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Abstract: The agricultural use of saline table olive processing wastewater enables the implementation
of closed water cycles in this socioeconomically important industry for rural southern Spain and
relieves environmental, economic, and legal burdens. To allow growers to evaluate and guarantee
adequate long-term soil and plant conditions when irrigating with such regenerated wastewaters,
efficient soil monitoring strategies are needed. Field-scale monitoring with electromagnetic induction
sensing, after one (2013) and five years (2017) of irrigation with regenerated wastewater with average
electrical conductivity (EC) near 6 dS m−1 in an olive orchard in southern Spain, showed accumulation
of highly conductive material in the subsoil in relation to local topography and soil characteristics.
Laboratory analysis of the soil water revealed strongly varying patterns of EC during the growing
season and across the olive grove, which were attributed to dilution and concentration effects due to
rainfall and evaporation, respectively. Visual inspection and leaf analyses revealed no negative effects
on the olive trees. Apparent electrical conductivity (ECa), measured in between the tree rows in 2013,
showed a linear relationship with surface soil EC1:5 under the drippers and allowed identification of
areas with high ECa in the low elevation zones of the farm, due to the presence of shallow perched
saline water tables. A second ECa measurement in 2017 showed similar spatial ECa patterns and was
used to estimate the distribution of soil EC across the soil profile using inversion software, although
no unique field-wide relationships with soil properties could be inferred, possibly as a consequence
of spatially variable soil clay and water contents, due to the influence of the topography. Despite
the implementation of a more conservative irrigation strategy since 2015, results showed that the
salinity has increased since 2013 in about 15% of the study area, with the largest increments in the
deepest horizons.

Keywords: olive processing wastewater; soil salinity; irrigation; electromagnetic induction

1. Introduction

The agricultural use of regenerated wastewater from food processing industries consti-
tutes a promising alternative to traditional waste management (e.g., evaporation ponds) [1].
The latter is becoming increasingly criticized for the environmental risks involved and the
strong impact on the landscape, in addition to economic and legal concerns. Irrigation
with regenerated wastewater not only involves evident savings of water but also allows
companies to move forward toward more sustainable production strategies that involve
integrated and circular water cycles [1–3]. The table olive processing industries offer a huge
potential for doing so.
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Spain is the leading table olive producer in the world and accounts for more than
one-fifth of the world production [4]. About 380 and 240 companies are dedicated to table
olive processing and packaging, respectively. This activity generates a GDP of EUR 1000 M
and creates more than a quarter of the employment in the Spanish vegetable conserves and
processing sectors, in addition to employment in the auxiliary industries. It is an activity
that is predominantly rooted in rural areas and is, therefore, of special socioeconomic
relevance for southern Spain.

Table olive processing consists of a sequence of debittering, washing, and fermentation.
Depending on the table olive processing method used, efficient factories produce 2–3 m3

of wastewater per ton of olives, while less efficient plants can produce up to 15 m3 [1,5].
Traditionally, this wastewater is pumped into evaporation ponds to recover the solid matter,
which is then discarded. There is currently no widely accepted method for table olive
wastewater treatment, mainly because none of the available methods, e.g., advanced oxi-
dation, inverse osmosis, biological treatments, bioremediation, etc., provide cost-effective
results [5]. Moreover, there is an important variability in the quality of these wastewaters,
depending on their origin in the industrial process and their management. Most of the
effluents, independently of their origin (debittering, rinsing, fermentation, boiling), are
stored in the same pond, while subsequent transfers between ponds facilitate their evapo-
ration and concentration. While some industrial wastewaters are unviable for irrigation
due to their high electrical conductivity (EC), those with lower EC (<10–15 dS m−1) may
be potentially used for agricultural purposes, with or without a physical pretreatment
to avoid pipe and dripper clogging. According to [1], the ECs of debittering, washing,
and fermentation wastewaters are typically 11, 10, and 53 dS m−1, respectively, while
debittering and washing wastewaters are alkaline (pH = 13 and 11.5, respectively), and
fermentation wastewater is acidic (pH = 4.3). Ref. [6] discussed alternatives for mitigating
the impact of irrigation with treated wastewater, either by mixing with freshwater or by
accounting for changes in the soil hydraulic properties when scheduling irrigation.

