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Abstract: With changing climate, coastal areas are facing increasingly threats from the typhoon–
rainstorm–storm surge-flood (TRSSF) chain. However, among various exposures of the TRSSF chain,
it is still a great challenge to quickly assess the direct losses of houses, due to the complex mechanisms
underlying building damage. The objective of this article is therefore to explore a simple method
of quickly assessing the house losses caused by the TRSSF chain, based on a small amount of data.
To achieve this goal, a method of multi factors regression and a spatial information network were
proposed. The results in Haikou City show that the loss rate of house assets is significantly lower
than that of indoor property. Spatially, the areas with higher loss rates are generally distributed along
the Nandu River. The direct economic losses associated with houses in the return periods of 10, 20, 50,
and 100 years range from 1.3 to 2 billion RMB. Our findings highlight the significance and possibility
of quickly assessing the direct house losses caused by TRSSF chain using a small amount of data. It
indicates that the house losses are not only determined by TRSSF intensity, but also closely related to
socio-economic, topography and house location.

Keywords: typhoon-rainstorm-storm surge–flood chain; multifactors regression; passive inundation;
direct economic loss of house; Haikou City

1. Introduction

Typhoons are one of the disasters causing tremendous losses and casualties to human
society. The economic loss caused by typhoons can reach about 260 billion dollars every
year globally [1]. There are about 80–100 typhoons in the world every year, mainly in
the Northwest Pacific Ocean, the Caribbean Sea, the Indian Ocean, the Eastern Pacific
Ocean, and the northern waters of Oceania. Among them, the frequency of typhoons in
the Northwest Pacific is the highest, accounting for more than 1/3 of the global total [2,3].
Located in the Northwest Pacific coast, China is severely affected by typhoons. Haikou City,
the capital of Hainan province of China, is highly concentrated in population and economy,
severely affected by the typhoons [4]. With the development of economy and the impact of
climate change, the risk of typhoons in Haikou City may further increase in the future.

Rainstorms, storm surges, and floods caused by typhoons represent widespread and
destructive natural hazards in coastal regions worldwide. However, rainstorms and storm
surges are also the sources of floods, and they can occur together as a hazard chain, named
typhoon–rainstorm–storm surge-flood (TRSSF) chain [5,6]. Among them, floods are the
most important and ultimate factor that leads to various losses in this chain [7]. Specifically,
flood erosion and waterlogging immersion usually cause severe damage to or even the
collapse of a large number of houses, which is an essential part of the direct economic
losses in this hazard chain [8–10]. Numerous studies have assessed the losses caused
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by individual hazards, such as typhoons, rainstorms, storm surges, and floods [11–15].
However, few studies have focused on the losses caused by floods induced by the combined
effect of typhoons, rainstorms, and storm surges, because the influencing factors of the
TRSSF chain are diverse and the mechanism underlying disaster formation is complex.
Therefore, it is difficult to assess the economic losses caused by the TRSSF chain quickly,
which makes it a significant research issue that needs to be addressed.

The economic losses assessment methods for floods caused by typhoons, rainstorms,
and storm surges mainly include statistical analysis, machine learning, and spatial informa-
tion network-based models. Among them, the statistical analysis method usually assesses
economic losses by regression analysis, taking hazard intensity, such as wind speed, rainfall,
river network density, flood velocity, submerged water depth, submerged duration, as ex-
planatory variables, and the losses of the exposure as target variables [16–18]. This method
can be grouped into single independent variable regression [19,20], multiple independent
variable regression, and transcendence probability-loss models [21,22], according to the
type of regression model. However, statistical analysis methods are mostly data-oriented.
For the TRSSF chain, this method usually requires a variety of disaster data sets, which
needs to spend lots of time collecting and processing, or the accuracy of the regression
method cannot be guaranteed. In addition, increasing the number of explanatory variables
also increases the difficulty of constructing the equation, not to mention that data are
often insufficient.

The machine learning modeling method has been widely applied to assess the losses
of elements at the TRSSF chain. This method builds a losses assessment model by estab-
lishing the relationship between the losses of exposure and hazard intensity of the TRSSF
chain [23–27]. Among various machine learning algorithms, the artificial neural network
(ANN) [28] and random forest (RF) [29] are the two main types. For example, based on the
six times of floods in the Taihu Lake Basin as the sample set data, Huang and Wang built
the regional economic loss assessment model using the ANN model [30]. Guo and Liu
quantitatively assessed the building losses caused by floods in five southeastern provinces
of China by applying the RF model [31]. However, the machine learning modeling method
also requires a large number of training samples, i.e., historical disaster data. Therefore, the
loss assessment model built by this method is usually limited to a specific research area,
making the constructed model hardly suitable for other study areas.

