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Abstract: For solving the problem of low efficiency about dyes and slow precipitation rate for
powdered activated carbon (PAC), this study successfully prepares a kind of powdered activated
carbon-based composites (PACMC) to remove Rhodamine B (RhB) in wastewater as an adsorbent.
PACMC derived from potassium humate and polyaluminium chloride (PACl)-modified PAC were
fabricated via a chemical precipitation method. We confirmed the micro-morphology and chemical
composition of PACMC by scanning electron microscopy energy-dispersive X-ray spectrometer (SEM-
EDS) and fourier infrared spectroscopy (FT-IR), certifying that PACMC was synthesized by chemical
reaction of raw materials. PACMC has layered porous structure and functional groups, which is
beneficial to the transport and diffusion of RhB molecules. The specific surface area (10.098 m2·g−1)
and average particle size (142.9 µm) of PACMC and the specific surface area (710.1 m2·g−1) and
average particle size (11.9 µm) of PAC were measured. By comparison, it can be seen that PACMC has
larger average particle size conducive to solid–liquid separation. The static adsorption experiments
were carried out to investigate the adsorption properties of RhB by PACMC. The results showed that
the adsorption capacity of PACMC for RhB was 2–3 times as high as that of PAC. The pH value of the
solution had a significant effect on the adsorption of RhB by PACMC and the maximum adsorption
was observed at pH = 4.5 (qe = 28.56 mg·g−1, C0 = 40 mg·L−1). The adsorption of RhB by PACMC
can be well described by the pseudo-second-order kinetics. The kinetic results revealed that the
adsorption process involved several steps, where the chemical adsorption and intra-particle diffusion
both played the important roles. The isothermal adsorption data were in accordance with the Dubinin–
Radushkevich model, which indicated that the adsorption was dominated by the chemisorption
mechanism. Therefore, the adsorption mechanisms included chemical binding/chelation effect and
electrostatic adsorption effect.

Keywords: powdered activated carbon; Rhodamine B; adsorption; powdered activated carbon-
based composites

1. Introduction

The textile industry is one of the most flourishing industries across the globe. Accord-
ing to a Global Industry Analysts (GIA) report, the worth of textile industry at present
is around $480 billion and is shortly expected to reach $700 billion. The textile industry
extensively uses resources like high power, water, and raw material, which contribute to
pollution of air, water, and soil [1]. Colored wastewater could be the dominant pollutant
in industrial areas [2]. Over 10,000 dyes with a total yearly production over 7 × 105 MT
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worldwide are commercially available and 5–10% of dyestuffs are lost in the industrial efflu-
ents [3,4]. These dyes and pigments contain hazardous metals such as mercury, chromium,
nickel, copper, and cobalt, which usually escape the treatment systems because of their
incapability to degrade recalcitrant dyestuff. RhB is a typical alkaline xanthene dye which
is widely used in textile, cosmetics, food, paper making, and leather. It is estimated that
20% of the total RhB used remains in the effluent during the production process [5]. The im-
proper handling of these wastewaters can compromise the quality of the aqueous systems
that are used as receptors for its discharge, causing water pollution and environmental risks
for the entire ecosystems that are exposed [6]. RhB are mutagenic and carcinogenic for the
human body and can be absorbed by the skin, consequently leading to health complications
like respiratory or renal failure and permanent blindness [7,8]. Then, the removal of RhB is
paramount to reduce the potential of health problems to the human being, to protect the
environment and to satisfy the corresponding legislations related to the presence of these
pollutants. Although we have various traditional and current technologies to cope up with
the existing textile pollution, the expected effluent quality could still not be achieved due to
certain limitations. Considering these aspects, different methods for the removal/reduction
of RhB in aqueous systems have been studied.

