlinear 

multimodel ensemble method with special consideration for MA errors is adopted to re-

duce the prediction errors of raw NPFs. Then, two different probabilistic models, a biva-

riate probability model (BPM), and the generalized Bayesian model (GBM), are used for 

both the original and corrected results. Furthermore, we evaluate all the correction and 

probabilistic results to obtain a reliable hybrid two-step framework to improve the skill of 



Water 2022, 14, 3072 3 of 22 
 

 

the raw NPF in relation to flood forecast and reservoir regulation. Note that the focus of 

this study is not the comparison of single multimodel ensemble methods or probabilistic 

postprocessing methods, but the combination of the two. Therefore, only very limited 

methods are used in this study, but all these methods have been reported as effective 

methods to improve the performance of NPF in the previous studies [29,30]. 

In the next section, we detail the postprocessing methods along with the evaluation 

indicators, and introduces an overview of the data sources and the study area. The results 

and discussion are described in Section 3, and finally, the conclusions are provided in 

Section 4. 

2. Methods and Materials 

2.1. Methodology 

The main aim of postprocessing is to reduce the error of NPFs with different lead 

times. In this study, a nonlinear multimodel ensemble method and two probabilistic post-

processors are employed, and a combined framework is built to generate probabilistic 

precipitation forecasts with better performance. First, the control forecast from four dif-

ferent centers are used as the input of an SVR-based multimodel ensemble forecast model 

to improve the accuracy of raw NPF. Then the results of the ensemble forecast are input 

into a probabilistic post-processor to obtain the final probabilistic forecast results. The 

flow chart of the hybrid framework is shown in Figure 1. To evaluate the results of the 

postprocessors, several statistical metrics are employed, including the RMSE, average 

width of prediction intervals (WPI), and Brier score. 

 

Figure 1. Flow chart of the hybrid two-step framework for combining precipitation forecast post-

processors. 

2.1.1. Verification Methods 

The RMSE is employed to examine the performance of precipitation forecasting. The 

RMSE is one of the most popular indicators to quantify the extent to which a predicted 

response value is close to the true response value (Equation (1)). For probabilistic case, 

RMSEP is also employed to examine the accuracy of probabilistic postprocessing methods 

(Equation (2)). 
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𝑅𝑀𝑆𝐸 = √
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𝑁
∑(𝑥𝑖 − 𝑦𝑖)

2

𝑁

𝑖=1

 (1) 

𝑅𝑀𝑆𝐸𝑃 = √
1

𝑁
∑(∫ 𝑡 ∙ 𝑓(𝑡|𝑋 = 𝑥𝑖

+∞

0

)𝑑𝑡 − 𝑦𝑖)
2

𝑁

𝑖=1

 (2) 

where 𝑁 denotes the total number of forecasts and observations. 𝑥𝑖 and 𝑦𝑖 denote the 𝑖th 

prediction and observation (true value) respectively, and 𝑓(𝑦|𝑋 = 𝑥𝑖) is the conditional 

distribution of true value when the 𝑖th prediction is available. 

The WPI is a simple but effective measure of sharpness in probabilistic forecasting. 

Generally, it refers to the average width of a 90% prediction interval [31]. 

𝑊𝑃𝐼 =
1

𝑁
∑(𝑓𝑖

𝑢 − 𝑓𝑖
𝑙)

𝑁

𝑖=1

 (3) 

where 𝑁 represents the total number of forecasts and 𝑓𝑖
𝑢 and 𝑓𝑖

𝑙 represent the ith upper 

and lower bounds of the probability 0.90 prediction interval, respectively (Equation (4)). 

𝑃(𝑌 > 𝑓𝑖
𝑢) = 0.05 

𝑃(𝑌 < 𝑓𝑖
𝑙) = 0.05 

𝑃(𝑓𝑖
𝑙 ≤ 𝑌 ≤ 𝑓𝑖

𝑢) = 0.9 

(4) 

The multicategory Brier score is often used as a measure of probabilistic forecast re-

liability and resolution ability, and can be calculated with the following equation [32,33]: 

𝐵𝑆 =
1

𝑁
∑∑(𝑓𝑖,𝑗 − 𝑜𝑖,𝑗)

2

𝑅

𝑗=1

𝑁

𝑖=1

 (5) 

where 𝑁 represents the total number of samples, 𝑅 is the total number of classifications, 

𝑓𝑖,𝑗 denotes the forecasted probability of sample 𝑖 under the condition that 𝑗th magnitude 

class occurs, and 𝑜𝑖,𝑗 is equal to 1 if the true value of sample 𝑖 is 𝑗th magnitude class, oth-

erwise 𝑜𝑖,𝑗 is equal to 0. The Brier score is negatively oriented with a range of 0 to 1, and 

the Brier score is equal to 0 when the forecast is perfect. 

The magnitude classification of daily precipitation for multicategory Brier score is 

based on the classification standard of the meteorological department of China. Generally, 

no rain means that the daily precipitation is 0. However due to their limited influence on 

the formation of floods, precipitation levels under 1 mm are also considered to have a 

precipitation score of 0 in this study. The classification standard is detailed in Table 1. 

Table 1. Classification standard of daily precipitation from the meteorological department of China. 

Magnitude 
Classification Standard of 

Precipitation 

Amount of Daily Precipitation 

(mm) 

1 No rain 0–0.9 

2 Light rain 1.0–9.9 

3 Medium rain 10.0–24.9 

4 Heavy rain 25.0–49.9 

5 Rainstorm 50.0–99.9 

6 Heavy rainstorm 100.0–249.9 

7 Extreme rainstorm >250.0 
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2.1.2. Multimodel Ensemble Method 

Due to the spatial and temporal complexity of precipitation forecasting, it is almost 

impossible to develop a model that surpasses other models in all forecasting situations. 

