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Abstract: Supply-demand-based optimization (SDO) is a swarm-based optimizer. However, it suffers
from several drawbacks, such as lack of solution diversity and low convergence accuracy and search
efficiency. To overcome them, an effective supply-demand-based optimization (ESDO) is proposed
in this study. First, an enhanced fitness-distance balance (EFDB) and the Levy flight are introduced
into the original version to avoid premature convergence and improve solution diversity; second, a
mutation mechanism is integrated into the algorithm to improve search efficiency; finally, an adaptive
local search strategy (ALS) is incorporated into the algorithm to enhance the convergence accuracy.
The effect of the proposed method is verified based on the comparison of ESDO with several well-
regarded algorithms using 23 benchmark functions. In addition, the ESDO algorithm is applied to
tune the parameters of the fractional-order proportional integral derivative (FOPID) controller of
the water turbine governor system. The comparative results reveal that ESDO is competitive and
superior for solving real-world problems.

Keywords: supply-demand-based optimization; enhanced fitness-distance balance; adaptive local
search; Levy flight; FOPID; water turbine

1. Introduction

With the development of social economy and technology, many complex optimization
problems have appeared in the fields of communication, transportation, machinery, e-
commerce, automation, materials and economics [1–10]. Meta-heuristic algorithms, an
effective tool, simulate one or some natural processes in nature and have unique advantages
in solving complex optimization problems. The No-Free−Lunch (NFL) theorem [11] proves
that any optimizers cannot provide the best solutions for all different optimization problems.
Therefore, plenty of meta-heuristics have sprung up in recent years according to different
inspirations. Meta-heuristic algorithms can be divided into three categories: evolutionary-
based (EB), physis-based (PB), and swarm-based (SB).

The most representative EB is the genetic algorithm (GA) [12], which simulates the
evolution process of biological groups in nature. With the development of GA, many im-
proved versions and variants have emerged, but most of them obtain high-quality solutions
through mutation, crossover and selection steps. Other EBs are genetic programming
(GP) [13], evolution strategies (ES) [14] and evolutionary programming (EP) [15].

PBs simulate the physical laws in nature. The annealing algorithm (SA) is a classical
PB. The theoretical idea behind SA is the motion of molecules in a solid material as it
cools gradually from high temperature. In recent years, numerous new physics-inspired
algorithms have been proposed, including gravitational search algorithm (GSA) [16], atom
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search algorithm (ASO) [17], electromagnetic mechanism-like algorithm (EM) [18], central
force optimization (CFO) [19], hysteretic optimization (HO) [20], charged system search
(CSA) [21], Lichtenberg algorithm (LA) [22], henry gas solubility optimizer (HGSO) [23],
optics inspired optimization (OIO) [24], and so on.

SBs simulate the collective behaviors of natural or artificially formed organizations.
Particle swarm algorithm (PSO) [25], a well-known optimizer, has received a high degree
of attention and widespread concern from scholars of many various fields. Since its
emergence, other new SBs have been developed, including bacteria foraging optimization
(BFO) [26], manta ray foraging optimization (MRFO) [27], virus colony search (VCS) [28],
cuckoo search algorithm (CS) [29], artificial ecosystem-based optimization (AEO) [30], trees
social relations optimization (TSR) [31], tuna swarm optimization (TSO) [32], black widow
optimization algorithm (BWOA) [33], etc. Among three types of meta-heuristic algorithms,
since SBs have an inherent advantage in exploration and exploitation, they have a larger
family and are more competitive in solving complex optimization problems.

Inspired by supply-demand relation of commodities in economics, a swarm-based
optimizer called supply-demand-based optimization (SDO) is proposed [34]. It simulates
the cobweb model in market economy mathematically. Due to its simplicity and feasibility,
it can achieve a balance between exploration and exploitation. Therefore, since the emer-
gence of SDO, it has attracted a wide attention and has been applied in different fields.
Ali et al. [35] used SDO for dielectric strength test and obtained the optimal value of
SIR/TiO2 filler parameter percentage under different conditions. Ginidi et al. [36] extracted
the electrical parameters of different photovoltaic models through SDO, and the compar-
isons with other algorithms showing that SDO is highly competitive. Alturki et al. [37]
applied SDO to the selection problem of hybrid energy system, it can obtain lower loss of
power supply probability (LPSP) and lower annualized system cost (ASC). Jing et al. [38]
proposed an improved SDO algorithm for the prediction of foundation pit deformation,
and the results demonstrated its feasibility and effectiveness. Ibrahim et al. [39] used SDO
to estimate the parameters of induction motor and obtained a small deviation.

The operating state of the water turbine governor system is closely related to the
stability of hydropower station operation and the safety of power consumption. Therefore,
the parameter selection of the water turbine governor system becomes an important subject
worthy of long-term study. At the beginning of the study, the parameters are obtained
mainly through a large number of empirical formulas derived from field tests. However,
the application value obtained by this method is not proportional to the time and financial
consumption. The emergence of PID regulation law improves this situation, and is widely
used because of its simple operation and good robustness. With the in-depth study of
computer technology, it is found that traditional integer-order PID control law cannot be
well modeled and analyzed for some complex non-linear engineering problems. The water
turbine governor system has strong memory dependence, and its dynamic process can
be better described by fractional-order calculus. The most intuitive difference between
fractional-order PID (FOPID) controller and traditional integer-order PID controller is that
there are two more adjustable parameters in FOPID, which can achieve better control effect.
Therefore, the FOPID controller has strong application value.