Dye removal techniques include ultrafiltration, photocatalytic degradation, electro-
catalytic degradation, oxidation, flocculation, and adsorption [9–13]. Ag-Bi/C films could
adsorb RhB and photo catalyze the oxidization of RhB by H2O2 [14]. However, the photo-
catalytic products need to be further studied. Adsorption is an effective technique for dye
removal due to the low operational cost and high removal efficiency, especially if effective
adsorbents are utilized [15–17]. Nanoscale zero-valent iron has been employed intensively
to remediate textile wastewater contaminants [10,18]. Nanoscale zero-valent iron coated
with lignin-derived carbon as a novel functional material can efficiently remove heavy
metal ions and organic pollutants in wastewater by synergistic effects between the catalytic
Fe0 center and the lignin-derived carbon [19]. L-lysine-modified montmorillonite enhances
the adsorption capacities of Pb(II) and Etidronic acid-functionalized layered double hy-
droxide enhance heavy metal removal [20,21]. However, biochar has been recommended
as a promising adsorbent material for organic contaminants’ removal from wastewater. Ac-
tivated carbon is the most widely used, simplest, and least expensive method for removing
micropollutants in particular hydrophobic compounds, and in water treatment plants. For
some carbons, adsorption capacity substantially increased when carbon particle diameter
was decreased from a few tens of micrometers to a few micrometers [22]. It has been
reported that the adsorption capacity of activated carbon for macromolecules (for example,
natural organic matter (NOM)) increases as the median particle diameter decreases from
10 µm (PAC) to 0.7 µm (SPAC), whereas the adsorption capacity for small molecules (for
example, phenol) does not change with decreasing particle size [23]. It is expected that sur-
face modifications will help increase the adsorption capacity of activated carbon for small
molecules. Combined modified clay/biochar composites revealed noteworthy advantages
due to their high adsorption capacity, low cost, and good suitability for removing anionic
dyes and phenolic compounds [24]. Post-treatment of the beech biochar with citric acid
(CA) and oxidation of the surface by heating enhances biochar adsorption capacities [25].
Activated carbon prepared with polyurethane as a raw material can effectively improve the
recovery rate of adsorbent by combining with iron oxide nanoparticles [26]. However, it is
important to keep in mind that a promising sorbent successfully applicable at industrial
scale should be economically attractive and raw materials should be extensively available
in large quantities in nature or as a by-product (bio-residues). The release of powdered
activated carbon (PAC) may negatively impact downstream processes. The use of PAC in
water treatment therefore needs consideration of how the fine adsorbent material is most
effectively removed from the water, in addition to the removal of the micropollutant target.

A balance between the contaminant removal and the clarification performance there-
fore needs to be reached for efficient treatment. Systematic investigations to study the
influence of the physicochemical properties (e.g., functional groups) of activated carbon
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on the adsorption behavior of RhB have not been done in this field. Therefore, it is the
aim of this work to prepare PAC-based composite materials for very efficient adsorption of
RhB from aqueous solution with a much better adsorption and separation performance.
In addition, the preparation, chemical, textural, and particle size characterization of the
powdered activated carbon-based composites (PACMC) is presented in this work. The
findings in this work have presented the intermediate evidence for revealing the relation
between the adsorption efficiency and functional groups based on the powdered activated
carbon-based composites (PACMC), and are of significance for understanding the process
and mechanism of adsorption materials.

2. Experimental
2.1. Materials and Reagents

Industrial humate (HS) was supplied by Beijing Bowei Shennong Technology Co., Ltd. (Bei-
jing, China). Polyaluminum chloride (PACl) was purchased from Nanning Chemical Co., Ltd.
(Nanning, China). Powder-activated carbon was acquired from Xilong Science Chemical Co.,
Ltd. (China). RhB (C28H31ClN2O3) was purchased from Shanghai Zhanyun Chemical Co., Ltd.
(Shanghai, China). All chemicals were of analytical grade and used without further processing.

2.2. Preparation of PACMC Composite Material

Typically, 4.42 g of HS, PACl, and PAC (mass ratio 1:1:1) were firstly dissolved in
the water solution (97.3% in water, 500 mL) and stirred for 12 h at room temperature
(R.T.). Then, the solution was stood for 12 h. After that, the mixture dried in vacuo at
50 ◦C for 48 h, and it was ground into a fine powder. All solutions were prepared using
deionized water.