An alternative way is to use multimodel ensemble forecasting, which can improve the 

forecast skill of NPF, prevent overconfidence of a single model, and reduce the errors by 

combining the strengths of the different models [34,35]. For a certain time 𝑡, the results 

from an 𝑁 model are 𝐹1,𝑡 , 𝐹2,𝑡⋯𝐹𝑁,𝑡, and the corresponding observation is 𝑂𝑡. The main 

purpose of the multimodel ensemble method is to find a function 𝑓, that minimizes the 

loss function between 𝑓(𝐹1,𝑡, 𝐹2,𝑡⋯𝐹𝑁,𝑡) and 𝑂𝑡. The function 𝑓 in the multimodel ensem-

ble method can be in any form, which may be linear or nonlinear and the loss function can 

be any indicator for performance evaluation, such as the RMSE or hit rate. A nonlinear 

multimodel ensemble method based on support vector regression (SVR) is used in this 

study, which proves that it can effectively reduce the error of MA events [29]. The SVM is 

a statistical learning method for classification and regression proposed by Vanpik et al. in 

1995 based on the structural risk minimization principle [36]. Currently, SVR has been 

widely employed in hydrology and meteorology [37,38]. 

We use the ν-SVR method originally developed by Schölkopf et al. [39]; details of this 

method are provided in Appendix A. There are three parameters in ν-SVR that need to be 

optimized to determine: C, ν, and σ. C represents the cost constant, which is a compromise 

between the complexity and generalization of the model. By changing the value of C, we 

can adjust the ratio of the confidence range and empirical risk in the sample space and 

determine the penalty degree for the sample whose loss exceeds a threshold. The ν is the 

lower bound of the support vector and the upper bound of the gap error. The σ is a pa-

rameter of the radial basis function kernel, which is used to map the dataset from the 

original sample space to a higher dimensional space. 

The three parameters can be determined based on an optimization algorithm, for ex-

ample, the genetic algorithm (GA) or the particle swarm optimization algorithm (PSO), 

with a cost function that minimizes the overall error. However, an objective function aim-

ing to minimize the overall error is not the preferred goal for flood control, where safety 

is more important. Therefore, in this paper, a special objective function (Equation (6)) is 

adopted for the ν-SVR model by minimizing the RMSE of MA events (SVR-MA). 

𝑅𝑀𝑆𝐸 −𝑀𝐴 = √
1

𝑚
∑(𝐷𝑖)

2

𝑁

𝑖=1

 (6) 

where 

𝑚 =∑𝐼(𝐷𝑖)

𝑁

𝑖=1

 (7) 

𝐼(𝐷𝑖) = {
1, 𝐷𝑖 > 0
0, 𝐷𝑖 ≤ 0

 (8) 

𝐷𝑖 = {
𝑦𝑖 − 𝑓(𝑥𝑖), 𝑓(𝑥𝑖) < 𝑦𝑖

0, 𝑓(𝑥𝑖) ≥ 𝑦𝑖
 (9) 

In Equation (6) to Equation (9), 𝑥𝑖 is the 𝑖th vector of precipitation forecasts from dif-

ferent centers, i.e., the input of multimodel ensemble method, 𝑦𝑖 is the corresponding ob-

servation, 𝑓(𝑥𝑖) represents the output of multimodel ensemble method, and the 𝑁 is the 

sample size. 

All the SVR models used in this paper are based on the open-source software, 

LIBSVM, developed by Chang and Lin [40]. More information about the SVR models is 

available at https://www.csie.ntu.edu.tw/~cjlin/libsvm/ (accessed on 14 April 2021). 
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2.1.3. Probabilistic Postprocessing Method 

(1) Bivariate probability model 

The bivariate probability model is used to generate probabilistic precipitation fore-

casts from a single-value raw NPF through a bivariate joint distribution. Currently, most 

probabilistic postprocessing models are based on a bivariate probability model by Herr 

and Krzysztofowicz, including the EPP by the U.S. National Weather Service [26] and the 

RPP by Robertson et al. [24]. The model contains two main steps: (1) deriving the joint 

distributions of raw forecasts and observations and (2) obtaining the conditional distribu-

tions of observations given the raw forecasts. Here, the statistical procedure developed by 

Wu et al. [41] is adopted. 

Let 𝑋 denote the daily raw single-value precipitation forecast and 𝑌 be the corre-

sponding observation (i.e., true value). The cumulative distribution function (CDF) of the 

conditional distribution can be written as: 

𝐹(𝑌 ≤ 𝑦|𝑋 = 𝑥) =
𝐹(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦)

𝐹(𝑋)
 (10) 

Deriving the joint distribution of raw forecasts and observations requires the mar-

ginal distributions. However, unlike other meteorological variables, natural rainfall is 

generally characterized as an intermittent stochastic process with a mixed marginal dis-

tribution, including both discrete and continuous parts [42,43]. The discrete part is con-

centrated at zero representing the probability of no rain, while the continuous part might 

be described by a known continuous distribution, such as the gamma distribution and 

Weibull distribution, or derived from a nonparametric statistic. Finally, the marginal dis-

tribution of 𝑋 can be expressed as: 

𝐹𝑋(𝑥) = 𝛼0 + (1 − 𝛼0)𝐹𝑋|𝑋>0(𝑥|𝑥 > 0) (11) 

where 𝛼0 = 𝑃(𝑋 = 0). 