Preceding research on olive tree response to wastewater irrigation yielded contrasting
conclusions. Ref. [7] evaluated the effects of saline irrigation (EC between 3 and 6 dS m−1),
compared to freshwater irrigation on manzanillo olive trees, on a clay soil (46% clay)
during a single campaign. They found a negative effect of saline water irrigation on tree
development and yield (yield reductions up to 30%) and a positive effect on olive oil
concentration in fruits. Yet, other studies identified a safe range of conditions, under which
the proper management of saline irrigation can work. Ref. [8] found that after 18 years of
continued irrigation with saline waters of up to 10 dS m−1, scheduled according to the clay
loam (35% clay) soil field capacity and a 20% leaching fraction, did not hamper olive tree
development nor yield. Ref. [9] pointed out that, after five years of saline irrigation on a
sandy loam soil, salinity tolerance considerations of olive trees must be based on the soil
rather than on the water salinity. Ref. [10] recently reviewed the opportunities for irrigating
olives with wastewaters. The use of olive mill wastewater might be beneficial for the plants
and soil, yet concerns arise regarding the (phyto)toxicity caused by the high concentrations
of polyphenols in these waters.

Most of these studies address plot or small field experiments and pay little attention
to field- or farm-scale applications. Local terrain characteristics (e.g., topography) and
lateral and vertical variations in soil properties might promote superficial and subsur-
face waterflows that lead to the accumulative effects of the wastewater and its chemical
constituents. To evaluate the long-term sustainability of irrigation with table olive process-
ing wastewater on soil properties and olive yield, efficient monitoring and management
strategies are needed to maintain olive production and soil quality. Conventional soil mon-
itoring entails periodical soil sampling and laboratory analysis, which are time-consuming,
labor-intensive, and expensive. In addition, the measurements cannot be repeated at the
same locations, since the soil sampling procedure is destructive. Alternatively, networks
of permanently installed electromagnetic sensors can be used to measure soil moisture,
temperature, and EC at fixed depths (e.g., [11]). Although such an approach yields quasi-
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continuous measurements in time, it provides only limited spatial information at the
locations where the sensors are installed. Detailed spatial soil information on soil salinity
can be obtained through electromagnetic induction (EMI) sensing, which has become one of
the most popular methods to characterize the spatial variability of soils and their properties
and states at the field scale, e.g., [12,13].

The non-contact and non-invasive nature of EMI makes the method very suitable for
surveying the dry, hard, and stony soils that are frequently found in olive groves, even
under extremely rough terrain conditions [14]. Depending on the type of instrument used,
this technique allows the simultaneous measurement of the integrated apparent electrical
conductivity (ECa) measured across different soil depths. Under non-saline soil conditions,
the ECa is usually related with clay and soil water content, among other soil properties,
while under saline conditions it is the contribution of the solute concentration of the soil
water that dominates the ECa signal. When integrated in a mobile measurement platform,
these instruments can scan large areas and take thousands of measurements within a couple
of hours. The georeferenced ECa data are then mapped and related with independent
measurements of the relevant soil properties for calibration (e.g., [15]).

However, this approach does not directly provide information on the vertical distribu-
tion of the “true” soil conductivity and the related soil properties. The joint inversion of
multi-receiver data (e.g., [16]) allows for the estimation of the vertical distribution of the
“true” conductivity, from which soil moisture or salinity profiles can be estimated in 2D
and 3D [17,18]. This emerging technology is expected to cause significant breakthroughs in
our monitoring capacity of the soil system.

The objectives of this work are to (1) evaluate the effects of irrigation with regenerated
wastewater from table olive processing on soil properties at the field scale after 1 year and
5 years; (2) evaluate these effects in the surroundings of the drippers; and (3) evaluate the
performance of electromagnetic induction sensing and inversion for estimating field-scale
soil conditions.

