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Abstract: To elucidate the effect of macroalgae blooms on dissimilatory nitrate reduction pathways
(denitrification, anammox, and DNRA) in sediments of the hypereutrophic Yatsu tidal flat, eastern
Japan, sediment denitrification, anammox, and DNRA rates were measured using a 15N tracer
technique at two sites affected and unaffected by macroalgae (Ulva) blooms and in incubation
experiments with and without Ulva. Anammox was insignificant at both sites and in both experiments.
The denitrification rate was consistently higher than the DNRA rate, and its contributions to the
total dissimilatory nitrate reduction were 82% and 85% at sites affected and unaffected by Ulva,
respectively. In a sediment incubation experiment with Ulva, the contribution of DNRA had increased
to approximately 30% on day 7, which is when the sulfide concentration was the highest. Sulfide
produced by sulfate reduction during macroalgae blooms inhibited denitrification and did not change
the DNRA, and consequently increased the DNRA contribution. On day 21, after reaching the peak
sulfide concentration during the late macroalgae collapse, the DNRA contribution decreased to 15%.
These results indicated that the DNRA contribution was greater during the macroalgae blooms
than at the collapse, although denitrification dominated DNRA regardless of the macroalgal status.
Therefore, vigorous macroalgae cover and sulfide production under the macroalgae cover had an
important impact on the nitrogen dynamics.

Keywords: DNRA; denitrification; sulfide; macroalgae blooms; hypereutrophic intertidal ecosystem

1. Introduction

Blooms of drift green macroalgae in coastal areas have increased both in scale and
frequency over the last few decades in response to elevated levels of coastal eutrophi-
cation [1,2]. The macroalgae blooms occur mainly in the North Temperate Zone, with
America, Europe, and the Asia-Pacific area being the most seriously affected [1]. Macroal-
gae have diverse ecology and can be widely distributed [1–3]. For example, Ulva prolifera
has four main propagation methods [1]. Additionally, opportunistic and drift macroalgae,
such as Ulva sp., take up large amounts of nutrients, resulting in explosive blooms within
short periods [1,2,4]. Macroalgae cover on surface sediment attenuates sunlight penetration
and decreases sediment-attached periphytic algae. In addition, macroalgal decomposition
promotes anoxic conditions and provides a source of organic carbon and sulfide [4–6].
Therefore, large mats of algae have the potential to greatly affect biogeochemical cycles
in the coastal sediment, particularly nitrogen dynamics, which involve heterotrophic and
autotrophic microorganisms.

Nitrogen is a limiting nutrient in coastal ecosystems. Under aerobic conditions, or-
ganic nitrogen is mineralized to ammonium (NH4

+), which is continuously oxidized to
nitrate (NO3

−) via nitrification. Therefore, NO3
− and NH4

+ are generally the dominant
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forms of nitrogen nutrients that are delivered from rivers to coastal ecosystems [7]. Dis-
similatory nitrate reduction processes, including denitrification, anaerobic ammonium
oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA), play
important roles in controlling the NO3

− and NH4
+ dynamics and fate in estuaries and

coastal environments [8]. Denitrification generally results from the respiratory reduction of
NO3

− to nitrogen gas (N2) in response to the oxidation of electron donors such as organic
matter [9,10]. However, some chemolithoautotrophic denitrifying organisms use inorganic
matter, such as reduced sulfur compounds and hydrogen, instead of organic matter [11].
In anammox, NH4

+ is oxidized to N2, with NO3
− or NO2

− serving as the electron ac-
ceptor under anaerobic conditions [12]. Therefore, the processes of denitrification and
anammox remove NO3

− from coastal ecosystems. In contrast to these processes, DNRA
does not remove NO3

− from coastal ecosystems in the form of N2 but instead reduces it to
NH4

+ [13,14]. DNRA is performed by both heterotrophic organisms, which use organic
carbon as the electron donor (fermentative), and chemolithoautotrophic organisms, which
use nitrate to oxidize sulfide or other reduced inorganic substrates [15]. The balance be-
tween denitrification, anammox, and DNRA determines whether bioavailable nitrogen is
removed as nitrogen gas (N2) or recycled as NH4

+ [16]. Therefore, an understanding of ni-
trogen transformation is required to assess the nitrogen fate and control nitrogen pollution
in aquatic ecosystems [8]. Despite its importance, alterations in sediment denitrification,
anammox, and DNRA during macroalgae blooms remain unclear.