Therefore, the joint distribution 𝐹(𝑥, 𝑦) consists of four parts: 

𝐹(𝑥, 𝑦) = 𝑃(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦) = 𝑝00 + 𝑝10𝐺𝑋(𝑥) + 𝑝01𝐺𝑌(𝑦) + 𝑝11𝐷(𝑥, 𝑦) (12) 

where 

𝑝00 = 𝑃(𝑋 = 0, 𝑌 = 0)  

𝑝10 = 𝑃(𝑋 > 0, 𝑌 = 0)  

𝑝01 = 𝑃(𝑋 = 0, 𝑌 > 0)  

𝑝11 = 𝑃(𝑋 > 0, 𝑌 > 0)  

𝐺𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥|𝑋 > 0, 𝑌 = 0)  

𝐺𝑌(𝑦) = 𝑃(𝑌 ≤ 𝑦|𝑌 > 0, 𝑋 = 0)  

𝐷(𝑥, 𝑦) = 𝑃(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦|𝑋 > 0, 𝑌 > 0)  

Since the conditional marginal CDFs of (𝑋|𝑋 > 0, 𝑌 > 0)  and (𝑌|𝑋 > 0, 𝑌 > 0)  are 

both continuous, their joint CDF, 𝐷(𝑥, 𝑦) is also continuous. As introduced in Wu et al., 

the bivariate meta-Gaussian model is used to estimate 𝐷(𝑥, 𝑦). More detailed information 

about the bivariate meta-Gaussian mode can be obtained in [44–48]. 

With the joint distribution, the conditional CDF of 𝑃(𝑌 ≤ 𝑦|𝑋 = 𝑥) can be expressed 

as Equation (13) and Equation (14) for 𝑋 = 0 and 𝑋 > 0 respectively: 

𝐹𝑌|𝑋=0(𝑦|𝑥) = 𝑎 + (1 − 𝑎)𝐺𝑌(𝑦) (13) 

𝐹𝑌|𝑋>0 = 𝑐(𝑥) + (1 − 𝑐(𝑥))𝐷𝑌|𝑋=𝑥(𝑦|𝑥) (14) 
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where 𝑎 =
𝑝00

𝑝00+𝑝01
 and 𝑐(𝑥) =

𝑝10𝑔𝑋(𝑥)

𝑝10𝑔𝑋(𝑥)+𝑝11𝑑𝑋(𝑥)
; 𝑔𝑋(𝑥) is the probability density function 

(PDF) of 𝐺𝑋(𝑥); 𝑑𝑋(𝑥) is the marginal PDF of 𝐷(𝑥, 𝑦) and is defined when 𝑦 → +∞; and 

𝐷𝑌|𝑋=𝑥(𝑦|𝑥) = 𝑃(𝑌 ≤ 𝑦|𝑋 = 𝑥, 𝑌 > 0). 

(2) Generalized Bayesian model 

The generalized Bayesian model was developed by Cai et al. for uncertainty analysis 

of single-value NPFs based on a Bayesian formula and generalized probability density 

function (GPDF) [30]. The Bayesian formula is an effective method for uncertainty analy-

sis and is commonly used in probabilistic forecasting [49,50]. However, the traditional 

Bayesian formula is limited to characterizing the conditional distribution for either dis-

crete or continuous random variables and is not suitable for mixed random variables such 

as precipitation. To solve this problem, the Dirac delta function (Equation (15)) is em-

ployed to transform the distribution laws of discrete random variables into a probability 

density function (PDF) form called a generalized PDF (GPDF). 

𝛿(𝑥) = {
+∞, 𝑥 = 0
0 𝑥 ≠ 0

∫ 𝛿(𝑥)
+∞

−∞

𝑑𝑥 = ∫ 𝛿(𝑥)𝑑𝑥 = 1, ∀𝜀 > 0
𝜀

−𝜀

 (15) 

Let 𝑋 represent a discrete random variable. All the possible values of 𝑋 are 𝑥𝑖(𝑖 =

1,2,⋯𝑛) with corresponding probabilities 𝑝𝑖 , and 0 ≤ 𝑝𝑖 ≤ 1;∑ 𝑝𝑖
𝑛
𝑖=1 = 1. The CDF of 𝑋 

can be expressed as: 

𝐹𝑋(𝑥) = 𝑃{𝑋 ≤ 𝑥} =

{
 
 

 
 

0, 𝑥 ≤ 𝑥1

∑𝑝𝑘

𝑖

𝑘=1

, 𝑥𝑖 < 𝑥 ≤ 𝑥𝑖+1, 𝑖 = 1,2

1, 𝑥 > 𝑥𝑛

, ⋯ 𝑛 − 1 (16) 

where 𝑃{𝑋 = 𝑥} = 𝑝𝑖 , 𝑖 = 1,2,⋯𝑛. 

The GPDF of the discrete random variable X is defined as: 

𝑓𝑋(𝑥) =∑𝑝𝑖

𝑛

𝑖=1

𝛿(𝑥 − 𝑥𝑖) (17) 

and: 

∫𝑓𝑋(𝑥)

𝑥

−∞

= ∫∑𝑝𝑖

𝑛

𝑘=1

𝛿(𝑠 − 𝑥𝑘)

𝑥

−∞

𝑑𝑠 =

{
 
 

 
 

0, 𝑥 ≤ 𝑥1

∑𝑝𝑘

𝑖

𝑘=1

, 𝑥𝑖 < 𝑥 ≤ 𝑥𝑖+1, 𝑖 = 1,2

1, 𝑥 > 𝑥𝑛

, ⋯ 𝑛 − 1 (18) 

Equations (17) and (18) show that the GPDF satisfies all the characteristics of the PDF, 

and discrete, continuous, and mixed distributions can be expressed in the form of the 

GPDF. Therefore, through the GPDF, the GBM can be used for mixed distributions. The 

first part of the GBM for precipitation forecasting is the prior distribution. Here, we use 𝑋 

to represent the raw single-value precipitation forecast, and 𝑌 is the corresponding obser-

vation. In this study, the prior distribution is the marginal distribution of 𝑌 which is a 

mixed distribution and can be written as Equation (19): 

𝑓𝑌(𝑦) = 𝛼0𝛿(𝑦) + (1 − 𝛼0)𝑓𝑌(𝑦|𝑌 > 0) (19) 