2.3. Material Characterization

During the preparation of PACMC, the interaction among PAC, PACl, and HS could
be analyzed by SEM-EDS (GEMI NISEM 500) and FT-IR (NicoletiS50, USA). After adsorp-
tion, the interaction between PACMC and RhB could be analyzed by SEM-EDS (GEMI
NI-SEM 500) and FT-IR (NicoletiS50, USA). SEM-EDS (FP-6500) was performed to ob-
serve the morphological features and element distribution of the samples. The content
of humate in solution samples were measured via EEM, COD, and TOC. The particle
size distribution and the specific surface areas were measured via a lazer particle size
meter (Mastersizer2000, Malvern, UK). PACMC zero charge (pHpzc) was determined
by a mass titration method [27]. Subsequently, the RhB was determined by UV–visible
spectrometer [5,6].

2.4. Batch Adsorption Experiments
2.4.1. Adsorption Isotherm Experiment

Batch removal experiments were performed in a constant temperature oscillation
incubator with a set temperature of 20 ◦C and a vibration speed of 180 r·min−1. Three
replicates for each experimental combination were performed to investigate initial solution
pH value (4.5–9), contact time (0–24 h), and initial concentration (20, 30, and 40 mg·L−1)
effect on RhB removal. The RhB solutions with different concentrations were obtained by
dissolving the corresponding dosage of RhB mother liquor (1000 mg·L−1) with deionized
water. 0.05 g of PACMC (or PAC+PACl, or PAC) was dispersed into 50 mL solutions.
The pH value of the RhB solution was adjusted with 0.1 mol·L−1 NaOH or 0.1 mol·L−1

HCl and determined by a pH meter (PB-10, Sartorius Scientific Instruments Co., Ltd.,
Beijing, China). After the end of the adsorption experiment, the solution was filtered
by 0.45 µm filter membrane. The RhB was determined by a UV–visible spectrometer at
540 nm. The adsorption capacity (qt, mg·g−1) and RhB removal rate (η, %) were calculated
using Formulas (1) and (2). The adsorption quantity qe was calculated by Formula (3) and
fitted by Freundlich, Langmuir, Temkin, and Dubinin–Radushkevich isotherm models.
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The equations of Freundlich, Langmuir, Temkin, and Dubinin–Radushkevich adsorption
isotherm are (4)–(7), respectively:

qt = V(C0 − Ct)/W (1)

η(%) = (C0 − Ct)× 100%/C0 (2)

qe = V(C0 − Ce)/W (3)

ln qe = ln KF +
1
n

ln Ce (4)

Ce

qe
=

Ce

qmax
+

1
qmaxKL

(5)

qe = B ln KT + B ln Ce (6)

ln qe = ln qmax + (−β)[RTln(1 +
1

Ce
)]

2
(7)

where C0 (mg·L−1) and Ct (mg·L−1) are the initial and final concentrations of the con-
taminant solution, respectively; V (L) is the volume of the contaminant solution; W (g)
is the mass of adsorbent; and t (min) is the adsorption time; qe (mg·g−1) is the equi-
librium adsorption quantity; Ce (mg·L−1) is contaminant concentration at equilibrium;
KF ((mg·g−1) (L·mg−1) n−1) is Freundlich constant; n is an empirical parameter related to
adsorption strength; qmax (mg·g−1) is the maximum adsorption capacity; KL (L·mg−1) is
Langmuir constant; KT (mg·g−1) and B (J·mol−1) are Temkin constants; β (mol2 ·kJ2) is a
constant related to adsorption energy; R (8.314 J·(mol·K)−1) is the ideal gas constant; T (K)
is the thermodynamic temperature [28]. After the reaction, the PACMC and PAC particles
were filtrated, washed with deionized water several times, freeze-dried overnight, and
stored in glass vials for further characterization.

