Evaluation of Grand Ethiopian Renaissance Dam Lake Using Remote Sensing Data and GIS
Abstract
:1. Introduction
2. Methods and Materials
2.1. Depth Estimations
2.2. Satellite Data Processing and Water Level Estimation
2.3. Water Level Validations
3. Results and Volume Calculation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hussein, H.; Conker, A.; Grandi, M. Small is beautiful but not trendy: Understanding the allure of big hydraulic works in the Euphrates-Tigris and Nile waterscapes. Mediterr. Polit. 2022, 27, 297–320. [Google Scholar] [CrossRef]
- Conker, A.; Hussein, H. Hydraulic mission at home, hydraulic mission abroad? Examining Turkey’s regional ‘Pax-Aquarum’ and its limits. Sustainability 2019, 11, 288. [Google Scholar] [CrossRef]
- Mehtonen, K. Do the Downstream Countries Oppose the Upstream Dams? In Modern Myths of the Mekong: A Critical Review of Water and Development Concepts, Principles and Policies; Helsinki University of Technology: Espoo, Finland, 2008; pp. 161–173. ISBN 978-951-22-9102-1. [Google Scholar]
- Conker, A.; Hussein, H. Hydropolitics and issue-linkage along the Orontes River Basin: An analysis of the Lebanon–Syria and Syria–Turkey hydropolitical relations. Int. Environ. Agreem. Polit. Law Econ. 2020, 20, 103–121. [Google Scholar] [CrossRef]
- Giovanis, E.; Ozdamar, O. The Transboundary Effects of Climate Change and Global Adaptation: The Case of the Euphrates-Tigris Water Basin in Turkey and Iraq; Report no. WP 1517; Economic Research Forum (ERF): Giza, Egypt, 2021; pp. 1–60. [Google Scholar]
- Özgüler, H.; Yıldız, D. Consequences of the Droughts in the Euphrates-Tigris Basin. Water Manag. Dlomacy 2020, 1, 29–49. [Google Scholar]
- Zhou, Y.; Li, Z.; Yao, S.; Shan, M.; Guo, C. Case Study: Influence of Three Gorges Reservoir Impoundment on Hydrological Regime of the Acipenser sinensis Spawning Ground, Yangtze River, China. Front. Ecol. Evol. 2021, 9, 624447. [Google Scholar] [CrossRef]
- Zeitoun, M.; Cascão, A.E.; Warner, J.; Mirumachi, N.; Matthews, N.; Menga, F.; Farnum, R. Transboundary water interaction III: Contest and compliance. Int. Environ. Agreem. 2017, 17, 271–294. [Google Scholar] [CrossRef]
- Soukhaphon, A.; Baird, I.G.; Hogan, Z.S. The impacts of hydropower dams in the mekong river basin: A review. Water 2021, 13, 1–18. [Google Scholar] [CrossRef]
- Ayana, E.K.; Philpot, W.D.; Melesse, A.M.; Steenhuis, T.S. Bathymetry, Lake Area and Volume Mapping: A Remote-Sensing Perspective. In Nile River Basin: Ecohydrological Challenges, Climate Change and Hydropolitics; Melesse, A.M., Abtew, W., Setegn, S.G., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 253–267. [Google Scholar] [CrossRef]
- Melesse, A.M.; Abtew, W.; Moges, S.A. Nile and Grand Ethiopian Renaissance Dam: Past, Present and Future; Springer: Cham, Switzerland, 2021; p. 525. [Google Scholar] [CrossRef]
- Nile Basin Initiative. Eastern Nile Subsidiary Action Program (ENSAP). 2010. Available online: http://entro.nilebasin.org/ensap (accessed on 20 July 2020).
- Wheeler, K.G.; Basheer, M.; Mekonnen, Z.T.; Eltoum, S.O.; Mersha, A.; Abdo, G.M.; Zagona, E.A.; Hall, J.W.; Dadson, S.J. Cooperative filling approaches for the Grand Ethiopian Renaissance Dam. Water Int. 2016, 41, 611–634. [Google Scholar] [CrossRef]
- Tvedt, T. The River Nile in the Age of the British—Political Ecology and the Quest for Economic Power; IB Tauris: London, UK, 2004; p. 464. ISBN 9789774160462. [Google Scholar]
- Hussein, H.; Grandi, M. Dynamic political contexts and power asymmetries: The cases of the Blue Nile and the Yarmouk Rivers. Int. Environ. Agreem. Polit. Law Econ 2017, 17, 795–814. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://dailynewsegypt.com/2021/08/26/withholding-information-about-ethiopian-dams-filling-cost-us-dearly-sudan/ (accessed on 26 January 2022).