The second part of the Bayesian formula is the likelihood function 𝑓𝑋|𝑌=𝑦. For this 

case, the GPDF of the likelihood function should be divided into two parts because of the 

sample space of 𝑌; for 𝑌 = 0 and 𝑌 > 0, the likelihood functions can be drawn as follows: 

𝑓𝑋|𝑌=𝑦 = {
𝛽0,0𝛿(𝑥) + (1 − 𝛽0,0)𝑓𝑋|𝑌=0(𝑥|𝑋 > 0, 𝑌 = 0), 𝑦 = 0

𝛽0,𝑦𝛿(𝑥) + (1 − 𝛽0,𝑦)𝑓𝑋|𝑌=0(𝑥|𝑋 > 0, 𝑌 = 𝑦 > 0), 𝑦 > 0
 (20) 
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where 𝛽0,𝑦 = 𝑃(𝑋 = 0|𝑌 = 𝑦) and 𝛽0,0 = 𝑃(𝑋 = 0|𝑌 = 0). 

To estimate the distribution of the likelihood function (Equation (20)), the prediction 

error 𝜀 is introduced in this study: 

𝑋 = 𝑌 + 𝜀 (21) 

Note that 𝜀 is nonnegative when 𝑌 = 0 due to the sample space of 𝑋 (𝑋 ≥ 0). There-

fore, the continuous part for 𝑦 = 0 in Equation (20) is a nonnegative distribution. If 𝑌 > 0, 

the errors between the forecasted value and unknown true value can generally be as-

sumed to obey a censored normal distribution (Equation (22)): 

𝑓𝑋|𝑌(𝑥|𝑌 = 𝑦) = 𝜑(𝑥; 𝜇, 𝜎
2) =

𝑎(𝑥)

√2𝜋𝜎
𝑒
−
(𝑥−𝑦−𝜇𝜀)

2

2𝜎2 , 𝑥 > 0 (22) 

where 𝑎(𝑥) is a parameter guaranteeing a total probability of 1. 

Since both the prior distribution and likelihood function can be expressed by the 

GPDF, it is easy to obtain a posterior distribution through the Bayesian formula: 

𝑓𝑌|𝑋(𝑦|𝑋 = 𝑥) =
𝑓𝑌(𝑦)𝑓𝑋|𝑌(𝑥|𝑌 = 𝑦)

∫ 𝑓𝑌(𝑡)𝑓𝑋|𝑌(𝑥|𝑌 = 𝑡)𝑑𝑡
+∞

−∞

 (23) 

2.2. Study Area 

The Meishan Catchment is a subcatchment of the Huaihe River Basin in southeastern 

China, with a drainage area of 1970 km2. A large reservoir, the Meishan Reservoir, is lo-

cated at the outlet of the basin, and is used for flood control, water supply, and hydro-

power generation (Figure 2). This catchment is in a typical monsoon-affected climatic 

zone, with precipitation concentrated from May to September (wet season). Meanwhile, 

as part of the Dabie Mountains, the elevation in this area varies greatly, which makes the 

area prone to flash floods. The basin experienced many major flood events in the past, 

which severely threatened the safety of the reservoir and downstream cities. In contrast, 

due to the economic and population growth in the area, the demand for water supply 

from the reservoirs has increased each year, especially during the dry season. Therefore, 

it is urgent to utilize more water resources without compromising flood control safety. 

2.3. Data Sources 

As a major component of The Observing System Research and Predictability Experi-

ment (THORPEX), the TIGGE is a numeric weather forecasting dataset consisting of 

eleven main forecasting centers around the world since 2006. The main purpose of the 

TIGGE is to improve high-impact weather forecasting ability with a two-week lead time 

[51]. In this study, we select the control forecasts from four different centers, the European 

Center for Medium-Range Weather Forecast (ECMWF), Japan Meteorological Agency 

(JMA), United Kingdom Meteorological Office (UKMO), and China Meteorological Cen-

ter (CMA). More details of these datasets are given in Table 2. 
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Figure 2. The Meishan Catchment in the upper Huaihe River Basin and the location of the reservoir, 

hydrological station, and precipitation stations. From the digital elevation model (DEM) data, the 

elevation of the basin is shown to gradually decrease from south to north. 

Table 2. Configurations of the four TIGGE precipitation forecasts used in this study. 

Center 
Horizontal Reso-

lution 

Forecast 

Length(h) 

Base Time 

(UTC) 
Steps (h) 

CMA TL639 240 00:00; 12:00 6 

JMA T479 240 00:00; 12:00 6 

ECMWF 
TL639 (0–240 h) 

TL319 (240–360 h) 
360 00:00; 12:00 6 

UKMO N640 360 00:00; 12:00 6 

2.4. Experimental Design 

The daily control forecasts of the four centers are used as raw NPFs. Since the hori-

zontal resolutions and forecast lengths of the forecasts are different, a series of methods 

are needed to make the datasets consistent. In this case, only the forecasts with a base time 

of 00:00 UTC are selected, and the forecast lead is 7 d (168 h). The spatial resolution of all 

products is converted to 0.50° × 0.50°. For comparison with observed data from the ground 

sites, the precipitation forecast is averaged spatially with the gridded area as the weight. 

The areal average observations are measured from the precipitation stations in Figure 2 

by using the Thiessen polygon method. 

To build three models (i.e., SVR-MA, BPM, and GBM) used in this study, the param-

eters and distribution in the models should be determined. In this study, we adopted the 

data in the flood season during 2015–2017 as the training set, which determines all the 

parameters and distributions, while the data in 2018–2019 are used for testing. 