With the support of disaster spatial data, i.e., the flood intensity and the socio-economic
losses, the spatial information network-based model is capable of outputting spatial char-
acteristics of the economic losses of the TRSSF chain by applying spatial analysis technol-
ogy [32–36]. For example, Dutta et al. established a real-time floods losses assessment
model composed of a hydrological model and grid-based loss data [33]. Yi et al. predicted
the economic losses of floods in different regions of the study area using the flood water
level grid model and the house asset spatial data [35]. However, this method requires a
large amount of disaster spatial information data, besides attribute data sets used in meth-
ods of statistical analysis and machine learning. Additionally, it has a relatively complex
grid establishment process. Therefore, this method is not suitable for rapid assessments of
asset losses.

In summary, the above methods all have the limitation of data hunger, which makes a
quick assessment of house losses caused by the TRSSF chain impossible. In particular, the
process of how the TRSSF chain leads to economic losses of houses is very complex. There
are multiple factors causing house losses including typhoons, rainstorms, storm surges,
and the floods that result from them. What’s more, the interaction process and mechanism
of these factors are particularly complex. Ideally, the house losses assessment model should
be built according to the process and mechanism of flood formation coupling multiple
factors including typhoons, rain storms, and storm surges. However, this requires a large
amount of data to support and the modeling workload is very huge, which constrains
the rapid assessment of house losses caused by the TRSSF chain. According to a newly
proposed theory [37], we argue that the hazard-forming process and the disaster losses are
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similar among different regions with similar geographical environments and socioeconomic
conditions. That is, it is possible to apply a house losses model constructed in one region
to other areas with the same or similar levels of socioeconomic development. Therefore,
quickly assessing the house losses caused by the TRSSF chain can be achieved by adopting
the existing regional models that have been validated and are similar to our study area.

Therefore, the objectives of this paper are to explore how to quickly assess the direct
losses of houses caused by the TRSSF chain, based on a small amount of data; and to provide
a basis for rapid assessment of house losses by reversely analyzing how these specific house
losses levels correlate to flood intensity, the intensities of typhoons, rainstorms and storm
surges. To achieve the above goals, the economic losses of houses in Haikou City caused
by the TRSSF chain in four return periods were quantified, using the regression analysis
method and spatial information grid method. Furthermore, the combined effect of the
TRSSF chain was linked to the economic losses of houses by empirical analysis.

2. Materials and Methods
2.1. Study Area

Haikou City (19◦31′~20◦04′ N, 110◦07′~110◦42′ E) is located at the mouth of the lower
reaches of the Nandu River, undertaking a large amount of river water (Figure 1). According
to the seventh national census, the resident population of Haikou City is 2,873,358 total.
Furthermore, Xiuying District, Longhua District, Qiongshan District and Meilan District
has 567,108, 797,684, 6555,553 and 853,013 people, respectively.

Most of the city is plain with an elevation of lower than 100 m. The northwest and
southeast are relatively higher, whereas the central part along the Nandu River is the lowest
and most flat. Since 1990, 44 typhoons have landed in Hainan Province and affected the
precipitation in Haikou City. The average annual precipitation in Haikou City is 1639 mm,
and the average annual rain day is 150 days. Dominated by storms, thundershowers, and
frontal rain, the precipitation is mainly concentrated in the typhoon season in the second
half of the year, which is prone to destructive floods. At the same time, torrential rains and
storm surges caused by typhoons will also lead to the occurrence of floods in Haikou City.

2.2. Data Processing

In the present study, Haikou City was divided into two research units urban and rural,
according to administrative districts (Figure 1). Where the “urban area” is a built-up area
and was further divided into five subunits, i.e., urban areas I to V. The rural areas were
24 subunits according to the township division.