The Yatsu tidal flat in eastern Japan, which extends over an area of approximately
40 ha, was isolated from Tokyo Bay by the construction of concrete dikes in the 1970s.
Seawater containing excessive nutrients from intrudes in Tokyo Bay enters the Yatsu tidal
flat via two small channels. As a result, eutrophication in the tidal flat has progressed over
the past few decades [4,17,18]. Macroalgae blooms were first observed in the Yatsu tidal
flat in 1995 and gradually continued to develop [19]. Recently, macroalgae blooms of Ulva
spp. (Ulva), including Ulva pertusa and U. ohnoi, were observed [17–20]. Previous studies
conducted in the Yatsu tidal flat reported that denitrification rather than anammox is the
major nitrogen removal process [18], and Ulva blooms promote sulfide release via sulfate
reduction and alter sulfur dynamics from sulfate reduction to sulfide oxidation [4].

In this study, to elucidate the effect of macroalgae blooms on dissimilatory nitrate
reduction in sediments of the hypereutrophic Yatsu tidal flat, denitrification, anammox, and
DNRA rates were measured in sediments that were affected and unaffected by Ulva blooms
using a 15N tracer technique. In addition, in sediment incubation experiments with and
without Ulva, the changes in denitrification, anammox, and DNRA rates were observed
when the macroalgae status shifted from vigorous macroalgae cover to macroalgal collapse.
Moreover, we hypothesized that sulfide production in the presence of macroalgae would
influence the dissimilatory NO3

− reduction pathways. To understand the effect of sulfide
concentration on denitrification, the denitrifying activity was measured with different
concentrations of sulfide using the acetylene block method.

2. Materials and Methods
2.1. Study Site and Sampling

Sampling was performed monthly during low tide at sites C (35◦40′34′′ N, 140◦00′22′′ E)
and S (35◦40′29′′ N, 140◦00′27′′ S) of the hypereutrophic Yatsu tidal flat, eastern Japan
(Figure 1). At St. C near the center of the tidal flat, the surface sediment was frequently
affected by Ulva cover, while at St. S, located at the southeastern edge of the tidal flat, the
sediment was unaffected by the Ulva cover [18].

To examine the denitrification, anammox, and DNRA rates using a 15N tracer tech-
nique, surface sediments (0–5 cm depth) at Sts. C and S were collected in November 2017.
Sediment sampled at St. C was also used for sediment incubation experiments with and
without Ulva. In November 2017, there were almost no macroalgae at Sts. C and S of the
Yatsu tidal flat. The sediment temperature and pH were measured using a sensor (IQ170, IQ
Scientific Instruments, Carlsbad, CA, USA). Additionally, the surface sediments sampled
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at St. C in October 2017 were used for the effect of sulfide on the denitrifying activity.
All seawater was collected in the tidal creek, and Ulva samples for sediment incubation
experiments were collected near St. C.
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Figure 1. Location of the Yatsu tidal flat, eastern Japan, and sampling Sts. C (35◦40.34′ N, 140◦00.22′ E)
and S (35◦40.29′ N, 140◦00.27′ E) within the tidal flat.

2.2. Sediment Incubations
2.2.1. Denitrification, Anammox, and DNRA Rates in Sediments with and without Ulva

Ulva samples were rinsed with tap water and then washed several times with sterile
seawater. Approximately 250 mL of sediment and 200 mL of seawater were transferred to
500 mL glass flasks. The flasks were mixed overnight to oxidize and remove the sulfide. A
35 g wet Ulva sample (0.6 kg DW m−2 of Ulva biomass) was added to each flask. Control
flasks (without Ulva) were also prepared. The flasks with and without Ulva were prepared
in triplicate. The flasks were incubated for 21 days at 25 ◦C under a 12 h:12 h light:dark
cycle. Seawater and sediment were collected from the flasks at 0, 7, and 21 days to measure
the denitrification, anammox, and DNRA rates using a 15N tracer technique. Nutrients and
sulfide concentrations in the seawater were also measured.