The three parameters of SVR-MA are estimated by the PSO with five-fold cross vali-

dation. We first randomly divide the training samples into five categories. Then we use 

one of the categories as the validation set in order, and the rest as a training set and deter-

mine the best parameter settings through the PSO algorithm and Equations (6)–(9). 
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For the distributions of the continuous part in the probabilistic models, four nonnega-

tive distributions, including gamma, lognormal, Weibull, and exponential distributions, 

are employed to fit the distribution for the precipitation forecasts and observation. The 

Kolmogorov–Smirnov test (K–S test) is adopted to test whether the distribution can be 

accepted and find the most suitable distribution, and maximum likelihood estimation 

(MLE) is used to determine the parameters of the distributions. 

3. Results and Discussion 

In this section, we assess the performance of three different postprocessing models 

and employ a new framework by combining a multimodel ensemble and probabilistic 

forecasting. The precipitation forecast data from May to September of 2015–2019 are used 

for training and verification. All results are compared to the raw forecasts from the TIGGE 

and/or the observations. 

3.1. Verification of Multimodel Ensemble Forecasts 

As a first step of this study, the performances of daily control forecast from the four 

centers and their ensemble results by the SVR-MA method are evaluated against area-

weighted observations based on several statistical metrics. The SVR model with the target 

of minimizing MA error is used as the multimodel ensemble method. Figure 3 shows that, 

as measured by the RMSE, the JMA presents the best results for both the training and 

verification periods among the four raw NPFs, while the forecasts from the CMA have the 

lowest skill at most lead times. In general, the performance of all raw NPFs deteriorates 

with increasing lead time. The multimodel ensemble method shows a great improvement 

in accuracy during the training period, especially when the lead time is over 4 days. In the 

verification period, the performance of the SVR-MA model shows a decline, but it is still 

better than the original forecast results. 

 

Figure 3. The RMSE of the raw NPF and the SVR-MA model in the Meishan Catchment from May 

to September 2015–2019, where (a) represents the training period (2015–2017) and (b) represents the 

verification period (2018–2019). 
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Figure 3 indicates that the SVR-MA model can reduce the overall error, but its effect 

is limited in the verification period. As mentioned above, MA errors play a more im-

portant role in flood control systems, so it is necessary to examine the MA error of the 

forecasts. Figure 4, which shows the RMSE-MA values calculated from Equation (6) to 

Equation (9), shows that the multimodel method has a better performance in the training 

period and the SVR-MA model has the best forecast skill in the verification period. Mean-

while, the gap between the four raw NPFs becomes negligible, with the JMA forecasts 

showing no obvious advantage. Additionally, as shown in Figure 5, the number of MAs 

greatly decreases during the training and verification periods in the SVR-MA model. With 

the smallest MA error and the fewest MAs, the SVR-MA model demonstrates its ability to 

reduce underestimation from the NPF, which is more in line with the needs of flood fore-

cast and reservoir regulation. 

 

Figure 4. The RMSE-MA of the raw NPF and the SVR-MA model in the Meishan Catchment from 

May to September 2015–2019, where (a) represents the training period (2015–2017) and (b) repre-

sents the verification period (2018–2019). 

Additionally, the distributions of MA errors from different forecast centers and the 

SVR-MA model from 2015–2019 are compared in the Meishan Catchment. The results in 

Figure 6 show the MA error from the different centers and the SVR-MA model in the 

training period. Figure 6 shows that the MA error from the SVR-MA model has smaller 

values and fewer outliers. Similar to the results in Figure 6, Figure 7 also shows that the 

SVR-MA model effectively reduces the MA error. Although the range of boxes for the 

SVR-MA model during the verification period becomes wider, especially for lead times 

over 5 d, fewer outlier points still indicate that the method has good control over MA 

errors. 
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Figure 5. The number of MAs from the raw NPF and the SVR-MA model in the Meishan Catchment 

from May to September 2015–2019, where (a) represents the training period (2015–2017) and (b) 

represents the verification period (2018–2019). 

 

Figure 6. Box and whisker plots showing the performance in terms of the MA error for different 

lead times from different centers and the SVR-MA model during the training period. (a) +1d. (b) 

+3d. (c) +5d. (d) +7d. The horizontal line in the box represents the median of the distribution (50% 

of the data are greater than this value), and the upper and lower box limits represent the upper and 

lower quartiles (25% of data greater/lower than the value), respectively. Maximum and minimum 

values are indicated by the top and bottom horizontal lines. The outlier points show values of more 

than two-thirds of the quantile. 
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Figure 7. Box and whisker plots showing the performance in terms of the MA error for different 

lead times from different centers and the SVR-MA model during the verification period. (a) +1d. (b) 

+3d. (c) +5d. (d) +7d. The horizontal line in the box represents the median of the distribution (50% 

of the data are greater than this value), and the upper and lower box limits represent the upper and 

lower quartiles (25% of data greater/lower than the value), respectively. Maximum and minimum 

values are indicated by the top and bottom horizontal lines. The outlier points show values of more 

than two-thirds of the quantile. 

3.2. Comparison of Probabilistic Postprocessing Models 

Probabilistic postprocessing models are commonly used in flood forecasting and can 

provide more information about predicted events. However, unlike other hydrological 

variables, such as runoff, natural precipitation is considered to have a mixed distribution, 

which makes its conditional distribution more complicated. In this study, two different 

probabilistic postprocessing models are employed for uncertainty analysis and probabil-

istic forecasting. 