The rise of intelligent optimization techniques provides a more effective method for
parameter adjustment of FOPID controller. Vanchinathan et al. [40] applied the artificial bee
colony algorithm to tuning for brushless DC motor. Oguzhan Karahan [41] used FOPID
controller in core power control in molten salt reactors and adjusted the parameters by using
the cuckoo algorithm. Munagala [42] performed robustness analysis on FOPID controller
in an AVR system by using chaotic black widow algorithm. These studies demonstrated
the superiority of FOPID in effectiveness of different control systems.

Although SDO as a swarm-based optimizer has better optimization ability than some
other optimizers when handling optimization problems, it still has some big promotion
space. SDO has the limitations of solution diversity, search efficiency and solution accuracy
when tracking complex problems. Therefore, to overcome the drawbacks, this study
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designs an effective SDO termed ESDO; it incorporates the EFDB and Levy flight, mutation
mechanism and adaptive local search strategy into SDO to perform global search. The effect
of ESDO is verified based on the comparative results of ESDO with several well-regarded
algorithms on a set of benchmark functions and tuning FOPID controller of water turbine
governor. The results verify the efficiency and superiority of ESDO. The major difference of
our study and its competitors is that ESDO makes three different strategies to improve its
overall optimization performance in terms of solution diversity, convergence accuracy and
search efficiency.

The rest of this study is as follows. Section 2 gives the main structure of SDO and
provides the proposed ESDO by combining several strategies. In Section 3, the experimental
results on some functions are investigated to assess the effectivity of the proposed ESDO.
Section 4 provides an application of ESDO in tuning the FOPID controller of a water turbine
governor. Section 5 gives some conclusions of the study.

2. Effective Supply-Demand-Based Optimization (ESDO)
2.1. Supply-Demand-Based Optimization (SDO)

In SDO [34], there are d commodity prices and quantities as candidate solutions and
possible candidate solutions, respectively. After evaluation, the one with better fitness is
selected as the current candidate solution. The mathematical expressions for commodity
price and quantity are:

X =


x1
x2
...

xn

 =


x1

1 x2
1 · · · xd

1
x1

2 x2
2 · · · xd

2
...

...
...

...
x1

n x2
n · · · xd

n

, (1)

Y =


y1
y2
...

yn

 =


y1

1 y2
1 · · · yd

1
y1

2 y2
2 · · · yd

2
...

...
...

...
y1

n y2
n · · · yd

n

, (2)

where xi and yi (i = 1 · · · n) represent the price vectors and quantity vectors in each market,
and xj

i and yj
i(i = 1 · · · n; j = 1 · · · d) represent the price and quantity of the jth commodity

in the ith market, respectively. There are n markets in total.
Then, the fitness values of all prices and quantities are evaluated by the

following functions:
Fx = [Fx1Fx2Fx3 · · · Fxn]

T , (3)

Fy = [Fy1Fy2Fy3 · · · Fyn]
T , (4)

where T represents transposition of the matrix.
The vector of the equilibrium price and quantity are represented by:

Mi =

∣∣∣∣Fxi − 1
n

n
∑

i=1
Fxi

∣∣∣∣
P = M/

n
∑

i=1
Mi

x0 =

 r1 · 1
n

n
∑

i=1
xi r < 0.5

xk, k = R(P) r ≥ 0.5

, (5)


Ni =

∣∣∣∣Fyi − 1
n

n
∑

i=1
Fyi

∣∣∣∣
Q = N/

n
∑

i=1
Ni

y0 = yk, k = R(Q)

, (6)
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where r and r1 are the random numbers in [0, 1], R(P) and R(Q) are the Roulette
Wheel Selection.

The expressions of demand function and supply function are given by, respectively:

xi(t) + 1 = x0 − β(yi(t) + 1− y0), (7)

yi(t) + 1 = y0 + α(xi(t)− x0), (8)

where xi(t) and yi(t) respectively represent the ith price and quantity of commodity at
time t, and β and α are respectively the demand weight and supply weight.

Substituting (7) into (8), the demand equation can be rewritten into the following form:

xi(t) + 1 = x0 − αβ(xi(t)− y0), (9)

Therefore, the commodity price is updated by adjusting the values of α and β, and it
is updated according to the equilibrium price relative to the current price. α and β can be
expressed as:

α =
2(T − t + 1)

T
sin(2πr), (10)

β = 2cos(2πr), (11)

where, |αβ| < 1 is equivalent to the stability mode in the supply and demand mechanism,
emphasizing the exploitation ability, |αβ| > 1 is equivalent to the instability mode and
emphasizing the overall exploration ability. Figure 1 shows the two modes of SDO.
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Figure 1. (A) stability mode, (B) instability mode [34].

2.2. Proposed Method

Since SDO easily suffers from low search efficiency and misses some better solutions,
ESDO is an enhanced version of SDO in order to overcome them. For SDO, the fitness value
of each solution and the distance between each solution and the best solution are very two
important factors affecting the search efficiency of the algorithm for the optimal solution.
In this study, inspired by a fitness-distance balance (FDB) [43], an enhanced fitness-distance
balance (EFDB) is developed to replace the selection for the equilibrium quantity and price
of commodities. Meanwhile, to strengthen exploration ability of the algorithm in the search
space, a Levy flight strategy is introduced to the weight to improve the convergence ability.
A mutation mechanism is employed to enhance the search efficiency of SDO. Meanwhile, an
adaptive local search strategy is used to improve the convergence accuracy of the algorithm.
ESDO is a newly presented optimizer and not yet applied in any real-world application.