2.2.2. Effect of Sulfide on Denitrifying Activity

The effect of sulfide on denitrification was examined using the acetylene block
method [21,22]. This method is suitable for clarifying the effect of sulfide on denitrifi-
cation only. Approximately 5 g of wet sediment and 15 mL of seawater were transferred to
a 70 mL glass vial. The vial was then sealed with a butyl-rubber stopper and an aluminum
cap, after which the air in the headspace was replaced with N2. A potassium nitrate (KNO3)
solution and acetylene (C2H2) were then added to give final concentrations of 5 mg-N L−1

and 6 kPa, respectively.
A sodium sulfide (Na2S) solution was prepared by bubbling argon in water. The Na2S

solution was added to the vials to attain concentrations ranging from 0 to 200 mg-S L−1

before adding a KNO3 solution and C2H2. Six vials were prepared for each sulfide concen-
tration treatment. Sulfide concentrations in the slurry phase of three vials were measured
immediately (initial sulfide concentration). The remaining three vials were incubated
under anaerobic conditions for 20 h at 20 ◦C in the dark. After incubation, N2O in the gas
phase of the vial was measured to determine the denitrifying activity. Additionally, the
sulfide concentration was measured immediately after the N2O measurement (final sulfide
concentration).

2.3. Chemical Analysis

Denitrification, Anammox, and DNRA Rates Measured Using a 15N Tracer Technique

The denitrification and anammox rates were measured using a 15N tracer technique [23–27].
A sediment slurry (10% w/v) was dispensed into glass vials after sterilizing the seawater
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via autoclaving at 121 ◦C for 15 min, and the vials were tightly capped with butyl-rubber
stoppers and purged with helium. The vials were incubated at 20 ◦C in the dark, and the
slurry was continuously stirred using a magnetic stirrer. The incubation was performed
strictly anaerobically with combinations of 15N-labeled or unlabeled ammonium chloride
(NH4Cl) and KNO3 as reactive substrates for N2 production. The sediment suspension was
incubated with 5.6 mg-N L−1 NH4Cl and 28 mg-N L−1 KNO3 in the following combinations:
(i) 15NH4Cl + KNO3, (ii) NH4Cl + K15NO3, (iii) 15NH4Cl without NO3

− (negative control),
and (iv) no NH4

+ or NO3
− (negative control). The N2 isotopologues (14N15N, 15N15N)

in the headspace gas of each vial were collected periodically using a gas-tight syringe
under a helium stream and were quantified using a quadrupole gas chromatography–mass
spectrometry system (6890N-5973 inert, Agilent Technologies, Santa Clara, CA, USA). The
denitrification and anammox rates were estimated by quantifying two N2 isotopologues.
See Senga et al. [18] for a more detailed description of the procedure.

The DNRA rate was measured using 14NH4
+/15NH4

+ analyses via sequential con-
version to N2O [28]. After measurements of denitrification and anammox rates, a water
sample in a 20 mL vial was immediately collected via centrifugation (4 ◦C, 3000 rpm,
5 min). Then, 5 mL of water sample was filtered and transferred to a new vial. Magnesium
oxide and a polytetrafluoroethylene (PTFE sealing tape, Sigma-Aldrich, St. Louis, MI,
USA) envelope containing an acidified glass fiber filter (Whatman GF/D; GE Healthcare
Bio-Sciences, Pittsburgh, PA, USA) were added to the vial. After sealing the vial with a
butyl-rubber stopper and an aluminum cap, it was shaken at 150 rpm for 3 h at 4 ◦C to
trap NH4

+ in the water sample on the acidified glass fiber filter into the envelope as an
ammonium salt. After shaking, the PTFE envelope was removed from the vial and opened
to remove the glass fiber filter. The glass filter was transferred to an 11 mL screw cap test
tube containing a persulfate-oxidizing reagent. The tube was autoclaved for 1 h at 121 ◦C
to oxidize NH4

+ to NO3
−. After the NO3

− converted from NH4
+ was oxidized to N2O

via the denitrifier method, the amounts of 45N2O and 46N2O in the headspace gas were
determined using quadrupole GC/MS. The DNRA rate was calculated by quantifying
the two N2O isotopologues. See Kuroiwa et al. [28] for a more detailed description of the
procedure.

2.4. Other Quantifications

To determine the sediment water content, approximately 5 g of wet sediment was
weighed (wet weight), dried for 24 h at 105 ◦C to a constant weight, and weighed again.
The dry sediment was then homogenized and combusted at 450 ◦C for 12 h to determine
the loss on ignition (ignition loss).