2.4.2. Adsorption Kinetics Experiment

Three replicates for each experimental combination were performed to investigate
initial solution pH value (6.88), contact time (0–24 h), and initial concentration (20 mg·L−1)
effect on RhB removal. 0.05 g of PACMC was dispersed into 50 mL solutions. The ad-
sorption experiment and RhB concentration test were conducted in the same way as 2.4.1.
Pseudo-first-order dynamics model, pseudo-second-order dynamics model, and particle
intima diffusion model were fitted and calculated by Formulas (8)–(10), respectively:

ln(qe − qt) = ln qe − k1t (8)

t
qt

=
1

k2q2
e
+

1
qe

× t (9)

qt = kdit0.5 + c (10)

where, k1 (min−1) is the adsorption rate constant of pseudo-first-order kinetic model;
k2 (g·(mg·min)−1) is the adsorption rate constant of pseudo-second-order kinetic model;
kdi (mg·(g·min0.5)−1) is the rate constant of internal diffusion model; c (mg·g−1) is a con-
stant [28].

2.4.3. Thermodynamic Analysis of Adsorption Results

The adsorption experiment and RhB concentration test were conducted in the same
way as Section 2.4.1. Thermodynamic functions such as enthalpy (∆HΘ) and entropy (∆SΘ)
can be obtained from Equation (11) [29]:

ln Kd =
∆SΘ

R
− ∆HΘ

RT
(11)
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where ∆SΘ (J·(mol·K)−1) is the entropy change in the adsorption process; ∆HΘ (kJ·mol−1)
is adsorption enthalpy change; Kd (mL·g−1) is the equilibrium constant; Gibbs free energy
(∆GΘ, kJ·mol−1) can be obtained from Kd, and the formula is as follows:

∆GΘ = −RT ln Kd (12)

3. Results and Discussion
3.1. Adsorbent Characterization

The FT-IR spectra for PACl, PAC, HS, and PACMC were recorded and are shown in
Figure 1. In the case of PACl, the bands appearing at 3430 cm−1, 1616 cm−1, and 1383 cm−1

are associated with OH vibrations. The bands at 1105 cm−1 and 989 cm−1 are assigned to
the bending vibrations of Al-OH2 and the band at 618 cm−1 is assigned to the symmetric
stretching mode of Al–O bond of the central AlO4

− [30]. In the case of PAC, 1570 cm−1

were related to the aliphatic C=O (-COOH, -COOR) [31–33]. In the case of HS, the most
interesting bands, in which oxygen-containing functional groups carboxylic and phenolic
may be observed, are 1570, 1090, 1372, and 3120 cm−1 [34]. In the case of PACMC, the peaks
located at 1065 and 2990 cm−1 meant the stretching vibration of C-O and RNH and RNH2,
respectively [31–33]. After PACMC synthesis, FTIR study was performed to identify the
functional group in PACMC. As seen, new peaks appeared in the FT-IR spectrum. It can be
observed that the major changes of PACMC IR spectra occur at the region 3700–1000 cm−1,
in which the adsorption bands of oxo-groups or oxo-bridges appear. Specifically, the band
at 3430 and 3120 cm−1 in PACl and HS spectra gradually degenerates into three distinct
bands at 3669, 2990, and 2898 cm−1. In this region, bands related with the vibrations of C-C
and C-O bonds appear. The band at 1105 cm−1 in the PACl spectra gradually degenerates
into two distinct bands at 1065 and 1255 cm−1 after the PAC and HS addition. The alteration
of bands indicates that PACl, PAC, and HS molecules are all affected by the combination of
three compounds. Moreover, at the region 1000–600 cm−1, the two weak bands appearing
at the spectra of PACl gradually disappear. At the region 1700–1500 cm−1, the three weak
bands appearing at the spectra of PACl, PAC, and HS gradually disappear. These bands
are associated with vibrations of oxo-groups or oxo-bridges and the disappearance could
be an indication of interaction among PACl, PAC, and HS molecules.
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Figure 1. Infra-red spectra of PACMC and ingredient.

Summarizing, it can be suggested that the introduction of PACl and HS results in
noticeable alterations of PACMC’s IR spectra. These alterations could be indicative of
the interactions among PACl, PAC, and HS molecules, such as covalent bonding and
electrostatic interactions, which result in the formation of new, composite species. It is
possible that in these interactions the -COO- groups of HS and the -O- or -OH- groups
of PACl or PAC are involved. According to the theory of coagulation, PAC and HS are
the main reaction subjects in the synthesis process, and PACl acts as a binder through
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coagulation. PAC plays the role of supporting and providing channels. HS binds to the
surface of PAC through the bridging effect of PACl. At the same time, PACl also forms a
stronger combination with PAC through HS bridging, which enhances the solid–liquid
separation potential and recycling efficiency of PACMC.