Data applied in this study include two types, i.e., flood and housing. The former
includes the digital elevation model (DEM) data (https://earthdata.nasa.gov/ (accessed
on 22 May 2020)) and flood (tide) level data from the “Emergency Plan for Wind and
Flood Prevention in Haikou City” (http://www.haikou.gov.cn/ (accessed on 22 May
2020)). Housing data include the average building age, indoor properties, and housing
assets in urban areas and towns, derived from the “2018 Haikou City Statistical Yearbook”
and the “Haikou City National Economic and Social Development Statistical Bulletin”
(http://www.haikou.gov.cn/ (accessed on 22 May 2020)) (Table 1).

https://earthdata.nasa.gov/
http://www.haikou.gov.cn/
http://www.haikou.gov.cn/
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Table 1. Data and Sources.

Data Name Data Description Data Source

Population Data

The agricultural and non-agricultural
population exposed to disasters in each
urban area or town of Haikou City in 2017;
Number of agricultural and non-agricultural
households exposed to disasters in each
urban area or town of Haikou City in 2017

“2018 Haikou City Statistical Yearbook”
(http://www.haikou.gov.cn/ (accessed on
22 May 2020))
and
“2018 Yuyao City Statistical Yearbook”
(http://www.yy.gov.cn/ (accessed on 22
May 2020))

Housing area per capita Housing area per capita in urban and rural
area in 2017

Housing value per unit area Housing value per unit area of urban and
rural houses in 2017

Regional GDP data GDP of Haikou City and Yuyao City in 2018

Housing completion area data

Completed area of urban real estate houses
and the completed residential area of rural
individual houses in Haikou City from 1997
to 2016

“Haikou City National Economic and
Social Development Statistical Bulletin”
(http://www.haikou.gov.cn/ (accessed on
22 May 2020))

Flood (tide) level data

Flood (tide) level of Haikou Station and
Longtang Station in the case of 10-year,
20-year, 50-year and 100-year flood return
period.

“Emergency Plan for Wind and Flood
Prevention in Haikou City”
(http://www.haikou.gov.cn/ (accessed on
22 May 2020))

ASTGTM v003
At a spatial resolution of 1 arc second
(approximately 30 m horizontal posting at
the equator)

Earthdata search
(https://earthdata.nasa.gov/ (accessed on
22 May 2020))

The housing assets were calculated using data of the per capita housing area and
the value of housing per unit area in urban and rural units, respectively, according to
the agricultural and nonagricultural population exposed to floods in Haikou. Indoor
property was calculated using the mean value of indoor property data in urban and rural
units, respectively, according to the number of agricultural and nonagricultural households
exposed to floods in Haikou City. Since the mean value of indoor property in urban and
rural areas of Haikou City could not be obtained directly, the mean indoor property value of
Yuyao City was adopted. We further revised it based on the GDP ratio of Haikou City and
Yuyao City in 2018, of which the GDP data and indoor property data of Yuyao City were
obtained from the “2018 Yuyao Statistical Yearbook” (Http://www.yy.gov.cn/ (accessed
on 22 May 2020)).

The building age in urban or rural areas was calculated based on the completed area
of urban real estate houses and the completed residential area of rural individual houses
in Haikou City from 1997 to 2016. Then, the average building age of Haikou City was
calculated according to the proportion of agricultural and nonagricultural populations. We
further demonstrated the rationality of the data and methods used in this paper in the
Discussion section, considering that some data are from outside the study area.

2.3. Analysis Method of Flooding Depth

The depth of flood inundation was calculated using the raster calculator tool in ArcGIS
according to the principle of “passive inundation” [38]. This method is suitable for studying
flood inundation in flat and large areas quickly like Haikou city. The model is as follows
(Equation (1)).

∆h =

{
0 hmax ≤ hi

hmax − hi hmax > hi
(1)

where ∆h refers to the submerged water depth, hmax refers to the highest water level, and
hi refers to the elevation.

http://www.haikou.gov.cn/
http://www.yy.gov.cn/
http://www.haikou.gov.cn/
http://www.haikou.gov.cn/
https://earthdata.nasa.gov/
Http://www.yy.gov.cn/
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Floods in Haikou City are mainly of two types, i.e., coastal floods and river floods.
Among these, coastal floods were mainly caused by storm surges, while river floods were
caused by rainstorms in the inland area along the river. Therefore, in coastal areas (including
Urban Areas I, II, III, and IV and the towns Xixiu, Lingshan, Yanfeng, and Sanjiang), the
tidal level of Haikou station is adopted as the hmax. Whereas in the inland areas (including
Urban Area V and all other towns), we take the flood water level at Longtang Station as the
hmax (Table 2).