2.2.1. Combining Enhanced Fitness-Distance Balance (EFDB) and Levy Flight

In [44], Kati et al. proposed an improved version of SDO, in which the equilibrium
quantity is replaced with the commodity quantity selected by the FDB method to provide
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diversity. In this study, according to [44], we propose the EFDB method, in which the
equilibrium quantity and price of commodities are replaced with the commodity quantity
and price by using the FDB method, respectively. This method can further strengthen the
solution diversity. The following is a specific description to the EFDB method. The fitness
value of commodity price is calculated by [43]:

∀N
i=1Fxi =

{
if goal is minimization 1−normGi
if goal is maximization normGi

(12)

Fx = [ f x1, · · · , f xN ]1×N (13)

∀n
i=1, i 6= best, Di =

√
(x1

i − x1
best)

2
+ · · ·+ (xd

i − xd
best)

2 (14)

Dx = [dx1, · · · , dxn]1×n (15)

∀n
i=1, Mi = 0.5(1 + It/MaxIt)× normFxi + 0.5(1− It/MaxIt)× normDxi (16)

The equilibrium price vector x0 is redefined by:

P =
Mi

n
∑

i=1
Mi

(17)

As an analogy, the equilibrium quantity vector y0 is redefined by:

Q =
Ni

n
∑

i=1
Ni

(18)

where

∀n
i=1, Mi = 0.5(1 + It/MaxIt)× normFyi + 0.5(1− It/MaxIt)× normDyi (19)

where normFyi is the normalized fitness value of Fyi, normDyi is the normalized distance
value of the ith commodity, It is the current iteration and MaxIt is the maximum number
of iterations. This selection method combines the fitness and the distance to calculate the
score for each individual in the population. Therefore, this strategy can effectively improve
solution diversity and avoid local solutions. In addition, inspecting Equation (16), in the
early iterations, the selection for the equilibrium quantity and price of commodities takes
into account the largest fitness value and the furthest distance from the current optimal
individual so far, it will contribute to exploration; in the later iterations, the selection focuses
more on the fitness value rather than the distance, it will be dedicated to exploitation.

The Levy flight [45,46] whose step-width obeys non-uniform Levy distribution, is a
random walk; thus, it has the superior ability to enhance exploring space search [47]. The
step-width of the Levy flight is produced by [48,49]:

L(s) ~ t−λ (1≤ λ ≤ 3) (20)

s =
uσu

|v| 1b
(21)

where λ is a stability/tail index, s is the step-width and u and v obey the normal distribu-
tion, respectively:

u ~ N(0,1), v ~ N(0,1), (22)

σu =

(
Γ(1 + b) · sin(πb

2 )

Γ( 1+b
2 ) · β · 2 b−1

2

) 1
b

(23)

where Γ denotes the standard Gamma function and b = 1.5.
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The weight α in Equation (10) is reformulated by:

α =

5uσu

2|v|
1
β

· (T − t + 1)

T
· sin(2πr) (24)

2.2.2. The Mutation Mechanism

To improve the search efficiency of the algorithm, the mutation mechanism is em-
ployed in this study. Although some different mutation strategies are introduced in the
literature [50–52], the Gaussian mutation is one of the most frequently used mutation
methods since it is more effective and simpler to implement [53]. So, in ESDO, the supply
function and demand function are modified by, respectively:

yi(t + 1) = y0 + α · (xi(t)− x0) + round(0.5 · (0.01 + rand)) · rn (25)

xi(t + 1) = x0 − β · (yi(t + 1)− y0)+round(0.5 · (0.01 + rand)) · rn (26)

where
rn ~ N(0,1) (27)

2.2.3. Adaptive Local Search (ALS) Strategy

Local search strategy is an important way to improve the current best solution. The
chaotic local search is a classic local search (CLS) method [54], which used the chaotic map
to improve the solution quality by searching the neighborhood around the best solution
so far. However, the step-size for this local search cannot decrease as iterations go on,
which will affect the solution accuracy and search efficiency. So, to dynamically adjust the
step-size of the local search, an adaptive local search (ALS) strategy is given by:

x′best(t) =xbest(t) + step · (2 · rand− 1) · (Ub− Lb) (28)

step = e−
20t
T (29)

x′best(t) is a new current solution generated at time t.
The update of the current best solution is given by:{

xbest
(
t + 1) =x′best

(
t) if f it

(
x′best(t)) < f it(xbest(t))

xbest(t + 1) =xbest(t) else
, (30)

If the fitness value of x′best(t) is better than that of xbest(t), the current best solution is
replaced with the new one, or it remains unchanged. It can be observed from Equation (28)
that a bigger step-size contributes to exploration in the early iterations, with the increase
of iterations and, a small step-size is greatly dedicated to exploitation. In addition to
improving the convergence accuracy, this adaptive search strategy also strengthens the
balance between exploration and exploitation to some extent.