The pore water in the sediment at St. C was extracted from a sediment sample via
centrifugation at 3000× g for 10 min. Insufficient pore water for analysis was extracted
from the sediment at St. S due to the low water content. The supernatant was filtered
through a pre-combusted (450 ◦C) glass fiber filter (Whatman GF/F, GE Healthcare) and an-
alyzed for NO3

−, NH4
+, NO2

−, and PO4
3− concentrations. Seawater was filtered through

a pre-combusted glass fiber filter (Whatman GF/F) to determine the NO3
−, NH4

+, NO2
−,

and PO4
3− concentrations. The NO3

−, NO2
−, NH4

+, and PO4
3− concentrations were mea-

sured using the methods described by Wood et al. [29], Bendschneider and Robinson [30],
Sagi [31], and Murphy and Riley [32], respectively. The sulfide concentration in seawater
was analyzed following the in situ extraction method of Davison and Lishman [33] and
Sugahara et al. [34]. All analytical procedures were performed in a sealed system of glass
syringes to prevent the volatilization of sulfide and sulfide oxidation by air. Approximately
20 mL of seawater was added to a graduated glass syringe, which was filtered using
a 0.45 µm Millex filter (Millipore, Carrigtwohill, Ireland) into an empty 10 mL syringe
(syringe–filter–syringe system). The sulfide concentration of the filtrate was spectrophoto-
metrically determined using the methylene blue method [35]. Hereafter, sulfide refers to
the sum of the dissolved H2S gas and its dissociated forms, namely, HS− and S2−.
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The N2O in the acetylene block method was measured using a gas chromatograph
with an electron capture detector (GC-ECD) (6890, Agilent Technologies, Palo Alto, CA,
USA). The amount of dissolved N2O was calculated using the solubility formula of Weiss
and Price [36].

3. Statistical Analysis

Significant changes in denitrification and DNRA rates; NH4
+, NO2

−, NO3
−, and

sulfide concentrations with and without Ulva; and denitrification activities with different
sulfide concentrations were identified using analysis of variance (ANOVA). Student’s t-
test was used to compare the initial and final sulfide concentrations in the experiment to
determine the effect of sulfide on denitrification. The statistical analyses were performed
using R statistical software [37].

4. Results
4.1. Denitrification, Anammox, and DNRA Rates in Sediments Affected and Unaffected by Ulva

Anammox was not detected in November 2017 in the surface sediments at Sts. C and
S (Table 1). The contributions of denitrification and DNRA to total dissimilatory NO3

−

reduction (i.e., denitrification + DNRA) at St. C were 82% and 18%, respectively. On the
other hand, at St. S, the contributions of denitrification and DNRA were 85% and 15%,
respectively. The DNRA rates at both sites did not exceed the denitrification rates. The
denitrification and DNRA rates at St. C were higher than at St. S.

Table 1. Temperature (◦C); pH; water content (%); ignition loss (%); NH4
+, NO2

−, NO3
−, and PO4

3−

concentrations (µg-N or -P L−1); and denitrification, anammox, and DNRA rates (µg-N g-dry−1

day−1) in the surface sediments at the Yatsu tidal flat in November 2017.

St. C St. S

Temperature 17.3 17.9
pH 7.63 6.83

Water content 39.7 18.4
Ignition loss 1.4 0.9

NH4
+ 4549

NO2
− 5

NO3
− 5

PO4
3− 164

Denitrification 10.4 5.9
Anammox nd nd

DNRA 2.3 1.0

Notes: The NH4
+, NO2

−, NO3
−, and PO4

3− concentrations at St. S could not be measured due to the low water
content. The denitrification, anammox, and DNRA rates were the averages of three measurements.

4.2. Denitrification, Anammox, and DNRA Rates in Sediment Incubations with and without Ulva

The biomass of Ulva samples added to the flasks (0.6 kg DW m−2) was similar to the
maximum biomass of the blooms in May 2016 [18]. It was visually confirmed that the Ulva
biomass decayed greatly after 7 days. The Ulva debris looked like sludge at 21 days (late
Ulva collapse). Whitish and pink particles above the Ulva at the air/water interface were
observed after day 7.