SEM images of PACMC at different magnifications are given in Figure 2a,b. The avail-
ability of pores and internal surface is clearly displayed in the SEM picture of PACMC. It
was possible to observe that PACMC was constituted of different size particles. PACMC has
a layered structure, irregular shape, and the surface is fractured and rough. Furthermore,
the surface of these particles has a lot of tiny pores, cracks, and attachs fine particles, which
forms a complex pore network system. The micrographs reveal that PAC presents a layered
surface, which is also an indication that PAC provides supporting and channels for PACMC
(Figure 2c). EDS images of PACMC are given in Figure 2d. Peaks of silicon, aluminum,
and chlorine appear in PACMC, while the content of carbon decreases and the content of
oxygen increases, indicating that PACMC has -OH and -COOH groups. PAC is mainly
composed of carbon and oxygen (Figure 2e). By comparing Figures 2d and 3b, it can be
seen that silicon, aluminum, and chlorine do not appear on all surfaces, which indicates
that PAC and PACl are unevenly distributed in the preparation process of PACMC. The
preparation route and a schematic microstructure illustration of PACMC are speculated as
shown in Figure 4.
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Good stability is an important prerequisite for practical application of an adsorbent.
pH is the most likely factor affecting the stability of PACMC, so the experiment tested the
reactant dissolving effect of PACMC at different pH values (pH = 2, 7, 9). As shown in
Figure 5, there was no obvious displacement of EEWP in the three-dimensional fluorescence
spectra of PACMC supernatant at different pH values, indicating no dissolution of HS.
COD and TOC tests were carried out on the supernatant, and the results also showed that
TOC and COD of all samples were zero, indicating that the three components in PACMC
have been firmly combined together, and that PACMC has good stability.
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The specific surface area (10.098 m2·g−1) and average particle size (142.9 µm) of
PACMC and the specific surface area (710.1 m2·g−1) and average particle size (11.9 µm)
of PAC were measured. By comparison, it can be seen that PACMC has a larger average
particle size, which is conducive to solid–liquid separation. PACMC will have a better
adsorption effect on hydrophilic small molecular because it has a more active functional
group. As shown in Figure 6a, the particle size distribution of PACMC shows that the
particle size of the material ranges from tens of microns to hundreds of microns, compared
with PAC, which can achieve better solid–liquid separation and recycling effect. Studies
have shown that PACl flocculation effect is unstable [35], indicating that the introduction
of HS promotes the bonding of PAC particles, and PACl reacts with PAC and HS during
the reaction process, resulting in more compact particles than ordinary flocs. In addition
to the influence of surface functional groups, the charge characteristic of particles is also
an important factor to determine the adsorption effect of materials. The zero charge point
(intersection of pH and ∆pH) of PACMC under different pH conditions was measured
experimentally, as shown in Figure 6b. With the increase of pH, the charge on PACMC
surface changed from positive to negative (transition point pHpzc at pH = 5.4). In the
adsorption experiment, the charge on PACMC surface is positively at pH below this and
negatively at higher pH. Therefore, under different pH conditions, the interaction between
PACMC and dye molecules should consider the changes of surface functional groups,
electrical properties, and charge density at the same time, and the adsorption effect is the
comprehensive embodiment of chemical and physical interaction.
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3.2. Adsorption Isothermal Model and Adsorption Kinetics Model

The adsorption data were analyzed and four different models were considered: Langmuir,
Freundlich, Temkin, and Dubinin–Radushkevich isotherms, described by Equations (4)–(7).
The validity of these models was verified by finding the equilibrium constants as well as
the value of the square of the correlation coefficient (R2). A summary of the models’ results
considered is presented in Figure 7a,b. The examination of the adsorption data obtained
when Langmuir, Freundlich, and Temkin isotherm was applied shows relatively low values
for R2 in the range of 0.84 to 0.89. Dubinin–Radushkevich isotherm was also examined to fit
the data. The R2 value is high (R2 = 0.9930). A plot of lnqe vs. ε2 shows a linear relationship
that allows the calculation of the constants qmax and E as described by Equation (7) and
summarized in table and shown in Figure 7a. The good fitting of the adsorption data to
Dubinin–Radushkevich isotherm suggests that the adsorption of RhB by PACMC may be
physical adsorption or existing ion exchange. The β value can be used to predict the mean
free energy (E (kJ)) as follows:

E =
1√
2β

(13)
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The average free energy of adsorption is 10.71 kJ, indicating that the adsorption of 
RhB on PACMC is the result of ion exchange [36]. 
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The average free energy of adsorption is 10.71 kJ, indicating that the adsorption of
RhB on PACMC is the result of ion exchange [36].

To get more details about the kinetics of adsorption, the models of pseudo-first-
order kinetic model (PFO), pseudo-second-order kinetic model (PSO) [37], and particle
intra diffusion model (IPD) [38] were adjusted to the experimental data. The results are
reported in Figure 6c, along with the k1, k2, R2, and qe values. PSO model demonstrated
a satisfactory fit over the experimental data, as can be seen from the high R2 values
and low k2 and ∆qe ones. PSO model assumes that the adsorption rate is second order
with respect to the available surface sites [39]. As can be seen from Figure 7c, the qe
values for RhB (at C0 = 20 mg·L−1) are 12.05 mg·g−1, which are close to the experimental
qe values of 11.9 mg·g−1 for RhB, indicating that the adsorption of RhB by PACMC is
more consistent with the pseudo-second-order kinetic model. This indicates that RhB and
PACMC may form valence bonds by exchanging or sharing electron pairs, which is a kind
of chemisorption [40].

Furthermore, Figure 7d shows that the IPD plot is multi-linear and does not pass
through the origin, which means that intraparticle diffusion is not the only rate-limiting
step. Indeed, the first linear portion (steep-sloped) represents the external mass transfer.
The second depicts the intraparticle diffusion, and the plateau portion indicates the equi-
librium [41]. Thus, the intraparticle diffusion rate constant (Kdi) and the thickness of the
boundary layer (Ci) were valued from the slope and the intercept of the linear portion
(Figure 7d). The larger the intercept, the higher the boundary layer effect [42]. In the
process of PACMC absorbing RhB, the C1 value is not zero, and the Kdi value decreases
continuously, indicating that PACMC’s adsorption process is not only limited by the inter-
nal diffusion of particles, but also that there are other comprehensive factors that affect the
whole adsorption process.
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3.3. Thermodynamic Study

The direction and reaction degree of a physical and chemical process can be deter-
mined by thermodynamic study. Therefore, thermodynamic parameters of RhB adsorption
by PACMC were calculated based on experimental data to explore the characteristics of the
adsorption process. Figure 8a depicts the variation of lnKd with 1/T. The enthalpy of adsorp-
tion was determined from the slope of the straight line and to be equal to −7.36 kJ·mol−1.
These thermodynamic functions at different temperatures are calculated and shown in
Figure 8a. The positive value of entropy (∆S) and the negative value of Gibbs free energy
indicate that the adsorption process is spontaneous. The negative enthalpy indicates that
RhB adsorption on PACMC is an exothermic process. This conclusion was also confirmed
by Figure 8b. The uptake, particularly at a relatively high initial concentration (40 mg·L−1),
indicated a decline upon increasing the temperature. The change in entropy (∆S) and
Gibbs free energy were found to be 1.72 kJ·(mol·K)−1 and −546 kJ·mol−1, respectively. The
entropy (∆S) values indicates that the confusion degree of the solid–liquid contact surface
is increasing during the adsorption process. Both values show that the adsorption process
is spontaneous [43].
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3.4. Adsorption Performance
3.4.1. Comparison of RhB Adsorption Performance