2.2.4. The Proposed ESDO Algorithm

By introducing the EFDB method and Levy flight, the mutation mechanism, and the
ALS strategy to strengthen the optimization performance, the ESDO algorithm is proposed.
The pseudocode of ESDO algorithm is given in Figure 2.
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3. Experimental Results and Analysis
3.1. Test Functions and Parameter Setting

To assess the performance of the ESDO algorithm, a classical suit of benchmark set,
containing 23 test functions (see Table A1 in Appendix A for details), are employed. The 23
benchmark functions include 7 unimodal functions (UFs) (F1–F7), 6 multimodal functions
(MFs) (F8–F13) and 10 low-dimensional multimodal functions (LMFs) (F14–F23). Meanwhile,
several competitive optimizers, including whale optimization algorithm (WOA) [55], gray
wolf optimizer (GWO) [56], and GSA, are used and their results are provided for a comparison.
For all the considered optimizers, the population size and the maximum number of iterations
are set to 50 and 500, respectively. The ESDO algorithm is firstly analyzed qualitatively based
on exploration and exploitation. Then, the Wilcoxon signed-rank test and Friedman test are
statistically analyzed, respectively. The experimental results are based on 30 independent runs.
The other parameter settings of all the considered optimizers are described in Table 1.

Table 1. Parameter setting of each algorithm.

Algorithm Parameters Values

GSA Gravitational constant; decreasing coefficient 100; 20

WOA Control parameter [0, 2]

SDO Convergence factor linearly decreases from 2 to 0

GWO Control parameter [0, 2]

ESDO Convergence factor linearly decreases from 2 to 0
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3.2. Exploitation Analysis

The functions F1–F7 having only one extremum are used to assess exploitation of
algorithms. The comparison results of the algorithms on these UNs are listed in Table 2,
in which the underline indicates the best value among all the algorithms. From this table,
ESDO provides better solutions on functions F1–F5 and F7 in terms of mean and Std. ESDO
performs as well as SDO and GWO on function F6. Therefore, ESDO obtains better results
on most of UNs. Figure 3 shows the convergence curves of the algorithms on F1–F7. ESDO
exhibits superior convergence rate over other optimizers in exploiting the optimal solution.

Table 2. Comparison results of UNs (F1–F7).

NO. Index ESDO SDO WOA GWO GSA

F1
Mean 9.09 × 10−231 1.49 × 10−165 2.62 × 10−83 1.87 × 10−33 3.66 × 10−17

Std 0 0 9.62 × 10−83 2.21 × 10−33 1.15 × 10−17

F2
Mean 4.93 × 10−116 1.30 × 10−71 2.40 × 10−53 8.85 × 10−20 3.21 × 10−8

Std 2.70 × 10−115 7.04 × 10−71 8.38 × 10−53 5.55 × 10−20 6.07 × 10−9

F3
Mean 3.86 × 10−194 3.66 × 10−128 30167.4659 1.01 × 10−7 5.38 × 102

Std 0.00 × 100 1.99 × 10−127 8562.673562 4.27 × 10−7 2.49 × 102

F4
Mean 3.28 × 10−113 3.22 × 10−75 36.64494791 1.83 × 10−8 3.31 × 100

Std 1.79 × 10−113 1.76 × 10−74 29.45025131 1.45 × 10−8 1.56 × 100

F5
Mean 2.40 × 100 2.59 × 101 2.75 × 101 2.64 × 101 3.85 × 101

Std 1.11 × 100 7.19 × 10−1 4.09 × 10−1 6.35 × 10−1 3.18 × 101

F6
Mean 0 0 3.33 × 10−2 0 6.33 × 10−1

Std 0 0 1.83 × 10−1 0 8.09 × 10−1

F7
Mean 7.49 × 10−5 9.85 × 10−5 2.14 × 10−3 1.14 × 10−3 3.09 × 10−2

Std 7.58 × 10−5 7.61 × 10−5 2.91 × 10−3 5.78 × 10−4 1.73 × 10−2
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3.3. Exploration Analysis

The functions F8–F23 having multiple extrema are used to evaluate exploration of
algorithms. The comparison results of the algorithms on these functions are shown in
Tables 3 and 4. Inspecting Table 3, ESDO obviously outperforms other optimizers on
function F12 and F13. ESDO, SDO and WOA provide the same results in terms of mean
on functions F9 and F10. In addition, ESDO is third best algorithm on function F7. The
performance of ESDO ranks only second to WOA on function F8. Observing Table 4, for
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F15 and F20, ESDO obtains the second-best results, which are only inferior to those of
SDO. For functions F16–F19 and F22–F23, ESDO, SDO and one of other algorithms offer
the same best results. For F21, ESDO provides the best results. The convergence curves of
the algorithms on F8–F23 are depicted in Figures 4 and 5, which manifests that ESDO has
better convergence performance with comparison to other algorithms when tackling these
test functions.

Table 3. Comparison results of MNs (F8–F13).

NO. Index ESDO SDO WOA GWO GSA

F8
Mean −8525.069636 −8498.031439 −11,263.28556 −5998.877219 −2735.739471

Std 5.93 × 102 7.29 × 102 1.55 × 103 1.19 × 103 3.67 × 102

F9
Mean 0 0 0 1.517856678 18.27407681

Std 0 0 0 2.13 × 100 4.47 × 100

F10
Mean 8.88 × 10−16 8.88 × 10−16 5.27 × 10−15 4.21 × 10−14 5.05 × 10−9

Std 0 0 2.41 × 10−15 4.53 × 10−15 8.67 × 10−10

F11
Mean 0 0 0 5.48 × 10−3 1.76 × 101

Std 0 0 0 9.90 × 10−3 4.99 × 100

F12
Mean 5.77 × 10−5 2.62 × 10−4 5.68 × 10−3 2.94 × 10−2 6.31 × 10−1

Std 8.05 × 10−5 4.09 × 10−4 4.10 × 10−3 1.75 × 10−2 5.01 × 10−1

F13
Mean 2.32 × 10−3 1.93 × 10−2 2.21 × 10−1 3.40 × 10−1 2.59 × 100

Std 4.53 × 10−3 3.96 × 10−2 1.23 × 10−1 1.97 × 10−1 3.77 × 100

Table 4. Comparison results of LMNs (F14–F23).