All concentrations in the seawater phase of the flasks, except for NH4
+ and sulfide

without Ulva, varied significantly with time (ANOVA, p < 0.05; Figure 2). The concentration
of NH4

+ with Ulva increased with time, while almost no NH4
+ was detected in the flask

without Ulva (Figure 2a). In the flask with Ulva, the NO2
− concentration measured on

day 0 (ca. 100 µg-N L−1) was completely consumed by day 7 (Figure 2b). The NO2
−

concentration in the flask without Ulva peaked on day 7 and then decreased to almost nil
by day 21. In both the presence and absence of Ulva, the initial concentration of NO3

− (ca.
260 µg-N L−1) on day 0 had largely decreased by day 7, and was completely consumed by
day 21 (Figure 2c). The concentration of sulfide in the seawater phase of flasks containing
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Ulva peaked on day 7 and then decreased until day 21, while sulfide was not detected in
the flask without Ulva (Figure 2d).
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Figure 2. Changes in NH4
+ (a), NO2

− (b), NO3
− (c), and sulfide (d) concentrations in flasks with

and without Ulva.

The rate of denitrification in the presence of Ulva varied significantly with time
(ANOVA, p < 0.01; Figure 3a). The denitrification rate with Ulva decreased slightly on day
7 and then increased on day 21. The rates of denitrification in the absence of Ulva did not
vary significantly with time (Figure 3b). The DNRA rates in the presence and absence of
Ulva tended to slightly increase and decrease over time, respectively, but not significantly.
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There were significant differences between times regarding the contributions of DNRA
to the total dissimilatory NO3

− reduction with and without Ulva (Figure 3c; ANOVA,
p < 0.05). The contribution of DNRA with Ulva significantly increased from approximately
22% on day 0 to 29% on day 7, and then significantly decreased to 15% on day 21. On the
other hand, the contribution of DNRA without Ulva significantly decreased to 11% on day
7 and was constant between days 7 and 21.

4.3. Effect of Sulfide on Denitrifying Activity

The effect of sulfide concentration on denitrification in the surface sediment at St. C
was quantified using the acetylene block method. Although sulfide was added at 0, 5,
20, 50, 100, and 200 mg-S L−1, the sulfide concentrations measured in the seawater at the
beginning of the incubation were 0, 4, 21, 55, 108, and 212 mg-S L−1, respectively (Figure 4
and Table 2). The denitrifying activities varied significantly with sulfide concentration
(ANOVA, p < 0.001; Figure 4). The denitrifying activities drastically decreased between 0
and 108 mg-S L−1 and were constant between 108 and 212 mg-S L−1 sulfide concentrations
(Figure 4). After the incubation, there were significant differences between the initial and
final sulfide concentrations for all treatments (Student’s t-test, p < 0.01; Table 2). All of the
final sulfide concentrations decreased by >40%.
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Table 2. Estimated, initial, and final sulfide concentrations (mg-S L−1) to determine the effect of
sulfide on denitrification. The initial and final concentrations were measured on days 0 and 21,
respectively.

Estimated Concentration Initial Concentration Final Concentration

0 0.0 ± 0.0 0.0 ± 0.0
5 4.1 ± 1.7 0.0 ± 0.0

10 21.1 ± 7.3 0.0 ± 0.0
50 54.9 ± 6.8 15.1 ± 2.7

100 107.5 ± 10.4 65.5 ± 2.0
200 211.9 ± 10.5 95.8 ± 32.0

5. Discussion
5.1. Dissimilatory NO3

− Reduction Pathways in the Yatsu Tidal Flat

In this study, anammox was negligible at Sts. C and S. In a previous study, we
reported that anammox at Sts. C and S was consistently low compared with denitrification,
accounting for <7% of the total N2 production in September 2015 and November 2016 [18].
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This result suggested that anammox played a limited role in NO3
− removal. Therefore, the

principal pathway of nitrogen removal in the surface sediment at the hypereutrophic Yatsu
tidal flat was denitrification. Anammox generally plays a limited role in regulating NO3

−

reduction in eutrophic coastal ecosystems [6,7,38].
The rates of denitrification and DNRA were approximately twofold higher at St. C

than at St. S (Table 1). Ulva cover on the surface sediment was frequently found at St. C, but
not at St. S. Ignition loss, as a measure of organic content, at St. C was higher than at St. S,
probably due to the presence of Ulva (Table 1). Additionally, at St. C, sulfide accumulation
under macroalgal mats was reported [4]. There are two ways to enhance denitrification and
DNRA: a heterotrophic (fermentative) process with organic carbon as an electron donor
and a chemolithoautotrophic process with sulfide or Fe (II) as an electron donor [7,15,39].
Therefore, because there was a rich source of electron donors to drive denitrification and
DNRA, the rates of denitrification and DNRA were higher at St. C than at St. S. From
August 2012 to January 2017, the denitrifying activity found using the acetylene block
method was also found to be higher at St. C than at St. S [18]. A key factor that regulates
denitrification in the sandy sediment at St. S is the organic carbon content, while the key
factor at St. C is nitrogen substrates due to competition with macroalgae for nitrogen.