Table 2. Typhoon and rainstorm threshold to reach different flood (tide) levels under different early
water levels.

Haikou Station Early Water Levels (m) Maximum Wind Speed
Conditions Required Vmax (m/s)

Increased Water
Volume ∆H (m)

Needed Water Level
hmax (m)

10-year flood 2.00 43.45 1.65 3.65
20-year flood 2.00 46.21 1.89 3.89
50-year flood 2.00 50.57 2.27 4.27

100-year flood 2.00 52.64 2.45 4.45

Longtang station Early water levels (m) Rainfall conditions required
X (mm)

Increased water
volume ∆H (m)

Needed Water level
hmax (m)

10-year flood

7.00 390 6.77

13.77
8.00 277 5.77
9.00 260 4.77
10.00 234 3.77
11.00 220 2.77

20-year flood

7.00 439 7.52

14.52
8.00 321 6.52
9.00 305 5.52
10.00 275 4.52
11.00 267 3.52

50-year flood

7.00 504 8.37

15.37
8.00 377 7.37
9.00 362 6.37
10.00 325 5.37
11.00 331 4.37

100-year flood

7.00 563 9.00

16.00
8.00 425 8.00
9.00 412 7.00
10.00 368 6.00
11.00 388 5.00

Note: Haikou station’s warning tide level is 2.90 m, and Longtang Town’s warning flood water level is 11.50 m.

2.4. TRSSF Chain Transmission Analysis

The house losses caused by the TRSSF chain to the coastal and inland areas of Haikou
City are not the same. Floods in coastal areas are often caused by rising tide levels, while
inland floods are mainly caused by large amounts of rainwater from heavy precipitation.
In order to better reveal the influence mechanism of each factor in the coastal and inland
TRSSF Chain on house losses, we discuss the transmission process of the TRSSF chain in
coastal areas and inland areas separately.

For coastal areas, seawater backfilling is the main cause of floods, so the level of
tidewater determines the intensity of the TRSSF chain. In addition to astronomical tides,
storm surges brought by typhoons can cause a surge in tide levels, which will exacerbate
floods. To calculate the increase in the tide level induced by the storm surge caused by the
typhoon, the relationship between the maximum wind speed and the tide level increase
established by Xu Yang in Quanzhou City [39] where is similar to Haikou City, was adopted
(Equation (2)).

∆H = 0.087 × Vmax − 2.13 (2)
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The average annual maximum astronomical tide level of Haikou Station, i.e., 2.00 m,
was used as the benchmark for calculating the tide level in this study. Conversely, the
maximum wind speed of typhoons required to reach the tide level of floods at four return
periods, i.e., 10, 20, 50 and 100 years could be calculated.

Inland floods of Haikou City are mainly caused by the rainstorms brought by typhoons.
Therefore, to analyze the transmission process of the TRSSF chain in inland areas, the
relationship between precipitation and flood water level should be established. In this study,
the relationship curves between surface precipitation and flood water level at different
early water levels established by Zhang et al. [40] were adopted. The maximum flood water
level hmax (mm) of return periods of 10, 20, 50 and 100 years at Longtang station were used
to obtain surface precipitation X (mm) (Table 3).

Table 3. Relationship curves of the surface rainfall and flood water level at Longtang station in
Haikou City for different early water levels.

Early Water Levels Relationship Curves of Surface Precipitation (X) and
Flood Water Level (hmax)

7 m hmax = −0.00002X2 + 0.032X + 4.3304
8 m hmax = −0.00002X2 + 0.0292X + 7.2115
9 m hmax = −0.00002X2 + 0.0282X + 7.7873

10 m hmax = −0.00002X2 + 0.0.0287X + 8.1556
11 m hmax = −0.00002X2 + 0.0.0254X + 9.1593

2.5. Houses Losses Assessment Method

The typhoon-induced TRSSF chain is very complex, because wind speed, precipitation,
and the tide of storm surges all have negative impacts on houses. However, the economic
losses caused by the TRSSF chain often depend on regional exposure and vulnerability, that
is, closely related to socioeconomic conditions. Therefore, based on the assumption that the
hazard-forming process and the disaster losses are similar where similar geographical envi-
ronments and socio-economic conditions are, the most appropriate models were selected to
calculate the economic loss rate of Haikou City [20,41–43].