NO. Index ESDO SDO WOA GWO GSA

F14
Mean 0.998003838 0.998003838 2.432300837 2.607801074 5.100884714

Std 0 0 3.36 × 100 2.44 × 100 2.80 × 100

F15
Mean 3.07 × 10−4 3.07 × 10−4 7.54 × 10−4 2.48 × 10−3 3.28 × 10−3

Std 1.03 × 10−14 1.30 × 10−17 6.96 × 10−4 6.07 × 10−3 1.83 × 10−3

F16
Mean −1.031628453 −1.031628453 −1.031628453 −1.031628439 −1.031628453

Std 6.78 × 10−16 6.78 × 10−16 1.05 × 10−10 1.46 × 10−8 5.05 × 10−16

F17
Mean 0.397887358 0.397887358 0.397889341 0.397913346 0.397887358

Std 0 0 4.92 × 10−6 1.34 × 10−4 0

F18
Mean 3 3 3.000019786 3.000012409 3

Std 1.12 × 10−15 1.18 × 10−15 5.81 × 10−5 1.44 × 10−5 3.24 × 10−15

F19
Mean −3.862782148 −3.862782148 −3.859813445 −3.861222768 −3.862782148

Std 2.70 × 10−15 2.71 × 10−15 3.69 × 10−3 2.62 × 10−3 2.31 × 10−15

F20
Mean −3.302179651 −3.310105859 −3.229898305 −3.259834789 −3.321995172

Std 4.51 × 10−2 3.63 × 10−2 9.89 × 10−2 7.99 × 10−2 1.37 × 10−15

F21
Mean −10.15319968 −9.983266281 −9.389732298 −9.060734145 −7.353288325

Std 7.01 × 10−15 9.31 × 10−1 2.01 × 100 2.26 × 100 3.54 × 100

F22
Mean −10.40294057 −10.40294057 −8.736752324 −10.40158908 −10.40294057

Std 1.04 × 10−16 9.90 × 10−16 2.85 × 100 6.32 × 10−4 9.33 × 10−16

F23
Mean −10.53640982 −10.53640982 −7.471755875 −10.53516103 −10.53640982

Std 1.21 × 10−15 1.98 × 10−15 3.59 × 100 5.47 × 10−4 2.29 × 10−15
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3.4. Statistical Analysis

To evaluate the overall performance of ESDO and rank it statistically, the Wilcoxon
signed-rank test (WSRT) [57] and Friedman test (FT) [58] are employed, respectively.
Tables 5 and 6 provide the results of WSRT. In the table, “=” indicates there is no significant
difference between ESDO and its competitor for a considered problem, “+” indicates that
the performance of ESDO is better than that of a competitor for a considered problem and
“−” is the opposite. Table 7 summarizes the results of WSRT in Tables 5 and 6. In Table 7,
The WSRT results reveal that ESDO is superior to SDO, GWO, WOA and GSA on functions
7, 18, 22 and 17 out of 23, respectively, indicating the superior performance of ESDO to
its competitors statistically. Figure 6 depicts the rank of each function for the comparative
optimizers, Figure 7 gives the mean of these ranks. From Figure 7, ESDO ranks the first
among the considered optimizers, demonstrating that it exhibits the best optimization
ability compared to its counterparts.
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Table 5. WSRT results of ESDO for SDO and WOA.

Fun.
SDO vs. ESDO WOA vs. ESDO

p-Value T+ T− Winner p-Value T+ T− Winner

F1 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 +
F2 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 +
F3 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 +
F4 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 +
F5 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 +
F6 1 0 465 = 1 0 465 =
F7 3.68 × 10−2 334 131 − 1.73 × 10−6 0 465 +
F8 9.92 × 10−1 233 232 = 6.89 × 10−5 426 39 −
F9 1 0 465 = 1 0 465 =

F10 1 0 465 = 4.34 × 10−6 0 465 +
F11 1 0 465 = 0.5 0 465 =
F12 4.49 × 10−2 135 330 + 1.73 × 10−6 0 465 +
F13 2.43 × 10−2 123 342 + 1.73 × 10−6 0 465 +
F14 1 0 465 = 1.73 × 10−6 0 465 +
F15 5.73 × 10−1 166 299 = 1.73 × 10−6 0 465 +
F16 1 0 465 = 1.73 × 10−6 0 465 +
F17 1 0 465 = 1.73 × 10−6 0 465 +
F18 1 12 453 = 1.73 × 10−6 0 465 +
F19 1 0 465 = 1.73 × 10−6 0 465 +
F20 4.53 × 10−1 19 446 = 4.86 × 10−5 35 430 +
F21 1 0 465 = 1.73 × 10−6 0 465 +
F22 1 0 465 = 1.73 × 10−6 0 465 +
F23 1 0 465 = 1.73 × 10−6 0 465 +

Table 6. WSRT results of ESDO for GWO and GSA.