As shown in Figure 9a, when the initial concentration of RhB solution is 35 mg·L−1,
under the same adsorption conditions, PACMC shows the maximum of RhB adsorption
with 15.26 mg·g−1, which is 218% higher than PAC + PACl and 281% higher than PAC,
respectively. The adsorption removal rates of RhB by PACMC, PAC + PACl and PAC all
decrease with the increase of initial concentration of RhB solution, which is consistent with
the law of adsorption. Constant adsorption capacity and dynamic adsorption equilibrium
process determine the final adsorption ratio [44]. The introduction of PAC makes the
pore structure of PACMC richer and helps to improve the adsorption capacity of PACMC.
The adsorption capacity of PACMC for RhB is positively correlated with the effective
adsorption sites on its surface, but the higher the initial concentration of RhB, the less
effective adsorption sites of PACMC, so the removal rate of RhB is related to the initial
concentration of RhB solution [45]. As the initial concentration of RhB increases, the
adsorption capacity increases until the adsorption process reaches saturation, because
the increase of RhB concentration strengthens the interaction frequency between PACMC
and RhB. It is worth noting that with the increase of the initial concentration of RhB, its
adsorption removal rate shows a nonlinear change, indicating that the removal of RhB
not only includes the adsorption of the outer active site of the material, but also includes
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the internal diffusion process, and RhB has a stronger force with the small pore size in the
material [46].
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and PACMC (Adsorbent mass: 1 g·L−1, Temperature: 20 ◦C, pH = 6.88, Reaction time: 24 h);
(b) Influence of reaction time for the adsorption capacity (qt) and removal efficiency of RhB on
PACMC (C0 = 20 mg·L−1, Adsorbent mass: 1 g·L−1, Temperature: 20 ◦C, pH = 6.88); (c) Influence of
solution pH for the adsorption of RhB on PACMC 1—pH = 4.5; 2—pH = 9; 3—pH = 7 (C0 = 20, 30,
40 mg·L−1, Adsorbent mass: 1 g·L−1, Temperature: 20 ◦C, Reaction time: 24 h).

3.4.2. Influence of Adsorption Time

In the adsorption process of removing RhB, contact time plays a pivotal role. From the
economic point of view, this parameter was valuable for selecting the appropriate retention
time of the adsorbent for the industrial process. From Figure 9b, it was observed that
increasing the contact time of RhB with PACMC increases the removal efficiency quickly.
Compared with photocatalytic degradation of RhB, PACMC can achieve the purpose
of rapid adsorption and removal of RhB, and the adsorption capacity of RhB can reach
11.1 mg·g−1 after 120 min. However, the slower removal takes place for up to 120 min.
Beyond that, there is no such remarkable change. This was because of the establishment of
saturation of the reactive surface sites on the adsorbent, which was adequately occupied by
RhB molecules.

3.4.3. Influence of pH

The presence of electrical charges on surfaces is probably one of the most important
variables that encompass the adsorption phenomena [47]. Figure 9c presents the adsorption
capacities results of RhB at equilibrium conditions as function of the initial solution pH.
From the results, it can be observed that PACMC has high Qm values (qe = 28.56 mg·g−1,
C0 = 40 mg·L−1) in the pH = 4.5. RhB adsorption tends to decrease slightly at pH = 9, and
decreases sharply at pH = 7. This observation can be attributed to the high hydroxide
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ions (OH−) concentration. At pH > pHPZC, PACMC surface is negatively charged and
RhB is in a zwitterionic structure (RhB±). The positive charges of RhB± molecules are
strongly shielded by OH- and the greater the OH− concentration, the greater the shielding
effect. However, charge attraction between negatively charged PACMC and RhB+ still
works. As a result, the formed complex RhB±(OH-)n tends to be repelled by the PACMC
surface, decreasing the Qm values. From these analyses, the initial solution pH of the
subsequent adsorption experiments was fixed at 6.88, which is the pH value that provided
great adsorption capacities of PACMC, besides being within the standards and effluent
release conditions established by the Environmental Protection Agency.