The direct economic losses of the house caused by the TRSSF chain include losses of
housing assets and indoor property. The losses of housing assets refer to the losses caused
by the damage to the main body of the building, and the losses of indoor property are the
losses of household property including furniture and appliances. The model is as follows:

L = p1 × β1 + p2 × β2, (3)

where L is the direct economic loss of houses in a certain urban area or town (10,000 RMB),
p1 is the total housing assets that may be exposed to the TRSSF chain, β1 is the loss rate of
housing assets (%), p2 is the total indoor property that may be exposed to the TRSSF chain,
and β2 is the loss rate of indoor property (%).

The losses of housing assets are mostly affected by water depth and building age. The
deeper the house is soaked by floods, the worse the damage it will suffer. Furthermore,
the older the house is, the less its resistance to floods will be. That is, the older the house
and the deeper the flood water, the greater the loss rate to the house. Based on the above, a
multiple regression model applicable to calculate the loss rate of housing assets [16] was
adopted after a comprehensive comparative study. The model is as follows:

β1 = −5.9 + 0.24 × y + 7.77 × ∆h (4)

where β1 is the loss rate of the housing assets (%), y is the building age (year), and ∆h is
the flood depth (m).

The losses of indoor property are mostly influenced by flood depth. The deeper the
flood water is, the more properties are likely damaged by floods. In the present study, we



Water 2022, 14, 3037 8 of 17

adopted well-validated models (Table 4) to calculate the indoor property loss in Haikou
City [37–39]. These models (Table 4) calculated the indoor property loss rate of houses in
urban and rural areas in coastal and inland regions separately.

Table 4. Applicable curve of the indoor property loss rate of buildings in different areas of
Haikou City.

Area Indoor Property Loss Rate Assessing
Models of Buildings Reference

Urban areas in coastal zone β2 = 100/[1 + 20.43 × Exp (−3.835 × ∆h)] [41]
Rural areas in coastal zone β2 = 100/[1 + 52.88 × Exp (−4.876 × ∆h)] [41]
Urban areas in inland zone β2 = 11.298 × Ln (∆h) + 37.534 [42]
Rural areas in inland zone β2 = 100/[1 + 9.05*Exp (−2.71 × ∆h)] [43]

Note: where β2 is the loss rate of indoor property (%), ∆h is the flood depth (m).

The method we proposed achieves the purpose of simply and quickly assessing house
losses caused by the TRSSF chain. However, some models in this method are not established
based on the data of Haikou City, so there may be some uncertainty in the calculation
results. Therefore, we compared our results with government disaster bulletins and field
survey data, and discussed the feasibility and reliability of our method, see Discussion
for details.

3. Results
3.1. The TRSSF Chain in Haikou City

The wind speed and rainstorm intensity of typhoons needed for coastal and inland
regions to occur floods in different return periods in Haikou City, as shown in Table 2, were
obtained. It indicated that strong typhoons and super typhoons will cause floods in the
coastal areas. While heavy rainstorms and extremely heavy rainstorms will lead to floods
in inland areas.

In the case of an astronomical water level of 2 m in Haikou Station, strong typhoons
can induce a 10-year, 20-year and 50-year flood, and super typhoons are prone to a 100-year
flood. When the early water level of Longtang station is 10 and 11 m, heavy rainstorms can
form a 10-year flood. In other cases, they can cause a 10-year, 20-year, 50-year and even
100-year flood. However, Haikou City has rarely encountered strong and super typhoons
historically, while the heavy rainstorms brought by typhoons are more frequent, so that the
inland areas of Haikou City are more prone to floods.

Immerged depth of floods induced by the TRSSF chain in different return periods in
Haikou City is shown in Figure 2. The areas seriously affected by floods are concentrated
along the Nandu River and north of Haikou City. Furthermore, with the increase in flood
return period, the submerged area and submerged depth of the whole city increased.
Specifically, the areas that have been seriously flooded include urban area III, IV and V,
Longtang Town, Longquan Town, Xinpo Town, and Dongshan Town, which are along the
Nandu River channel, indicating that river flood is the main flood type in Haikou City.
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In the northern coastal region, a few towns, such as Dazhipo Town, Sanjiang Town
and Yanfeng Town, are prone to local water accumulation due to the low terrain and are
also threatened by coastal floods. In addition to the strong impact of the TRSSF chain on
floods, topography and distance to coast are also critical elements affecting the inundated
situation. This leads to in some inland areas of Haikou city that are not along the seas and
rivers, the possibility of being damaged by floods is much less.