Fun.
GWO vs. ESDO GSA vs. ESDO

p-Value T+ T− Winner p-Value T+ T− Winner

F1 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 +
F2 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 +
F3 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 +
F4 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 +
F5 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 +
F6 1 0 465 = 1.56 × 10−2 0 465 +
F7 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 +
F8 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 +
F9 4.63 × 10−6 0 465 + 1.73 × 10−6 0 465 +

F10 1.31 × 10−6 0 465 + 1.73 × 10−6 0 465 +
F11 3.91× 10−3 0 465 + 1.73 × 10−6 0 465 +
F12 2.35 × 10−6 3 462 + 1.73 × 10−6 0 465 +
F13 1.92 × 10−6 1 464 + 1.24 × 10−5 20 445 +
F14 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 +
F15 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 +
F16 1.73 × 10−6 0 465 + 1 0 465 =
F17 1.73 × 10−6 0 465 + 1 0 465 =
F18 1.73 × 10−6 0 465 + 5.34 × 10−7 15 450 +
F19 1.73 × 10−6 0 465 + 1 0 465 =
F20 2.41 × 10−4 54 411 + 6.25 × 10−2 15 450 =
F21 1.73 × 10−6 0 465 + 1.75 × 10−4 0 465 +
F22 1.73 × 10−6 0 465 + 1 0 465 =
F23 1.73 × 10−6 0 465 + 1 0 465 =
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Table 7. Statistics results of WSRT for ESDO.

Function Types ESDO vs. SDO
(+/=/−)

ESDO vs. WOA
(+/=/−)

ESDO vs. WOA
(+/=/−)

ESDO vs. GSA
(+/=/−)

Unimodal 5/1/1 6/1/0 6/1/0 7/0/0
Multimodal 2/4/0 2/3/1 6/0/0 6/0/0

Low-dimensional 0/10/0 10/0/0 10/0/0 4/6/0
Total 7/15/1 18/4/1 22/1/0 17/6/0
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4. ESDO for FOPID Controller of Water Turbine Governor System
4.1. System Description

The traditional integer-order PID controller has only three parameters (Kp,Ki,Kd) [59],
while the FOPID controller used in this experiment has five parameters (Kp,Ki,Kd,λ,µ), so
as to achieve more accurate control. Theoretically, λ and µ can take any number. In the case
of λ = µ = 1, FOPID is converted to integer-order PID.
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The transfer function of FOPID is described by:

Gs(s) = Kp +
Ki

sλ
+

Kd · sµ

Tv · s + 1
, (31)

where Kp,Ki and Kd represent the proportional coefficient, integral coefficient and differen-
tial coefficient, respectively, s represents the Laplace operator, and λ and µ represent the
exponents of the integral operator and the differential operator, respectively. Tv represents
the differential time constant.

The variation of the unit load produces a deviation e. The FOPID controller will convert
this difference into an adjustment signal. After receiving the signal, the mechanical hydraulic
system will operate to adjust the opening of the guide vane, and then adjust the flow and
restore the speed. Figure 8 is the FOPID model of the water turbine governor system.
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4.2. Experimental Results and Analysis

This study is simulated by MATLAB/Simulink. The fitness function uses the time
multiplication error integration criterion and is defined by:

f ITAE =
∫ ts

0
t|e(t)|dt, (32)

where e(t) is the deviation of the actual output from the expected output.
The specific experimental settings and parameter values are shown in Table 8.

Table 8. The specific experimental settings and parameter values.

Population
Size

Maximum Numbers
of Iterations Kp Ki Kd λ µ

30 100 [0, 20] [0, 20] [0, 20] [0.5, 1.9] [0.5, 1.9]

Tv Ty Ty1 Ky Tw Ta en

0.2 0.3 0.3 1 0.5 10 1

In this experiment, in order to be more practical, four different working conditions
under 0–20% load are adopted, and the controller performance from ESDO is compared
with that from SDO, WOA and GSA under each working condition. Each algorithm runs
20 times, and the average optimal fitness value, overshoot and adjustment time based on
20 experiments are compared to verify the parameter setting effect of ESDO on the FOPID
controller. Under different load conditions, the overshoot is represented by the maximum
value. The simulation results are shown in Table 9. The convergence curve of average
fitness, convergence curves of average FOPID parameters and the speed response curves
obtained of the average FOPID parameters under different load conditions are shown in
Figures 9–20, respectively.
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Table 9. Experimental results at 4%, 8%, 12%, and 16% loads.

Load Average
Algorithms

ESDO SDO GWO WOA GSA

4%

ITAE 1.5028 1.7009 1.9237 4.0746 5.5928
Kp 12.6487 12.0457 11.7392 10.3199 10.678
Ki 4.5888 4.2521 4.5135 5.0279 4.0414
Kd 3.3403 3.0282 3.3705 3.6921 3.3575
λ 1.0228 1.0230 1.0153 0.9987 1.0830
µ 1.5079 1.4519 1.4280 1.3416 1.3857

Overshoot 0.4992 0.5100 0.5070 0.5113 0.5072
Ts(s) 10.16 10.81 15.20 21.78 28.5100

8%

ITAE 3.1891 3.4378 4.3942 8.2490 19.0396
Kp 11.4295 10.7352 10.2992 8.5996 10.2509
Ki 4.2984 4.1532 4.1279 4.6332 4.2505
Kd 3.39281 3.2958 3.1801 3.7471 3.7841
λ 1.0234 1.0211 1.0156 0.9679 1.0563
µ 1.4341 1.3563 1.3611 1.1568 1.3633