- Slawson, N. Sudan Declares State of Emergency as Record Flooding Kills 99 People. Archived from the Original on 6 September 2020. Retrieved 6 September 2020–via The Guardian. Available online: https://www.theguardian.com/world/2020/sep/05/sudan-declares-state-of-emergency-record-flooding (accessed on 5 January 2021).
- Ramadan, E.; Negm, A.; Elsammany, M.; Helmy, A. Quantifying the Impacts of Impounding Grand Ethiopian. In Proceedings of the Eighteenth International Water Technology Conference (IWTC 18), Sharm El Sheikh, Egypt, 12–14 March 2015. [Google Scholar] [CrossRef]
- Omran, E.S.E.; Negm, A. Environmental Impacts of the GERD Project on Egypt’s Aswan High Dam Lake and Mitigation and Adaptation Options. In Grand Ethiopian Renaissance Dam versus Aswan High Dam; Negm, A., Abdel-Fattah, S., Eds.; The Handbook of Environmental Chemistry; Springer: Cham, Switzerland, 2018; Volume 79. [Google Scholar] [CrossRef]
- Kumar, R.; Bahuguna, I.M.; Ali, S.N.; Singh, R. Lake Inventory and Evolution of Glacial Lakes in the Nubra-Shyok Basin of Karakoram Range. Earth Syst. Environ. 2020, 4, 57–70. [Google Scholar] [CrossRef]
- Amitrano, D.; Martino, G.D.; Iodice, A.; Mitidieri, F.; Papa, M.N.; Riccio, D.; Ruello, G. Sentinel-1 for Monitoring Reservoirs: A Performance Analysis. Remote Sens. 2014, 6, 10676–10693. [Google Scholar] [CrossRef]
- Pipitone, C.; Maltese, A.; Dardanelli, G.; Lo Brutto, M.; La Loggia, G. Monitoring Water Surface and Level of a Reservoir Using Different Remote Sensing Approaches and Comparison with Dam Displacements Evaluated via GNSS. Remote Sens. 2018, 10, 71. [Google Scholar] [CrossRef]
- Ma, X.; Lu, S.; Ma, J.; Zhu, L. Lake water storage estimation method based on topographic parameters: A case study of Nam Co Lake. Remote Sens. Land Resour. 2019, 31, 167–173. [Google Scholar]
- Ahmed, I.A.; Shahfahad, S.; Baig, M.R.; Talukdar, S.; Asgher, M.S.; Usmani, T.M.; Ahmed, S.; Rahman, A. Lake water volume calculation using time series LANDSAT satellite data: A geospatial analysis of Deepor Beel Lake, Guwahati. Front. Eng. Built Environ. 2021, 1, 107–130. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, M.; Hu, H.; Xu, J. Evaluating the Performance of Sentinel-1A and Sentinel-2 in Small Waterbody Mapping over Urban and Mountainous Regions. Water 2021, 13, 945. [Google Scholar] [CrossRef]
- Hossen, H.; Khairy, M.; Ghaly, S.; Scozzari, A.; Negm, A.; Elsahabi, M. Bathymetric and Capacity Relationships Based on Sentinel-3 Mission Data for Aswan High Dam Lake, Egypt. Water 2022, 14, 711. [Google Scholar] [CrossRef]
- Kansara, P.; Li, W.; El-Askary, H.; Lakshmi, V.; Piechota, T.; Struppa, D.; Abdelaty Sayed, M. An Assessment of the Filling Process of the Grand Ethiopian Renaissance Dam and Its Impact on the Downstream Countries. Remote Sens. 2021, 13, 711. [Google Scholar] [CrossRef]
- Condeça, J.; Nascimento, J.; Barreiras, N. Monitoring the Storage Volume of Water Reservoirs Using Google Earth Engine. Water Resour. Res. 2022, 58, e2021WR030026. [Google Scholar] [CrossRef]
- Hedley, J.D.; Roelfesma, C.; Brando, V.; Giardino, C.; Kutser, T.; Phinn, S. Coral reef applications of Sentinel-2: Coverage, characteristics, bathymetry and benthic mapping with comparison to Landsat 8. Remote Sens. Environ. 2018, 216, 598–614. [Google Scholar] [CrossRef]
- ESRI. ArcGIS Desktop: Release 10; Environmental Systems Research Institute: Redlands, CA, USA, 2011. [Google Scholar]
- McFeeters, S.K. Using the Normalized Difference Water Index (NDWI) within a Geographic Information System to Detect Swimming Pools for Mosquito Abatement: A Practical Approach. Remote Sens. 2013, 5, 3544–3561. [Google Scholar] [CrossRef]
- SNAP–ESA Sentinel Application Platform v2.0.2. Available online: http://step.esa.int (accessed on 1 October 2020).