The data from the flood seasons of 2015–2017 are used to determine the distributions 

and their parameters, and the data from 2018–2019 are used as verification data. All the 

parameters in the distributions used in this study are estimated by the maximum likeli-

hood estimation, and the distributions are selected by the K-S test. To examine the perfor-

mance of probabilistic postprocessing models, the RMSEP, Brier score and WPI are se-

lected to evaluate the performance of the two methods. According to Figure 8, the RMSEPs 

of the two models are quite close, which means they have a similar accuracy. The sharp-

ness of the models is assessed by the WPI in Figure 9. The WPI of the GBM is much smaller 

than that of the BPM. Additionally, the WPI of the BPM is almost twice that of the GBM 

when the lead time is over 5 d. Figure 10 shows the Brier score of the two models based 

on the precipitation forecasts from different centers. The Brier score of the GBM is lower 

than that of the BPM (Figure 10). As it is a negative indicator, a lower Brier score indicates 

a better forecast skill in terms of reliability and resolution ability. Figures 8–10 show that 

although the accuracies of the two models are similar in the Meishan Catchment, the prob-

abilistic results from the GBM have a smaller Brier score and WPI, which means that the 

GBM can improve the sharpness and reliability of probabilistic precipitation forecasts 

without reducing their accuracy. Additionally, all the three indicators show a trend of 

deterioration with the growth of the lead time, which may be caused by the increase in 

variance of raw NPF. 
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Figure 8. The RMSEP of the GBM and BPM from different agencies during the verification period 

over the Meishan Catchment. (a) ECMWF. (b) JMA. (c) UKMO. (d) CMA. 

 

Figure 9. The WPI of the GBM and BPM from different agencies during the verification period over 

the Meishan Catchment. (a) ECMWF. (b) JMA. (c) UKMO. (d) CMA. 
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Figure 10. The Brier scores of the GBM and BPM from different agencies during the verification 

period over the Meishan Catchment. (a) ECMWF. (b) JMA. (c) UKMO. (d) CMA. 

In addition to the improvement in sharpness, reliability, and resolution ability, an-

other advantage of the GBM is that it requires no variable transformation. As a commonly 

used variable transformation method, NQT is one of the core steps in the BPM, which 

offers a convenient analytic form for the bivariate density, regardless of the forms of their 

marginal distributions [52]. However, using NQT will inevitably lead to the transfor-

mation of non-normal variables into normal space, which may have impacts on the accu-

racy of the estimated probability, whereas the GBM can generate the conditional distribu-

tion without any variable transformation [53]. Meanwhile, the BPM has a limitation in 

updating new samples. Since the BPM estimates the marginal distribution of precipitation 

and precipitation forecasts separately, and builds a joint distribution using Equation (12), 

when the system has new samples, it has to re-estimate the two marginal distributions 

and joint distributions. However, for the GBM, assuming that the prior distribution is sta-

ble, only the parameters from the likelihood function need to be updated for the new sam-

ples. Therefore, the GBM is more suitable for generating probabilistic forecasts for real-

time applications. 

Furthermore, as indicated in Figures 8–10, the probabilistic precipitation forecasts 

from the JMA and ECMWF are more skillful than those from the other two centers, which 

indicates that better inputs may lead to better probabilistic results in the GBM. Therefore, 

a combined framework that uses precipitation forecasts with high accuracies from the 

multimodel ensemble method as the inputs for probabilistic models is feasible and can 

generate better probabilistic forecasts. 

3.3. Performance Assessment of the New Hybrid Framework 

The results above indicate that the performance of the probabilistic postprocessing 

method is related to the skill of the raw NPF. Accordingly, we examine a new hybrid 

framework by combining multimodel ensembles and probabilistic postprocessors in this 

study to obtain a better probabilistic precipitation forecast. The multimodel ensemble 
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results from the SVR-MA model are selected as the inputs of the GBM and compared to 

the probabilistic results from the raw NPF. 

As shown in Figure 11, the RMSEP of probabilistic precipitation forecasting based on 

the hybrid two-step framework is lower than that of the probabilistic results obtained by 

the raw NPF. The WPI of the new combined framework also has a better performance 

(Figure 12). A lower WPI represents a narrower 90% prediction interval, indicating better 

sharpness. The probabilistic results of the new hybrid framework show a certain ad-

vantage in Brier score within 4 d, but this advantage diminishes with increasing lead time 

(Figure 13). The combined framework has a better performance in all the indicators than 

the raw NPF, and the advantage is more obvious when the lead time is less than 4 d. 

Moreover, the results shown in Figures 11–13 also support the conclusion that a better 

probability forecast can be obtained using high-precision raw forecasting. Compared to 

the best values of the four raw NPF, the RMSEP, WPI, and Brier score from different lead 

times can be improved by 2–13%, 1–22%, and 0–12% respectively through the hybrid 

framework, especially for the results with lead times less than 4d, the improvement in 

accuracy, sharpness, reliability and resolution ability from the hybrid framework can 

reach 9–13%, 10–22%, and 5–12% respectively. 

 

Figure 11. The RMSEP of the GBM from different inputs (raw NPF of different agencies and the 

SVR-MA model) during the verification period over the Meishan Catchment. 

 

Figure 12. The WPI of the GBM from different inputs (raw NPF of different agencies and the SVR-

MA model) during the verification period over the Meishan Catchment. 



Water 2022, 14, 3072 17 of 22 
 

 

 

Figure 13. The Brier score of the GBM from different inputs (raw NPF of different agencies and the 

SVR-MA model) during the verification period over the Meishan Catchment. 

As the main aim of this study is to provide more skillful precipitation forecast to 

extend the lead time of flood forecast and reservoir regulation, special attention should be 

paid to the precipitation over 25 mm, i.e., heavy rain and above (Table 1). The main reason 

for using 25 mm as the threshold rather than a larger value in this study is the number of 

samples. Figure 14 shows the Brier score of different inputs for observed precipitation 

over 25 mm during the verification period. From Figure 14, it can be found that the prob-

abilistic results from the hybrid framework have smaller Brier score, which indicates that 

it is feasible to reduce the MA error through SVR-MA and help the GBM better identify 

the precipitation with a magnitude over heavy rain. However, the Brier scores in Figure 

14 are significantly larger than those in Figure 13, indicating that the forecast skill for 

heavy rain and above are worse than those for smaller magnitudes. Similarly, the perfor-

mance of the probabilistic forecast is very poor when the lead time exceeds 4 d in Figure 

14. 