Overshoot 1.0073 1.0274 1.0272 1.0601 1.0064
Ts(s) 10.02 10.77 10.77 27.9500 28.7300

12%

ITAE 5.1116 5.2596 6.2520 12.2974 33.1630
Kp 10.6533 10.2649 10.2900 7.7878 8.9427
Ki 4.0361 3.8655 3.7692 4.4630 3.3708
Kd 3.7796 3.1963 3.1225 3.9908 4.0885
λ 1.0233 1.0229 1.0236 0.9653 1.0339
µ 1.4056 1.3735 1.4244 1.1403 1.3098

Overshoot 1.5073 1.5338 1.5135 1.5806 1.5024
Ts(s) 10.32 10.45 10.42 22.58 28.09

16%

ITAE 8.4368 9.0978 9.9455 18.8710 40.3035
Kp 10.1548 9.6269 9.2327 7.4238 9.2411
Ki 3.4610 3.3166 3.3739 3.4810 3.1995
Kd 3.7743 2.7425 3.2679 3.7848 3.9186
λ 1.0243 1.0197 1.0170 0.9832 1.0734
µ 1.3936 1.3859 1.3315 1.1247 1.3524

Overshoot 2.0653 2.1087 2.1005 2.1538 2.0577
Ts(s) 11.09 11.15 13.40 27.29 27.90
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Figure 10. Convergence curves of FOPID parameters with 4% load.
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Figure 11. Speed response curves with 4% load.
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Figure 13. Convergence curves of FOPID parameters with 8% load.
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Figure 14. Speed response curves with 8% load.
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Figure 15. Convergence curves of average fitness with 12% load.
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Figure 16. Convergence curves of FOPID parameters with 12% load.
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Figure 17. Speed response curves with 12% load.
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Figure 18. Convergence curves of average fitness with 16% load.
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Figure 19. Convergence curves of FOPID parameters with 16% load.
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Figure 20. Speed response curves with 16% load.

Under 4% load, the fitness value of the FOPID controller offered by ESDO is the
smallest among the five algorithms, which shows that ESDO can jump out of local optimum
well and find the global optimum; meanwhile, it effectively improves the optimization
accuracy. From the convergence curves under 4% load in Figure 9, the convergence rate
of ESDO is also faster than other algorithms, which indicates that ESDO has the strongest
ability to find the best solution among these algorithms. The overshoot and adjustment
time are two important indicators to measure whether a control system is stable. It can be
seen from Table 9 that under the condition of 4% load, the overshoot and adjustment time
obtained are the minimum after the governor of the water turbine is tuned by ESDO. The
trend of the response curves in Figure 11 shows that after the peak value, the oscillation
amplitude of the curve obtained by ESDO is the smallest, and it can reach a stable value
quickly. On the contrary, the oscillation amplitude of the response curves obtained by SDO,
GWO, WOA and GSA are very large, and the state is very unstable. It proves that the
dynamic regulation ability of the FOPID controller offered by ESDO is stronger than those
offered by the other four algorithms, and the turning parameters of the turbine governor
with ESDO can make the control system more stable and efficient.

Under 8% load, the fitness value of the FOPID controller offered by ESDO is also
the smallest, showing that the global exploration ability and local exploitation ability of
ESDO are significantly enhanced. The convergence curves of average fitness in Figure 12
demonstrate that, under the 8% load condition, ESDO can quickly find the optimal value
in the optimization process, greatly improving the efficiency of the algorithm. After the
governor of the water turbine is tuned by different algorithms, the overshoot of the FOPID
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controller offered by ESDO is only second to that offered by GSA and very close to that
offered by GSA, but the adjustment time of the FOPID controller offered by ESDO is far
better than that offered by GSA. It can be found from Figure 14 that the FOPID controller
from ESDO also has the smallest oscillation amplitude and the smallest duration, the
FOPID controller from GSA has the largest oscillation amplitude and the longest duration,
and the FOPID controllers from SDO, GWO and WOA are in between. Considering
comprehensively, under 8% load condition, ESDO also has the strongest optimization
ability for the FOPID controller among the five algorithms.

When the load is 12%, the FOPID controller offered by ESDO also gets the minimum
fitness value. From Figure 15, although the convergence speed of ESDO is slower than that
of SDO at the beginning of the iteration, in the middle of the iteration, ESDO outperforms
SDO. At this time, the convergence speed of ESDO is the fastest, and it tends to jump out
of the local extreme value to find a smaller value. Moreover, in the regulation system, the
overshoot of the FOPID controller offered by ESDO is relatively good, and the adjustment
time is also the smallest. From the speed response curves in Figure 17, after the first peak,
the ESDO curve is very stable with little fluctuation, while the response curves of the FOPID
controller offered by other algorithms fluctuate greatly and last a long time.

When the load is 16%, the fitness value of the FOPID controller offered by ESDO is
still the smallest. From Figure 18, there is a fast convergence speed at the beginning of
iteration, and its ability to jump out of local extreme value is also the strongest among all
algorithms. According to the speed response curves in Figure 20, the overshoot of of the
FOPID controller offered by ESDO is very close to that offered by GSA, which is better than
those offered by other algorithms. The adjustment time of the FOPID controller offered
by ESDO is the shortest among all algorithms, after falling from the peak, the fluctuation
weakens rapidly and finally tends to be stable.

Therefore, through tuning the FOPID parameters of the water turbine governor under
different load conditions, these convincing results reveal that ESDO is excellent in tackling
real-world engineering applications.