- Available online: https://ipad.fas.usda.gov/cropexplorer/global_reservoir/ (accessed on 5 June 2022).
- Abtew, W.; Dessu, S.B. The grand Ethiopian Renaissance Dam on the Blue Nile; Springer Geography; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Keith, B.; Ford, D.N.; Horton, R. Considerations in managing the fill rate of the Grand Ethiopian RenaissanceDam Reservoir using a system dynamics approach. J. Def. Model. Sim. 2017, 14, 33–43. [Google Scholar] [CrossRef]
- King, A.D.; Block, P.J. An assessment of reservoir filling policies for the Grand Ethiopian Renaissance Dam. J. Water Clim. Chang. 2014, 5, 233–243. [Google Scholar] [CrossRef]
- Heggy, E.; Sharkawy, Z.; Abotalib, A.Z. Egypt’s budget deficit and suggested mitigations policies for the Grand Ethiopian Renaissance Dam filling scenarios. Environ. Res. Lett. 2021, 16, 074022. [Google Scholar] [CrossRef]
- Wheeler, K.G.; Jeuland, M.; Hall, J.W.; Zagona, E.; Whittington, D. Understanding and managing new risks on the Nile with the Grand Ethiopian Renaissance Dam. Nat. Commun 2020, 11, 5222. [Google Scholar] [CrossRef] [PubMed]
- Donia, N.; Negm, A. Impacts of Filling Scenarios of GERD’s Reservoir on Egypt’s Water Resources and Their Impacts on Agriculture Sector. In Conventional Water Resources and Agriculture in Egypt; Negm, A.M., Ed.; The Handbook of Environmental Chemistry; Springer: Cham, Switzerland, 2019; Volume 74, pp. 391–414. [Google Scholar] [CrossRef]
- Abulnaga, B.E. Dredging the Clays of the Nile: Potential Challenges and Opportunities on the Shores of the Aswan High Dam Reservoir and the Nile Valley in Egypt. In Grand Ethiopian Renaissance Dam versus Aswan High Dam; Negm, A., Abdel-Fattah, S., Eds.; The Handbook of Environmental Chemistry; Springer: Cham, Switzerland, 2019; Volume 79. [Google Scholar] [CrossRef]
- El-Askary, H.; Fawzy, A.; Thomas, R.; Li, W.; LaHaye, N.; Linstead, E.; Piechota, T.; Struppa, D.; Sayed, M.A. Assessing the Vertical Displacement of the Grand Ethiopian Renaissance Dam during Its Filling Using DInSAR Technology and Its Potential Acute Consequences on the Downstream Countries. Remote Sens. 2021, 13, 4287. [Google Scholar] [CrossRef]
- Wheeler, K.G.; Hussein, H. Water research and nationalism in the post-truth era. Water Int. 2021, 46, 1216–1223. [Google Scholar] [CrossRef]
- Mirumachi, N. Informal water diplomacy and power: A case of seeking water security in the Mekong River basin. Environ. Sci. Policy 2020, 114, 86–95. [Google Scholar] [CrossRef]
Name Lake | Water Level from In Situ Station | Water Level from Virtual Stations Obtained from Satellite Altimeter Data from G-REALM) Project “m” | Location of Virtual Water Level Station | Water Level Extracted by Sentinel-2 Boundary “m” in This Study | Differences “m” | |
---|---|---|---|---|---|---|
Long. | Lat. | |||||
Nasser lake, Aswan Egypt | 180.5 | 181.93 | 32.57 | 22.8 | 181 | 1.43 |
Tana Lake, Ethiopian | - | 1789.31 | 37.3 | 12.0 | 1787.81 | 1.6 |
GERD Lake, Ethiopian | - | 581.38 | 10.579 | 10.552 | 580 | 1.4 |
Average calculated water level uncertainty | ±1.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salama, A.; ElGabry, M.; El-Qady, G.; Moussa, H.H. Evaluation of Grand Ethiopian Renaissance Dam Lake Using Remote Sensing Data and GIS. Water 2022, 14, 3033. https://doi.org/10.3390/w14193033
Salama A, ElGabry M, El-Qady G, Moussa HH. Evaluation of Grand Ethiopian Renaissance Dam Lake Using Remote Sensing Data and GIS. Water. 2022; 14(19):3033. https://doi.org/10.3390/w14193033
Chicago/Turabian StyleSalama, Asem, Mohamed ElGabry, Gad El-Qady, and Hesham Hussein Moussa. 2022. "Evaluation of Grand Ethiopian Renaissance Dam Lake Using Remote Sensing Data and GIS" Water 14, no. 19: 3033. https://doi.org/10.3390/w14193033