3.5. Adsorption Mechanism

The SEM and EDS of PACMC after adsorption are shown in Figure 3a,b respectively.
The layer structure that appears in Figure 2a gets blurred in Figure 3a because of adsorption.
The particles are more dispersed and their morphology becomes more diverse, with floc-like
substances appearing. The content of carbon increases and the content of oxygen decreases,
indicating that they have adsorbed RhB (Figure 3b). The sulfur element appeared in
element analysis may come from RhB impurity. The FT-IR of PACMC after adsorption
is shown in Figure 10. As seen, new peaks appeared in the FT-IR spectrum. It can be
observed that the major changes of PACMC IR spectra occur at the region 1600–800 cm−1,
in which the adsorption bands of oxo-groups or bridges appear. Specifically, the band at
1390 cm−1 in PACMC spectra gradually degenerates into two distinct bands at 1400 and
1327 cm−1. In this region, bands related with the vibrations of O-H bonds appear. The band
at 1050 cm−1 in PACMC spectra gradually degenerates into two distinct bands at 1174 and
1125 cm−1. Moreover, the band at 890 cm−1 in PACMC spectra disappears. The alteration
of bands indicates that the carboxylic hydroxyl group disappeared and the hydroxyl group
decreased after the adsorption of RhB by PACMC, indicating that carboxylic and hydroxyl
groups are involved in the reaction during the adsorption process. FT-IR results before
and after adsorption showed that the composition and structure of the adsorbent did
not change, and the surfactant functional groups were basically consumed. At the same
time, the particle dispersion increased after adsorption, indicating that part of the active
functional groups that play the role of bridging were also consumed. On account of all the
experimental results above, the functional groups (-OH and -COOH) that introduce on the
surface of PACMC will chemically bond with RhB. The adsorption mechanism of RhB by
PACMC is as follows: under acidic conditions, due to hydrophobicity, RhB+ is more likely
to contact with PACMC, resulting in chemical bond bonding, and there is electrostatic
attraction between positively charged PACMC and RhB. Under alkaline conditions, there
is charge attraction between negative charged PACMC and RhB+. However, the formed
complex RhB±(OH-)n tends to be repelled by the PACMC surface, decreasing the Qm values.
The mechanism is speculated as shown in Figure 11.
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4. Conclusions

In summary, we have developed a novel strategy to fabricate powdered activated
carbon-based composites (PACMC) via a chemical precipitation method using powdered
activated carbon (PAC), potassium humate (HS), and polyaluminium chloride (PACl).
The results obtained in this work exhibit clear evidence that PACMC has a good capacity
to adsorb RhB efficiently and spontaneously. The morphology studies of the PACMC
revealed a highly porous structure suitable for adsorption. The calculated enthalpy of the
reaction was −7.36 kJ·mol−1, with a decline of adsorption from 15.8 to 8.9 mg·g−1 when
the temperature was increased from 20 to 40 ◦C, respectively. This confirms the exothermic
nature of the reaction. Dubinin–Radushkevich isotherm exhibited the best data fit and
representation of the experimental results with the square of the correlation coefficient
(R2) value being 0.99299. Studies on reaction kinetics showed that the reaction is of a
pseudo-second-order, indicating that it is a chemical adsorption process. Compared with
PAC or PAC+PACl, PACMC had better adsorption effect on RhB. RhB removal by PACMC
was found to be maximum at an optimum pH value of about 4.5 at 20 ◦C. When the initial
concentration of RhB was 40 mg·L−1, the adsorption capacity can reach 28.56 mg·g−1.
The adsorption mechanism of RhB by PACMC is that the functional groups (-OH and
-COOH) introduced on the surface of PACMC are chemically bonded with RhB: under
acidic conditions, due to hydrophobicity, RhB+ is more likely to have contact with PACMC,
which leads to chemical bond bonding. At the same time, there is charge attraction between
positive PACMC and RhB-. Under alkaline conditions, there is charge attraction between
negatively charged PACMC and RhB+. However, the formed complex RhB±(OH-)n tends
to be repelled by the PACMC surface, decreasing the Qm values.

According to the results in this work, it can be clearly seen that the current adsorption
process appears to be feasible, as it proceeds fairly quickly with very promising adsorption
capacity. PACMC are low cost and available adsorbents. The cost of PACMC is half
that of PAC, and adsorption capacity is more than twice that of PAC. The environmental
implications of applying such an adsorption process are insignificant because there is no
need to regenerate the adsorbent—its raw materials are abundant and cheap.
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