2. Materials and Methods
2.1. Study Site Description

This study was carried out in an olive grove (120 ha, 226 m above mean sea level),
located in southern Spain, with trees planted in the early 1960s on a 12 × 10 m frame. The
plot has been irrigated since 2012 with reclaimed saline water (EC ≈ 6 dS m−1) from a
nearby table olive processing plant. Irrigation was scheduled according to local practice
and based on the FAO methodology [19]. The soils developed on the calcareous material
belong to the great group of Calcixerepts, although Haploxererts and Xerofluvents are
also found [20]. The climate is temperate Mediterranean with dry and hot summers (Csa),
according to the Köppen classification [21]. Eighty percent of the mean annual precipitation
(662 mm) occurs between October and March, with practically no rainfall between June
and August, due to the Atlantic coastal influence. The average temperature is 17.1 ◦C, with
the highest average monthly temperature (25.7 ◦C) occurring in July and the lowest (9.9 ◦C)
in December.

2.2. Field Measurements

In this work, we summarize the combined results from field work conducted in a com-
mercial olive grove between 2013 and 2017, within the context of different projects and field
campaigns. Total rainfall for the hydrological years from 2013/14 to 2017/18 was 388, 410, 473,
410, and 757 mm, respectively, yielding an average annual rainfall of 488 mm. Average annual
ETo was 1286 mm. Different measurement locations and techniques were used and combined
in a unique data set, which is presented here. In November 2013, a preliminary exploration of
the farm was carried out with an electromagnetic induction sensor. Based on the ECa maps
resulting from these measurements, the location of 13 profile pits was chosen (Figure 1), for
which a complete description of the soil profile was made in June 2014. In addition, samples
were taken from the groundwater that emerged at the bottom of several profile pits. At these
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locations, piezometers were installed, and water level and quality were measured on seven
different days, ending in July 2015. Water level below the soil surface was manually measured,
and water samples were extracted using a using a 12 V peristaltic pump. Near the profile pits,
paired topsoil samples (0–0.2 m) were taken in between the tree rows and under the drippers
in the tree rows in June 2014 and analyzed in the laboratory for 1:5 soil–water solution extract
conductivity (EC1:5) and Exchangeable Sodium Percentage (ESP) [22] to evaluate the extent
of the local effects of the effluent irrigation. Based on the results of the first evaluation of the
farm (2013–2014), smaller irrigation volumes were recommended, resulting in the implementa-
tion of a more conservative irrigation strategy from 2015 onwards. To check the effect of this
change on the soil salinity, another ECa survey was performed in February 2017, with the same
electromagnetic induction sensor. The total rainfall and ETo between both ECa surveys were
1470 and 3990 mm, respectively. After this survey, taking advantage of the installation works
of a new irrigation system in the field, soil samples were taken on 27 July, 22 November, and
21 December 2017 at 65 locations (Figure 1), with intervals of 0.3 m to a depth of 1.2 m, and
analyzed in the laboratory for saturated paste extract electrical conductivity (ECe) and EC1:5,
according to the methodology presented by [22], clay (hydrometer method), and carbonate
content (calcimeter method). The sodicity hazard was assessed by the Sodium Adsorption Ratio
(SAR), which refers to ion concentrations in the soil solution and is calculated, according to [22],
as SAR = [Na+]/

[([
Ca2+]+ [

Mg2+])/2
]0.5, with the cation concentrations of the saturated

paste extract in mmolc L−1 measured using a PinAAcle500 atomic adsorption spectrofotometer
(Perkin Elmer, Waltham, MA, USA). The Exchangeable Sodium Percentage (ESP) refers to the
adsorbed ions on the soil exchange surfaces. Ref. [23] showed that for practical field applications
(SAR < 30 mmolc1/2 L−3/2) ESP ≈ SAR.
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Figure 1. ECa (0–0.5 m) map of the experimental field, measured in 2013, with topography and
locations of profile pits and sample points. Piezometers were installed at p-2, p-3, p-5, p-6, p-7, p-8,
and p-13. Transects T1 (A,B) and T2 (C,D) are represented with continuous lines.
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2.3. ECa Measurement and Inversion