 

Figure 14. The Brier score of the GBM from different inputs (raw NPF of different agencies and the 

SVR-MA model) for precipitation over 25 mm during the verification period over the Meishan 

Catchment. 

In summary, compared to the original NPF, the multimodel ensemble method, SVR-

MA, can improve the performance of precipitation forecasting in the Meishan Catchment, 

especially in terms of reducing MA errors. However, since the accuracy of the inputs (i.e., 

raw NPFs) decrease with increasing lead time, the correction effect of the SVR-MA 

method gradually declines, and the MA error is still quite large when the lead time is over 

3 d. The forecast skills of probabilistic postprocessors are also evaluated in terms of accu-

racy, sharpness, reliability, and resolution ability. With its similar RMSEP value, smaller 

WPI value, lower Brier score, updating advantage, and no variable transformation, the 

GBM has a better performance than the BPM, and the results imply that better quality 

inputs can produce better probabilistic forecasts through the GBM. Therefore, a new 
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hybrid framework is proposed by combining the SVR-MA and GBM. The new framework 

shows an improvement in all the indicators (RMSEP, WPI, and Brier score), especially for 

lead times lower than 4 d and precipitation over 25 mm. However, the advantages of the 

new framework also decrease with increasing lead time, which is consistent with changes 

in the accuracy of the input. The results indicate that the two-step hybrid framework can 

provide better probabilistic precipitation forecasts. Furthermore, it is worth noticing that 

only SVR-MA is selected as the multimodel ensemble methods in this paper, but it can be 

found from the probabilistic results of raw NPF and hybrid two-step framework that all 

the multimodel ensemble methods which can improve the forecast skill of raw NPF 

should be applicable to the hybrid two-step framework, and the researchers can flexibly 

select methods according to their own needs. 

3.4. Limitation and Future Work 

To improve the skill of precipitation forecast, a new hybrid framework is proposed 

with combined postprocessors in this study. Certainly, as with all scientific research, this 

study has several obvious limitations. First, since the measured precipitation from ground 

stations are used as the “true value” in this study, the study area and time period of this 

paper are quite limited. The hybrid two-step framework may achieve a better perfor-

mance based on a larger dataset such as the reanalysis data or satellite products. Moreo-

ver, the Thiessen polygon method is employed to calculate the area-average value for ob-

served and forecasted precipitation, and the location and timing errors of precipitation 

are not considered, which makes the experiment in this study inappropriate for some 

large basins. Furthermore, since the meteorological system is highly uncertain, the time 

step used in this paper is limited to daily, which is unfavorable for flash flood forecasting. 

Another main limitation of this study is that the aim of the hybrid framework is to im-

prove the skill of precipitation forecast for flood forecasting and reservoir regulation, but 

this paper does not employ the results from the hybrid framework as the input of hydro-

logical models to evaluate the impact of the framework on the performance of actual 

streamflow forecasting. Finally, although the new hybrid framework shows the potential 

to improve the skills of precipitation probability forecasting, there is still a lot of room for 

improvement in practical application to extend the lead time of flood forecast and reser-

voir regulation. 

With the development of meteorological science, more global precipitation forecast 

datasets based on different meteorological models and initial fields can be used to obtain 

higher quality multimodel ensemble forecasts. It is possible to obtain precipitation fore-

casts with higher accuracy, shorter time step, and longer lead time through the hybrid 

framework and use it as the input of hydrological models for flood forecasting in the fu-

ture. Meanwhile, the perturbed forecasts from TIGGE have been commonly employed in 

ensemble forecast, and are also applicable to the hybrid framework of this study. More 

efforts are still needed to evaluate the performance of the hybrid framework based on the 

perturbed forecasts in the future. The rapid development of computer science brings a 

variety of machine learning models for regression and the performance assessment of en-

semble forecasts based on different regression models and data sources is also an im-

portant task in the future studies. In addition, the errors from location and timing shifts 

should be taken into consideration in future work to make the framework better adapt to 

the larger basins. 

4. Conclusions 

Streamflow forecasting based on hydrological models with an effective lead time is 

essential for streamflow forecasting and flood control. Although numerical weather fore-

casting can be used to extend the lead time of hydrologic predictions, its potential in flood 

forecasting and reservoir regulation has not been fully realized due to the limited accu-

racy. It is still urgent to reduce the errors in NPFs, especially MA errors, and describe their 

uncertainty. The main aim of this study is to improve the performance of probabilistic 
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precipitation forecasting based on a new hybrid framework by combining the multimodel 

ensemble method and probabilistic model. In this study, we employ three different post-

processing methods to reduce errors in NPFs. A multimodel ensemble method, called the 

SVR-MA, is used to correct the precipitation forecasts, especially with respect to MA er-

rors. In addition, two different probabilistic postprocessors, the BPM and GBM, are em-

ployed to analyze uncertainty and compare different aspects. According to the above re-

sults, a new combined framework is proposed based on the multimodel ensemble method 

and the probabilistic forecast method and compared with the probabilistic results from 

raw NPFs. 

Most measurements show that the JMA outperforms other models in the Meishan 

Catchment, especially when the lead time is shorter than 3 d. The forecast skill of the 

ECMWF is close to that of the UKMO in forecasts with short lead times (within 3 d), while 

the ECMWF tends to perform better at a longer lead time. The predictive error of CMA is 

noticeably larger than that of the other models. In general, the performance of all raw 

NPFs declines with increasing lead time. Compared to the raw NPF, the SVR-MA method 

has a slightly lower overall error, but the RMSE-MA and number of Mas sharply decrease, 

which means that the method has a good ability to control MA errors. However, the cor-

rection ability of the SVR-MA method is still gradually affected by the forecast accuracy. 