5. Conclusions

To better handle optimization problems, an effective supply-demand-based optimiza-
tion (ESDO) is proposed, it combines three strategies, including the enhanced fitness-
distance balance (EFDB) with Levy flight, mutation mechanism and adaptive local search,
to improve solution diversity, and convergence accuracy and search efficiency. The experi-
mental results of ESDO with several well-regarded algorithms on 23 benchmark functions
discover that ESDO has superior optimization ability. In addition, the practicability of
ESDO is also verified by tuning the parameters of the FOPID controller of the water tur-
bine governor system. The experimental results show that the turbine governor system
tuned by ESDO is better than those tuned by other algorithms in terms of response time
and overshoot.

In this study, some secondary and high-level terms are ignored when establishing the
hydraulic turbine simulation model, and higher-order models can be established in the
future. The implementation method of FOPID can also be improved.

In future studies, ESDO could be specifically intended to handle a variety of problems
in hydraulic engineering, such as optimal allocation of power station [60], intelligent fault
diagnosis of turbine [61] and optimal design of gate [62–64].
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Appendix A

Table A1. Unimodal test functions.

Name Function D Range fopt

Sphere f1(x) = ∑n
i=1 x2

i 30 [−100, 100]D 0
Schwefel2.22 f2(x) = ∑n

i=1 |xi|+ ∏n
i=1|xi| 30 [−10, 10]D 0

Schwefel1.2 f3(x) = ∑n
i=1 (∑

i
j=1 xj)

2 30 [−100, 100]D 0

Schwefel2.21 f4(x) = maxi{|xi|, 1 ≤ i ≤ n} 30 [−100, 100]D 0
Rosenbrock f5(x) = ∑n−1

i=1 (100(xi+1 − xi)
2 + (xi − 1)2) 30 [−30, 30]D 0

Step f6(x) = ∑n
i=1 (xi + 0.5)2 30 [−100, 100]D 0

Quartic f7(x) = ∑n
i=1 ix4 + random[0, 1) 30 [−1.28, 1.28]D 0

Table A2. Multimodal test functions.

Name Function D Range fopt

Schwefel f8(x) = ∑n
i=1 (xi sin(

√
|xi|)) 30 [−500, 500]D −12, 569.5

Rastrigin f9(x) = ∑n
i=1 (x2

i − 10 cos(2πxi) + 10)2 30 [−5.12, 5.12]D 0

Ackley f10(x) = −20 exp(−0.2
√

1
n ∑n

i=1 x2
i )− exp( 1

n ∑n
i=1 cos 2πxi) + 20 + e 30 [−32, 32]D 0

Griewank f11(x) = 1
4000 ∑n

i=1 (xi − 100)2 −∏n
i=1 cos( xi−100√

i
) + 1 30 [−600, 600]D 0

Penalized f12(x) = π
n

{
10 sin2(πy1) + ∑n=1

i=1 (yi − 1) 2[1 + 10 sin2(πyi

+1)] + (yn − 1) 2}+ ∑30
i=1 u(xi, 10, 100, 4)

30 [−50, 50]D 0

Penalized2 f13(x) = 0.1
{

sin2(3πx1) + ∑29
i=1 (xi − 1)2 p[1 + sin2(3πxi+1)]

+(xn − 1) 2[1 + sin2(2πx30)]
}
+ ∑30

i=1 u(xi, 5, 10, 4)
30 [−50, 50]D 0

Table A3. Low-dimension Multimodal test functions.

Name Function D Range fopt

Foxholes f14(x) = [ 1
500 + ∑25

j=1
1

j+∑2
j=1 (xi−aij)

6 ]
−1 2 [−65.536, 65.536]D 0.998

Kowalik f15(x) = ∑11
i=1

∣∣∣ai −
x1(b2

i +bi x2)

b2
i +bi x3+x4

∣∣∣2 4 [−5, 5]D 3.075× 10−4

Six Hump
Camel f16(x) = 4x2

1 − 2.1x4
1 +

1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5]D −1.036

Branin f17(x) = (x2 − 5.1
4π2 x2

1 +
5
π x1 − 6)

2
+ 10(1− 1

8π ) cos x1 + 10 2 [−5, 10]×
[0, 15]

0.398

GoldStein-Price f18(x) = [1 + (x1 + x2 + 1) 2(19− 14x1 + 3x2
1 − 14x2

+6x1x2 + 3x2
2)]× [30 + (2x1 + 1− 3x2)

2(18− 32x1
+12x2

1 + 48x2 − 36x1x2 + 27x2
2)]

2 [−2, 2]D 3

Hartman 3 f19(x) = −∑4
i=1 exp[−∑3

j=1 aij(xj − pij)
2
] 3 [0, 1]D −3.86

Hartman 6 f20(x) = −∑4
i=1 exp[−∑6

j=1 aij(xj − pij)
2
] 6 [0, 1]D −3.322

Shekel 5 f21(x) = −∑5
i=1

∣∣∣(xi − ai)(xi − ai)
T + ci

∣∣∣−1 4 [0, 10]D −10.1532

Shekel 7 f22(x) = −∑7
i=1

∣∣∣(xi − ai)(xi − ai)
T + ci

∣∣∣−1 4 [0, 10]D −10.4028

Shekel 10 f23(x) = −∑10
i=1

∣∣∣(xi − ai)(xi − ai)
T + ci

∣∣∣−1 4 [0, 10]D −10.5364
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