ECa was measured with a DUALEM-21S electromagnetic induction sensor (Dualem
Inc., Milton, Canada). The sensor consists of a coil that transmits an electromagnetic field
at low frequency (9 kHz) and two pairs of receiver coils with horizontal and perpendicular
orientations with respect to the transmitter. The distance between the emitting coil and the
receivers with perpendicular orientation is 1.1 and 2.1 m, resulting in theoretical depths
of exploration (DOEs) of 0–0.5 m and 0–1.0 m, respectively. The horizontally oriented
receivers are located at distances of 1 and 2 m from the emitter, with DOEs of 0–1.5 m
and 0–3.0 m, respectively. The sensor is integrated in a mobile platform consisting of an
all-terrain vehicle (ATV) equipped with a GPS-RTK positioning system that drags the PVC
sled in which the DUALEM-21S is housed. The measurements were performed at speeds
ranging from 5 to 10 km/h along the lanes in between the tree lines. At each measurement
point, the four values of ECa corresponding to the above indicated DOEs were recorded.
The measured ECa is the integrated EC of a bulk soil volume and depends, therefore, not
only on soil salinity, but also on other soil properties such as clay or water content, among
others. Therefore, it is necessary to determine, for each application, which soil properties
predominate in their contribution to the ECa signals [12].

The raw ECa data were filtered for outliers, and spatial consistency was checked.
The presence of conductive elements such as metal pipes or fence elements may result
in anomalous ECa measurements. In addition, sensor tilting and rotation, because of
rough soil surface conditions during measurement, can change the coil configuration
with respect to the soil surface and produce erroneous measurements. Subsequently,
the ECa measurements were interpolated on a 1 × 1 m grid. Descriptive statistics and
cumulative distribution functions (cdfs) of interpolated ECa and ECa increments from
2013 to 2017 (∆ECa = ECa2017 − ECa2013) were provided. To quantify the spatial evolution
of the ECa across the farm, we use as an indicator the probability of exceeding a certain
value of (∆ECa).

The four ECa signals were then inverted using the EM4Soil code (EMTOMO, Lisbon,
Portugal) to obtain the vertical distribution of the “true” conductivity, σ. EM4Soil provides
pseudo two- or three-dimensional images of σ, conditioned on neighboring σ values, close
to the estimated point. According to the smoothing condition imposed on the σ profile,
two inversion algorithms (S1 and S2) were considered. Both are variations of the Occam
regularization method [24], though the S2 inversion algorithm produces smoother results
than S1. Given the high ECa observed in this field, the inversion was performed using
the full solution (FS) for a range of values of the damping factor, λ. More details on the
inversion algorithm can be found in [16].

3. Results and Discussion
3.1. Spatial Distribution of ECa in 2013 and 2017

The ECa data from 2013 provided information on the horizontal and vertical distribu-
tion of soil salinity across the grove. Large ECa values were detected in depressions at the
foot of steeply sloping areas (Figure 1) and are indicative of salt accumulation as a result
of surface and subsurface water flow. Table 1 and Figure 2 show that ECa increased with
DOE throughout the field, particularly in areas of high ECa (>125 mS m−1), corresponding
to 10–15% of the area of the olive grove.

Both the larger ECa (>200 mS m−1) observed for the deepest DOEs and the positive
skewness of the probability density functions (pdfs) are indicative of the artificial accumu-
lation of conductive material between 1 and 3 m deep (Table 1 and Figure 2). The decrease
in the coefficient of variation (CV) with DOE indicates that this conductive material was
distributed more homogeneously in the subsoil than in the proximity of the surface. This
can also be seen in the decreasing skewness with DOE, particularly in 2017. This, together
with the slight increase in mean ECa (Table 1) from 2013 to 2017 (except for the shallowest
DOE), shows that the accumulation of conductive material in the subsoil persisted during
this period, despite the implementation of a more conservative irrigation strategy since
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2015. In order to check the robustness of this interpretation, the scale (k) and shape (λ)
parameters of the fitted Weibull distribution are also provided in Table 1. Parameter k
increased from 2013 to 2017 for all DOEs, except for 0–0.5 m, while λ was inversely related
to the skewness, with values near 3 indicating near-normal distributions.