3.2. House Losses Caused by the TRSSF Chain in Haikou City

Generally, the areas with a high loss rate of housing assets and indoor property are
both concentrated along the Nandu River channel (Figures 3 and 4). Causing the loss rate
in the inland areas along the river is even more serious than that in the coastal areas. At
the same time, the city-wide house loss rate also increases with the increase of the flood
return period.
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Figure 3 shows that, under different flood return periods, the loss rate of housing
assets in different assessment units in Haikou is between 0–16%. The units with relatively
high housing assets loss rate of over 8% increase significantly with increasing flood return
periods. In particular, in the case of the 50-year return period, the area with housing assets
loss rate of over 8% increases to 4% of the total area of Haikou City. When it comes to the
100-year return period, it increases to 6%, with the areas of very high loss rate exceeding
14% accounting for 4%.
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Figure 3 also shows that urban areas IV and V, and rural areas of Longquan Town,
Xinpo Town, Longtang Town are areas with large housing assets loss rates. In comparison,
the townships located in the hilly areas of the northwest and southeast, such as Shishan
Town, Yongxing Town, Zuntan Town, Sanmenpo Town, Dapo Town, and Jiazi Town, suffer
from a lower direct economic loss rate of housing assets.

Figure 4 shows that, under different flood return periods, the loss rate of indoor
property in different assessment units in Haikou is between 0–40%, which is much higher
than the loss rate of housing assets. The units with relatively high indoor property loss
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rate of over 20% increase significantly with increasing flood return periods. In particular,
in the case of the 50-year return period, the area with indoor property loss rate of over
20% increase to 10% of the total area of Haikou City. When it comes to the 100-year return
period, it creases to 16%, with the areas of very high loss rate exceeding 35% accounting
for 2%.

Figure 4 also shows that urban areas IV and V, and rural areas of Longquan Town,
Xinpo Town, Longtang Town, and Dongshan Town are areas with large indoor property
loss rates, where the Nandu River flows. While the villages and towns in the northwest
and southeast hilly areas, such as Changliu Town, Haixiu Town, Yongxing Town, Zuntan
Town, and Sanmenpo Town are almost unaffected.

Combined with the results of the housing asset loss rate and indoor property loss
rate, the direct economic losses of houses under four different flood return periods in
Haikou City were 1.327, 1.536, 1.813, and 2.037 billion RMB, respectively (Table 5). The
direct economic losses of houses in Haikou City from high to low are Qiongshan District,
Longhua District, Meilan District, and Xiuying District.

Table 5. Direct house losses in different flood return periods in the subdistrict of Haikou City.

Districts of
Haikou City

Direct Economic Losses of Housing (10,000 RMB)

10-Year Return Period 20-Year Return Period 50-Year Return Period 100-Year Return Period

Xiuying District 16,305.85 20,119.66 25,452.06 30,032.33
Longhua District 37,496.44 45,583.69 56,025.09 64,542.06

Qiongshan District 42,753.77 49,655.50 58,355.36 65,665.93
Meilan District 36,146.92 38,223.86 41,459.58 43,461.48

Total 132,702.98 153,582.71 181,292.10 203,701.81

As shown in Figure 5, the direct economic losses of the affected houses in different
areas of Haikou are quite different. The losses of the urban areas and towns along the
Nandu River are generally more than 50 million RMB, while those of towns and villages in
the hilly areas of the northwest and southeast are less than 200,000 RMB. This shows that
the house losses caused by floods of the TRSSF chain are significantly influenced by the
terrain, indicating that we should pay close attention to flood prevention in the low-lying
areas where the river flows.