When the lead time exceeds 3 d, there are still some MA errors that cannot be corrected 

by the SVR-MA method due to the limited accuracy of the inputs. Two different probabil-

istic postprocessing methods are also examined and compared. From the aspects of accu-

racy, sharpness, reliability, and resolution ability, the GBM shows a better performance 

than the BPM. Meanwhile, the GBM is not only easier to update with new samples, but 

also does not need variable transformation, while the NQT in the BPM may lead to a loss 

of accuracy. Therefore, in this study, the GBM is used as the probabilistic postprocessor 

of the hybrid two-step framework. 

The assessment results show that with the new hybrid framework, all three indica-

tors used in this study are improved. In general, the new framework can provide a prob-

abilistic precipitation forecast with a higher accuracy, better reliability and resolution abil-

ity, and smaller confidence intervals, especially when the lead time is below 4 d. Moreo-

ver, when the actual precipitation is over 25 mm, the probabilistic forecast from the hybrid 

framework is more advantageous than others. Moreover, the research also indicates that 

the performance of probabilistic forecasts is related to the accuracy of their inputs. There-

fore, it is possible to obtain a more accurate probability prediction if further improvements 

of inputs from precipitation forecasting are available by using a multimodel ensemble or 

other methods. Although the hybrid framework proposed in this paper can improve the 

skill of precipitation forecast, further efforts are still needed to make its performance meet 

the demand of practical applications. 
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Appendix A Support Vector Regression 

The basic idea of an SVR is to convert a nonlinear case to a linear problem by mapping 

the original problem to a high-dimensional feature space. Let 𝑥 ∈ 𝑅𝑛 denote the input vec-

tor, 𝑦 ∈ 𝑅 denote the output vector and the sample set be (𝑥1, 𝑦1)⋯ (𝑥𝑙 , 𝑦𝑙): 

𝑓(𝑥) = ⟨𝑤, 𝜙(𝑥)⟩ + 𝑏 (A1) 

In Equation (A1), 𝑓(𝑥) is the regression output, 𝜙(𝑥) represents the nonlinear trans-

formation function, w is the weight vector, and b is the threshold. Then, an ε-SVR model 

is built by solving the optimization problem: 

min 
1

2
𝑤𝑇𝑤 + 𝐶

1

𝑙
∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑙

𝑖=1

𝑠. 𝑡. (〈𝑤, 𝜙(𝑥𝑖)〉 + 𝑏) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
𝑦𝑖 − (〈𝑤, 𝜙(𝑥𝑖)〉 + 𝑏) ≤ 𝜀 + 𝜉𝑖

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0, 𝑖 = 1,2,⋯ 𝑙

 (A2) 

where C is a cost constant, 𝜉𝑖 , 𝜉𝑖
∗ are the relaxation variables, and 𝜀 is a positive constant, 

which represents the margin of tolerance. 

The dual form of Equation (A2) can be expressed as: 

max ∑𝛼𝑖(𝑦𝑖 − 𝜀) − 𝛼𝑖
∗(𝑦𝑖 + 𝜀) −

1

2
∑∑(𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)𝐾(𝑥𝑖 ∙ 𝑥𝑗)

𝑙

𝑗=1

𝑙

𝑖=1

𝑙

𝑖=1

𝑠. 𝑡.∑(𝛼𝑖 − 𝛼𝑖
∗) = 0

𝑙

𝑖=1

0 ≤ 𝛼𝑖 , 𝛼𝑖
∗ ≤ 𝐶, 𝑖 = 1,2,⋯ 𝑙

 (A3) 

where 𝐾(𝑥𝑖 , 𝑥𝑗) = 〈𝜙(𝑥𝑖), 𝜙(𝑥𝑗)〉 is the kernel function, while 𝛼𝑖 and 𝛼𝑖
∗ are Lagrange mul-

tipliers. In this study, the radial basis function kernel with an undetermined parameter 𝜎 

is employed (Equation (A4)). 

𝐾(𝑥𝑖 , 𝑥) = 𝑒
(−
|𝑥−𝑥𝑖|

2

2𝜎2
)
 (A4) 

In the ε-SVR model, it is necessary to determine ε in advance, but in most practical 

cases, the value of ε remains unknown before training. Therefore, an alternative parame-

ter, ν, introduced by Schölkopf, has been used in SVR (ν-SVR). The new parameter can 

not only control the number of support vectors, but also automatically estimate ε, which 

simplifies the parameter selection (Equation (A5)). 

min 
1

2
𝑤𝑇𝑤 + 𝐶(𝜈𝜀 +

1

𝑙
∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑙

𝑖=1

)

𝑠. 𝑡. (〈𝑤, 𝜙(𝑥𝑖)〉 + 𝑏) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
𝑦𝑖 − (〈𝑤, 𝜙(𝑥𝑖)〉 + 𝑏) ≤ 𝜀 + 𝜉𝑖

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0, 𝑖 = 1,2,⋯ 𝑙

 (A5) 

Additionally, the dual form is 
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max ∑𝑦𝑖(𝛼𝑖 − 𝛼𝑖
∗) −

1

2
∑∑(𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)𝐾(𝑥𝑖 ∙ 𝑥𝑗)

𝑙

𝑗=1

𝑙

𝑖=1

𝑙

𝑖=1

𝑠. 𝑡.∑(𝛼𝑖 − 𝛼𝑖
∗) = 0

𝑙

𝑖=1

∑(𝛼𝑖 − 𝛼𝑖
∗) ≤ 𝐶 ∙ 𝜐

𝑙

𝑖=1

0 ≤ 𝛼𝑖 , 𝛼𝑖
∗ ≤ 𝐶/𝑙, 𝑖 = 1,2,⋯ 𝑙

 (A6) 

Once the three parameters, C, 𝜎, and ν, are determined, the ν-SVR is established by 

solving the linear optimization problem in Equation (A6). 
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