Table 1. Descriptive statistics of the four ECa signals measured in 2013 and 2017. DOE: depth of
exploration, n: number of measurements, m: mean, s: standard deviation, CV: coefficient of variation,
k and λ: fitted Weibull scale and shape parameters, respectively.

DOE Year n m s CV Skew. Kurt. Weibull

m mS m−1 k λ R2

0–0.5 2013 31,677 59.8 36.5 0.61 1.43 6.11 67.2 2.33 0.984
2017 81,806 58.8 35.0 0.60 1.98 8.49 65.4 2.31 0.940

0–1.0 2013 31,306 84.2 45.0 0.53 1.55 6.61 93.0 2.70 0.968
2017 78,921 88.3 44.0 0.50 1.61 6.94 100.0 2.60 0.955

0–1.5 2013 31,677 90.7 45.8 0.51 1.48 6.15 98.1 2.78 0.963
2017 81,806 97.3 45.2 0.46 1.47 6.22 108.8 2.76 0.953

0–3.0 2013 31,306 106.1 46.8 0.44 1.50 5.62 112.7 3.26 0.900
2017 78,921 114.2 42.5 0.37 1.24 5.39 127.1 3.38 0.941
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February 2017 for DOEs of (a) 0–0.5 m; (b) 0–1.0 m; (c) 0–1.5 m and (d) 0–3.0 m.

For the 0–0.5 m signal, ECa decreased between 2013 and 2017 only in areas with
intermediate values (50–100 mS m−1), while, for deeper DOE’s, ECa increased for practically
the entire data range (Figure 2). The environmental conditions during both surveys might
have influenced the differences observed in Figure 2. The soil temperature at 0.6 m depth
was 5 ◦C higher in November 2013 (19 ◦C) than what was measured at the same depth in
February 2017 (14 ◦C), which theoretically causes a 10% increment in ECa measured in 2013
compared to 2017 [25]. To account for temperature effects, it is generally recommended to
correct the ECa data to a reference temperature (e.g., 25 ◦C). Yet, soil temperature varies
both vertically and laterally, making the implementation of such corrections in field studies
cumbersome. Note that by accounting for soil temperature effects, the increment for ECa
between 2013 and 2017 was expected to become larger (Table 1 and Figure 2). Therefore,
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the temperature correction can be omitted without compromising the main findings of
this study.

3.2. Spatial Distribution of ∆ECa

∆ECa showed a similar spatial pattern for the four signals (Figure 3). The largest ∆ECa
(>60 mS m−1) were observed in areas with the highest ECa (Figure 1). In large areas of the
farm, ECa decreased (∆ECa < 0), particularly for the shallowest DOE, possibly because
of the changes introduced in the irrigation management from 2015 onwards. Despite the
generalized increments observed for the deepest signal (0–3.0 m), the largest ∆ECa values
were smaller than those observed for the other shallower signals. This is also evident from
the comparison of the ∆ECa cdfs for the four signals in Figure 4, which show that, for
∆ECa > 35 mS m−1, the cumulative probability of the deepest signal exceeds that of the
other signals, indicating a lower probability of occurrence of the largest ∆ECa values for
the 0–3.0 m signal. This is also in agreement with the good fit of the normal distribution for
the deepest ∆ECa signal.
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To assess the importance of the different measurement conditions in 2013 and 2017,
such as the soil temperature and water content, threshold values of −25, 0, 25, and
50 mS m−1 were considered to identify the proportion of the areas where the ECa in-
creased or decreased (Table 2). For the shallowest signal (0–0.5 m), ECa increased by more
than 25 mS m−1 in approximately 9% of the olive grove area, while, for the other signals,
this proportion was near 15%. Considering the ∆ECa > 50 mS m−1 threshold (Table 2), the
ratio was 1.5% for the deepest signal (0–3.0 m) and approximately 3% for the other signals.
These results indicate that the shallow and deep ECa in the areas of high ECa (Figure 1)
were controlled by different mechanisms and that the ∆ECa reflected changes in the con-
ductive material present in the subsoil at different depths. For the surface signal (0–0.5 m),
ECa decreased between 2013 and 2017 by more than 25 mS m−1 (∆ECa < −25 mS m−1) in
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8.5% of the grove, while the other signals showed decreasing proportions, between 2.7%
and 0.7%, with DOE.