Figure 5 shows that, under different flood return periods, the direct house losses in
different assessment units in Haikou City up to 370 million RMB. Even in the case of a
10-year flood return period, the direct losses of houses in nearly seven assessment units
exceed 100 million, which are Dongshan Town of Xiuying District, Longquan Town and
Xinpo Town of Longhua District, Longtang Town and Urban District V of Qiongshan
District, and Lingshan Town and Urban District III of Meilan District. These units mainly
distributed along the Nandu River channel. This further emphasizes that special attention
should be paid to the lowland, which is highly influenced by the TRSSF chain. Especially
for houses in urban and rural settlements, it is necessary to strengthen flood prevention
measures along the river channel, under the situation that fast economic development leads
to the rapid growth of housing assets and indoor properties.
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4. Discussion

In the present study, a method of assessing house losses caused by the TRSSF chain
was proposed. Then, this method was applied to assess the direct house losses in Haikou
City. The results show that the areas where the Nandu River flows, such as Urban Area
IV, Urban Area V, Longquan Town, Xinpo Town, Longtang Town, and Dongshan Town,
are greatly affected by the TRSSF chain, while the towns located in the hilly areas of the
northwest and southeast are less affected, and the houses losses of the inland areas along
the river are more serious than the coastal areas (Figure 5). Our research results are highly
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consistent with the actual disaster spatial distribution. According to the “Emergency Plan
for Wind and Flood Prevention in Haikou City” provided by the Haikou Government
Portal of China (http://www.haikou.gov.cn/, accessed on 22 May 2020), Longquan Town,
Xinpo Town, Dongshan Town, Jiuzhou Town and Xinbu Island located in Urban Area IV
are the most severely affected by floods. The spatial layout of disaster prevention and
mitigation in Haikou City is based on historical actual floods distribution. Usually, towns
with severe historical floods are designated as key prevention and mitigation areas. We,
therefore, concluded that our results have relatively high credibility.

We also found that the direct economic losses of houses in Haikou City in four flood
return periods range from 1.3 to 2 billion RMB (Table 5). Taking super typhoon “Ram-
masun” as an example, which affected Haikou in 2014, the official website of the Haikou
City Government indicates that Rammasun caused direct economic losses of 8.386 billion
RMB, among which the loss of houses was approximately 0.4 billion RMB and the loss of
agricultural production and infrastructure was 2.582 billion RMB. Specifically, it caused the
complete collapse of 1356 rural houses and destroyed 43,822 houses. That means the results
of our assessment are much higher than what the government reported. Further analysis
shows that our results are more reasonable because Rammasun landed in Hainan Province
in Wengtian Town of Wenchang City, not in Haikou City. While the disaster statistics only
focused on residential areas, neither take into account the losses of indoor property nor
rural houses. In contrast, this paper evaluates the direct economic loss of housing more
comprehensively, which is more in line with the actual loss situation.

For verifying the rationality of indoor property of towns in Haikou City used in this
paper, a field survey of housing assets and indoor properties was carried out in November
2021 in Hainan Province on the basis of random sampling. The survey area covers the
urban and rural areas of the coast and the inland. A total of 377 houses in eight cities
including Haikou and Wenchang were investigated taking household as a unit. The survey
indicators include the number of floors, the number of rooms, the building age, the distance
from the house to the coastline (m), house structure, indoor property type, number of
indoor properties, total indoor property value, etc. Furthermore, the indoor property of
towns in Haikou City that were used in the present study (Figure S1) was compared to
those based on samples of survey (Figure S2). Although the value of indoor property used
in present study and that based on investigation cannot be directly compared, because they
have different statistical unit, i.e., RMB/m2 and RMB/household, respectively. They are
well matched in in spatial distribution pattern (Figures S1 and S2), indicating townships
with high indoor property exposure are concentrated along the west side of Nandu River.
This proves that the method and result of indoor property calculation used in this paper
are rational.

One innovation in our approach is the use of reverse derivation to reproduce the
thresholds of typhoons, rainstorms, and storm surges required to cause floods of a specific
intensity. This provides an idea for building a simple, fast, and relatively high-accuracy
house losses assessment model in the TRSSF chain. That is, when a certain hazard factor,
e.g., typhoon, reaches a certain intensity, the possible losses to the house can be quickly
estimated. This method does not require a large amount of data and complex simulation
operations, and although the mechanism is relatively weak, it can still obtain high accuracy
after verification. In previous studies, the transmission process of the TRSSF chain has not
received sufficient attention. For example, Guo et al. evaluated the number of collapsed
houses based on the vulnerability curve of a typhoon–flood chain [31]. However, this work
took the cumulative rainfall, river network index, topographic index, and strongest wind
speed as explanatory variables but did not consider the link between typhoons and floods.