There was no significant difference in the contribution of DNRA to the total dissim-
ilatory NO3

− reduction between Sts. C and S. Unfortunately, on November 2017 when
sediment was collected from the Yatsu tidal flat, no macroalgae blooms were found at
St. C. Therefore, the effect of macroalgae cover or its collapse on the dissimilatory NO3

−

reduction could not be determined. However, even in the absence of macroalgae, there
were differences in the rates of denitrification and DNRA between Sts. C and S, but there
were no significant differences in the ratios. The surface sediment at the Yatsu tidal flat
had a 10–20% DNRA potential even without the impact of Ulva cover. The estimated
contribution of DNRA in this study was in the range of values previously reported values
for other intertidal sediments. In the intertidal permeable sediments of the eutrophied
Wadden Sea, DNRA also accounted for 10–20% of the NO3

− consumption [40]. The DNRA
in the intertidal sediments of the Yangtze Estuary and Colne Estuary accounted for 3–45%
and 11–60% of the total NO3

− consumption, respectively [8,41]. The DNRA is of major
importance in most shallow coastal sediments [15].

5.2. Influence of Macroalgae Blooms on Dissimilatory NO3
− Reduction Pathways

Although sulfide in flasks without Ulva was not detected in seawater, the presence
of Ulva accelerated the sulfide production via sulfate reduction in the sediment until day
7, and the sulfide concentration decreased thereafter (Figure 2d). Sulfide is oxidized both
chemically and microbially [42,43]. Since whitish and pink particles were observed in
the flasks containing Ulva after day 7, most of the sulfide was expected to have been
oxidized microbially. Namely, these particles might be sulfide-oxidizing bacteria (purple
sulfur bacteria) or elemental sulfur. These results are consistent with the results obtained
in the incubation experiment of the previous study in which sulfate reduction would
be shifted to sulfur oxidation after the peak of sulfide production [4]. In this study, the
sulfide was produced largely by sulfate reduction in flasks containing Ulva on day 7
and was transformed to elemental sulfur by purple sulfur bacteria between days 7 and
21. Under such a change in sulfur speciation, the NO3

− and NO2
− concentrations were

almost undetectable between days 7 and 21, while the NH4
+ concentration increased over

time (Figure 2a–c), suggesting that the anaerobic environment was conserved in flasks
containing Ulva throughout the experiment, and there would be virtually no nitrification
in the presence of macroalgae.

The rate of denitrification decreased in the flasks containing Ulva from days 0 to 7. The
sulfide concentration was the highest on day 7. The denitrification rate was reduced with
increasing sulfide concentration, as sulfide inhibited the reduction of N2O to N2 [39,44]. In
the experiment using sediment from the Yatsu Tidal Flat, negative effects of >4 mg-S L−1

on denitrifying activity were observed (Figure 4). Therefore, sulfide production under
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macroalgae covers negatively affected denitrification in the Yatsu tidal flat. The DNRA
rates were unchanged on day 7; therefore, DNRA was not affected by sulfide. Previous
studies reported that treatment with high concentrations of sulfide results in either an
increase or no difference in the DNRA rate [6,16,44,45]. In the surface sediment at the Yatsu
tidal flat, sulfide produced in the presence of vigorous macroalgae negatively influenced
denitrification but had no significant effect on the DNRA rate. Consequently, the DNRA
contribution to total dissimilatory NO3

− reduction increased from 20% on day 0 to 30%
on day 7. A similar result was reported in the sediment of the invasive Spartina alterniflora
marshland in the Yangtze River Estuary, China [46]. The invasion of Spartina alterniflora
increased DNRA by altering the SO4