Table 2. Probabilities, P (Z ≤ z), of the increments in ECa between 2013 and 2017 for the four signals.

P (Z < z) 0–0.5 m 0–1.0 m 0–1.5 m 0–3.0 m

z = 50 mS m−1 0.971 0.962 0.966 0.985
z = 25 mS m−1 0.911 0.866 0.854 0.847
z = 0 mS m−1 0.587 0.409 0.315 0.141

z = -25 mS m−1 0.085 0.024 0.013 0.007

3.3. Soil Data and Relationship with the ECa

The results of the laboratory analysis of soil and water samples extracted from the
piezometers between June 2014 and July 2015 confirmed the existence of apparently in-
dependent perched water tables, with varying quality according to the cropping season.
Figure 5 shows that minimum EC values were reached toward the end of spring, as a
result of the dilution of the soil solution by winter and spring rains and the absence of
irrigation with saline reclaimed water, to reach maximum values in summer as a result of
irrigation and the effects of the high evaporation rates. This is particularly evident for p-8
(see Figure 1), located in an area of high ECa. The lack of good drainage conditions, possibly
because of the increasing clay content with depth, reaching 50–60% at p-8 (data not shown),
can contribute to the formation of perched water tables in this area, as in other areas of
the farm where a high ECa was observed. For comparison, the ECs measured in June 2014
in the creek near the northern limit of the grove, in the vicinity of p-13, and in the well
(Figure 1) are provided in Figure 5. Considering the ECs of these waters in combination
with their SAR, which varied between 5 and 10 (mmolc1/2 L−3/2), and according to the
classification proposed by [20] or [23] for soil salinity and sodicity hazard, their use for
irrigation purposes should not pose any risk. Leaf analysis performed in October 2014
and May 2015 in the surroundings of the piezometers revealed no negative effects from
irrigation with saline wastewater.

The application of the effluent was especially noticeable under the drippers, where
mean ESP and pH were significantly higher than in the lanes (22.5% and 8.2%; 8.9 and 8.2,
respectively), while the difference in the mean EC1:5 in the lanes and under the drippers
was not significant (Figure 6a,b). This shows that ESP might be a better indicator for soil
salinization in this context, with Na-rich irrigation water. Large amounts of other cations
were already present in these soils before irrigation started, making EC1:5 less effective
at detecting salinization effects of the irrigation with regenerated wastewater. It is also
remarkable that the effect of irrigation on ESP is noticed in the lanes, several meters away
from the drippers. This might be a consequence of local surface runoff, away from the
drippers toward the center of the lanes, which is produced by overirrigation or broken
irrigation pipes. This can be clearly observed in Figure 6a, with similar ESP values under
the drippers and in the lanes for three points.