In terms of the house losses assessment, the factor regression analysis method [18]
was applied in the present study based on the principle of geographical similarity [37,44].
Specifically, we took the flood depth and building age into account and selected widely
acknowledged models [20,41–43] to assess the loss rate of housing assets and indoor
property in Haikou City. It cannot deny that there are significant differences between

http://www.haikou.gov.cn/
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regions, and applying models developed in other regions may lead to greater uncertainty
in Haikou City. However, we argue that although the models constructed by predecessors
based on the actual situation of other regions have certain regional limitations, they still
have reference value for regions with similar physical geography and social economy, such
as Haikou City. Furthermore, we also suggest that the idea and the method proposed in
this paper can be applied to other coastal areas on a global scale. Of course, this needs to be
scientifically demonstrated and carefully verified.

There is still room for improving our study. DEM data are important for the calculation
of submerged water depth. In the present study, NASA’s DEM data were used because
it is publicly available. However, these DEM data have relatively low resolution, which
may introduce larger uncertainty to the results. Therefore, the results of future study may
be greatly improved if higher resolution DEM data are available from local institutions.
In addition, though our proposed method is easy to apply, the research results may have
certain biases due to the lack of insufficient consideration of the mechanism of the TRSSF
chain. Future studies may consider introducing mechanistic models. Further, the number
of floors, rooms (size) and distance to coast are also factors affecting the economic loss of the
houses in the TRSSF chain. However, due to the lack of detailed housing data, these factors
were not taken into consideration in the present study. This should also be improved in
future research.

5. Conclusions

Motivated by quickly assessing the house losses caused by the TRSSF chain using
a small amount of data, we proposed a method according to the geographical similar-
ity law and the idea of inverse deduction. Through this method, the losses of housing
assets and indoor property in two different units of urban and rural areas caused by a
typhoon–rainstorm–storm surge-induced flood can be quickly and quantitatively assessed.
Furthermore, the typhoon, rainstorm, and storm surge intensity parameters required to
cause a certain degree of house losses can be obtained. This can be an important reference for
building an assessment model of house losses caused by the TRSSF chain. Since this method
does not require a large amount of meteorological data and complex meteorological-hydro
logical-loss simulations, it is very easy to implement and only requires a small amount
of data to achieve a relatively accurate quantitative value of house losses. Therefore, the
research ideas and methods proposed in this paper have the potential to be extended in
similar regions.

The results show that the direct economic losses of houses (including housing assets
and indoor property) in Haikou City in the 10-year, 20-year, 50-year, and 100-year return
periods are 1.327, 1.536, 1.813, and 2.037 billion RMB, respectively. Based on data obtained
from field surveys, our results are more consistent with the actual loss situation compared
to the disaster statistics and reports from the government.

Furthermore, a comprehensive evaluation of housing assets and indoor property losses
in two different units, urban and rural, respectively, was conducted. The direct economic
losses of houses in each district from high to low are Qiongshan district, Longhua district,
Meilan district, and Xiuying district. Additionally, the areas where the Nandu River flows,
such as Urban Area IV, Urban Area V, Longquan, Xinpo, Longtang, and Dongshan, are
affected more than the northwest and southeast hilly areas and even the coastal areas by the
TRSSF chain. This indicated that topographic relief may have a strong influence on the risk
of the TRSSF chain. These findings are beneficial for accurately revealing the spatial pattern
of house losses caused by TRSSF chains. This provides the basis for risk management of
the TRSSF chain in different administrative units and geographic units.

It also indicates that the loss rate of housing assets is significantly lower than that of
indoor property, implying that the TRSSF chain may not cause a serious loss of the house
building itself, but may cause a large number of indoor property losses. Especially with
the fast development of the economy, the types and values of indoor properties will grow
rapidly. This emphasizes that the assessment of indoor property losses caused by the TRSSF



Water 2022, 14, 3037 16 of 17

chain should be paid more attention to. This requires extensive and detailed fieldwork
to support.

Limited by data availability, NASA’s DEM data at a 30 m spatial resolution were used
in the present study. This may introduce a relatively larger uncertainty. In addition, the
proposed method may have certain biases due to the lack of detailed housing data and
insufficient consideration of the mechanism of the TRSSF chain. Therefore, mechanistic
models based house losses assessment with support of higher resolution DEM data and
detailed housing data, shall be a direction of future research.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14193037/s1, Figure S1. Exposure of indoor property of towns
in Haikou City used in this paper; Figure S2. Exposure of indoor property of towns in Haikou City
calculated with field survey data.
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