2− concentration and pH in the sediment.
The denitrification rate in the flasks with Ulva increased, while the DNRA rate was

unchanged between days 7 and 21. On day 21, the sulfide concentration had decreased
greatly from day 7, and elemental-sulfur-like particles were observed above the Ulva. In
the experiment examining the effect of the sulfide concentration on the denitrifying activity,
the sulfide concentration decreased by 40–100% after 20 h (Table 2). This result suggested
that sulfide produced in the presence of Ulva might be consumed via sulfur oxidation
by microorganisms. Autotrophic denitrification, sulfide oxidation coupled with nitrate
reduction was found in the salt marsh at the Plum Island Ecosystem Long-Term Ecological
Research site in Rowley, USA [16]; the Gulf of Thailand [47]; and the Yarra River Estuary,
Australia [48]. We hypothesized that sulfide produced beneath Ulva mats inhibits general
heterotrophic denitrification and accelerates sulfide-oxidizing denitrification, but does not
affect DNRA. The macroalgae status alters sulfur dynamics and affects dissimilatory NO3

−

reduction pathways. The details of the relationship between sulfur dynamics and the
dissimilatory NO3

− reduction pathways in the Yatsu tidal flat need to be explored using
molecular microbiology techniques.

The contribution of DNRA in the presence of Ulva decreased on day 21 to 15% due
to an increase in the denitrification rate and was similar to the DNRA observed on day 21
without Ulva (12%). This result indicated that DNRA was greater during the blooms than at
the collapse. The amount of NO3

− removed by denitrification decreased and the proportion
of N that remained as NH4

+ consequently increased during the macroalgae blooms. This
result suggested that macroalgae controlled the removal versus retention of bioavailable
nitrogen within the sediment under anaerobic conditions. This is very important in terms
of the physiology of Ulva because Ulva in the Yatsu tidal flat preferentially uptakes NH4

+

over NO3
− [4]. An increase in ammonification is considered to provide a strong advantage

to the subsequent generation of Ulva blooms.
In the flasks containing Ulva, NH4

+ was likely produced via DNRA, but also via Ulva
decomposition, especially in the late experiment (Figure 2a). NH4

+ is reported to account
for a major proportion of the total nitrogen efflux during the decomposition of Ulva sp. [49].
NH4

+ produced via decomposition is typically greater than that produced via DNRA in
coastal ecosystems [50,51]. In the anaerobic sediment where DNRA and decomposition
occur, nitrification was not able to progress; consequently, denitrification did not occur.
Thus, it was expected that the large proportion of nitrogen present as NH4

+ would not
transform further and would be recycled by macroalgae such as Ulva in these ecosystems.

The behaviors of NH4
+, NO2

−, and NO3
− indicated that nitrification occurred in

the flasks without Ulva (Figure 2a–c). Sulfide, which inhibits denitrification and nitrifica-
tion [52], was not produced in the flasks without Ulva (Figure 2d). Additionally, the rate of
denitrification in the absence of Ulva was higher from days 7 to 21 than on day 0 (Figure 3b).
Nitrogen removal pathways, i.e., nitrification–denitrification, appeared to proceed at a
constant rate in the flasks without Ulva for 21 days. However, DNRA progressed slightly,
and its contribution was 12% (Figure 3c). This contribution was in the range of those
measured at Sts. C and S (Table 1). Therefore, in the sediment at the Yatsu tidal flat, the
DNRA potential was in the range of 10–20% and increased to approximately 30% only
when there were macroalgae blooms.
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6. Conclusions

This study demonstrated the important role of the dissimilatory nitrate reduction path-
way in nitrogen dynamics in the sediment hypereutrophic Yatsu tidal flat. Denitrification
was a major pathway for dissimilatory nitrate reduction regardless of the macroalgal status.
Macroalgae cover on the sediment accelerated sulfide production, which inhibited denitrifi-
cation and enhanced the DNRA contribution (30%). During the late collapse of macroalgae
blooms, sulfate reduction shifted to sulfide oxidation. Consequently, the denitrification
rate increased and the DNRA contribution returned to its original value in the absence
of macroalgae (10–20%). During macroalgae blooms, NH4

+ tends to accumulate because
NH4

+ is produced by macroalgal decomposition and DNRA, and nitrification is not able to
proceed in the reductive sediment under macroalgae mats. NH4

+ accumulation was very
important for sustaining the growth of macroalgae blooms, as well as for the progress of
eutrophication.
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