The ECa measured in 2013 along the lanes showed a clear relationship with soil
salinity (Figure 6c,d). Linear relationships were found for EC1:5 and ESP with the ECa
(0–0.5 m) measured in the lanes, with R2 = 0.69 and 0.68, respectively. This is indicative
of the potential of EMI for the spatial evaluation of both parameters at the field or farm
scale. These relationships are lost, however, when EC1:5 and ESP data, which are measured
under the drippers and not in the lanes where the ECa measurements were performed,
are considered.
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Figure 5. Daily rainfall and EC measured in the piezometers installed at the profile pits (indicated
with prefix p in Figure 1), the well, and the creek in the northern part of the farm, from 22 June 2014
to 13 July 2015.
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Figure 6. Relationshipsbetween (a) ESP and (b) EC1:5 measured (0–0.2 m) under the drippers and in
the lanes nearby the profile pits shown in Figure 1. Relationship of (c) ESP and (d) EC1:5, measured
in the lanes and under the drippers (0–0.2 m), with the ECa (0–0.5 m) measured in the lanes in 2013.
The discontinuous line represents the linear regression for the lane data.
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Figure 7 shows the classification of the soil samples taken in 2017 (Figure 1) according
to ESP, ECe, and pH. The proportion of “non-saline” and “non-sodic” samples ranged from
36% (0.3–0.6 m) to 56% (0–0.3 m), with pH values generally above 8.5. Samples classified
as “saline” (ECe > 4 dS m−1 and ESP < 15%) represented between 14% (0–0.3 m) and
30% (0.6–0.9 m) of the total, while the “sodic”, with pH < 8.5, and “alkaline” samples,
with pH > 8.5, (ECe ≤ 4 dS m−1 and ESP ≥ 15%) represented between 8% (0.6–0.9 m) and
22% (0–0.3 m). These last two categories imply an excessive presence of Na in the soil
solution, with respect to the concentration of other cations that potentially leads to a loss
of soil structure and limitation of soil water retention and transmission, particularly in
combination with low ECe and high pH (near 10, at some points).
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Figure 7. Classification of the samples taken in 2017 (Figure 1), according to the percentage of
exchangeable sodium (PSI), the electrical conductivity measured in the saturated paste extract (ECe),
and the pH for the four depths.

This sample classification is not maintained for the different depths analyzed nor does
it show clear spatial patterns. The occurrence, apparently random, of the different categories
of affectation by Na could be a consequence of the deterioration of the irrigation system,
with frequent ruptures of the pipes at different points of the farm and the progressive
obstruction of the drippers as a result of irrigation with the reclaimed water, as observed
during the field work. This would result in a heterogeneous distribution of irrigation water
across the grove and provides an explanation for the results shown in Figure 7.



Water 2022, 14, 3049 12 of 17

3.4. Inversion

The results of the three-dimensional inversion provide more detail for the vertical
distribution of the conductivity than the raw ECa data. Figure 8 shows σ for different
depths in the western part of the olive grove, estimated using the 2017 ECa measurements.
It can be seen how, in the areas of high ECa (Figure 1), σ increases with depth to reach
maximum values near 0.8–1.0 m. From 1.2 m, σ decreases, until it reaches minimum
values at 2.5 m. This indicates the presence of conductive material at 1 m depth, possibly
corresponding to the perched saline water tables that were characterized in Figure 5. From
3 m depth, σ increases again, reaching very high values throughout the field at 4 m depth,
which corresponds to the underlying water table that also shows a high salinity, according
to the analytical results of the well water (Figure 5).
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A two-dimensional inversion was made along transects T1 A–B and T2 C–D (see Figure 1),
both with important topographic gradients and crossing areas of high ECa. The trends
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observed in these transects can, therefore, be considered representative for the entire olive
grove (Figure 9). ECa and σ reached maximum values in the depression along the northern
half of T1. Except for the high clay content that characterizes the soil profile in this zone,
none of the other soil variables represented in Figure 9 can explain the observed trends in
ECa and σ. Therefore, we attribute the high ECa and σ in the depression to higher soil water
contents at the time of measuring the ECa, as evidenced by the signs of waterlogging that
appear in the photograph in Figure 10. Although the ECe was high throughout the transect,
and in particular near the southern end (B), the ECa (and σ) did not follow this trend and was
possibly mimicked by the variation in soil water content or other soil properties. Since the soil
water content was the lowest at the highest elevation of the transect (the southern half), not all
the salts present in the soil solution are dissolved and detected by electromagnetic induction
sensing. This could explain the smaller values of ECa and σ along this section of the transect,
as compared to the northern half. In spite of this, a similar increasing trend toward endpoint
B can be observed for ECe and ECa (and σ).
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Figure 9. Elevation and different soil properties measured in 2017 along transect T1 A–B (Figure 1).
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Figure 10. Waterlogging in the lower area of transect T1 A–B (Figure 9). The photograph is taken
looking toward point B.

Similar trends were observed for transect T2 C–D, as shown in Figure 11. In this case,
the maximum values of ECa and σ are larger than in transect T1. The similarity of the values
for σ at 0.75 and 1.05 m depths may indicate the presence of local saline perched water
tables (Figure 5) at these depths near the foot of the hillslope. Moreover, in this transect,
maximum values of ECe, especially at depths between 0.3 and 0.9 m, were observed where
the elevation was the highest. This occurred particularly at the second point from endpoint
D, which coincided with the southern end (B) of transect T1 (Figure 9). The smaller water
content of the soil profile at this point, located at a higher elevation, can again explain why
the high ECe is not reflected in the ECa or the σ data. However, the ESP at this point is
low, indicating a balance between the concentration of Na and the other cations of the soil
solution in spite of the high ECe.

The apparent mismatch between the ECa measured in 2017 and the soil properties
shown in Figures 9 and 11 possibly has its origin in the vertical and lateral variations of
soil moisture across the olive grove, because of the local terrain and variable soil conditions
(clay content varied between 10% and 50%), in addition to deficiencies in the functioning
of the irrigation system. Soil sampling was carried out according to the possibilities of
access to the farm during the period July–December 2017. It is possible that, during this
period, the soil conditions changed from the situation in February 2017, when the ECa
measurements were made.
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Figure 11. Elevation and different soil properties measured in 2017 along the transect T2 C–D
(Figure 1).

4. Conclusions

Irrigation with Na-rich regenerated wastewater from the olive processing industry
produced local (drippers/lanes) and field-wide effects. This involved lateral superficial
or subsuperficial water flows and transport of salts, according to local topographical
conditions and soil composition and state. The initial EMI measurement in 2013 detected
high values of ECa in the areas at the foot of the slopes, indicative of the accumulation
of salts in these areas. ECa increased with the DOE, doubling for the deeper signal the
ECa values of the shallower signal. The second measurement of ECa, in 2017, after the
adoption of a more conservative irrigation strategy, showed a similar spatial pattern. In
large areas (~50%) of the olive grove, a slight decrease in the ECa was observed, particularly
for the most superficial signals, but in the areas of greater ECa an increment of more
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than 60 mS m−1 was observed for the deeper signals. In general, increments of more than
25 mS m−1 were measured in 15% of the olive grove.

The soil and water quality monitoring performed between 2014 and 2015 showed
the existence of apparently independent saline perched water tables, at different locations
across the olive grove, coinciding with the areas of high ECa, as identified in the measure-
ments of 2013 and 2017. EC1:5 and ESP measured in 2014, in the topsoil in the lanes, showed
a linear relationship with the ECa measured in 2013, highlighting the potential of the EMI
method for estimating these parameters.

Estimates of σ, made with an inversion code for producing three- and two-dimensional
images from the ECa data, confirmed the presence of perched saline water tables and
allowed us to more accurately estimate the water table depth. However, it was not possible
to relate the ECa measured in 2017 and the estimated σ with the soil properties that were
measured during the summer and autumn of 2017, possibly as a result of changes in field
conditions and a heterogeneous distribution of soil water content that constitutes a factor
of distortion in the relationship between ECa and ECe.

The results of this work indicate that the agricultural application of reclaimed saline
water from the table olive industry can be carried out in this soil without serious problems.
However, the practice requires continuous monitoring of the properties of irrigation water
and soil quality to ensure its sustainability in the medium and long term. The results also
confirm the potential of EMI tomography to perform such monitoring at the field or farm
scale. Yet, the successful estimation of soil properties indicative of salinity will depend
mainly on the possibilities of minimizing the influence of other soil properties that also
influence ECa, such as moisture, clay content, or soil temperature.
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