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Abstract: The accurate forecasts and estimations of the amount of sediment transported by rivers are
critical concerns in water resource management and soil and water conservation. The identification
of appropriate and applicable models or improvements in existing approaches is needed to accurately
estimate the suspended sediment concentration (SSC). In recent decades, the utilization of intelligent
models has substantially improved SSC estimation. The identification of beneficial and proper input
parameters can greatly improve the performance of these smart models. In this regard, we assessed
the C-factor of the revised universal soil loss equation (RUSLE) as a new input along with hydrological
variables for modeling SSC. Four data-driven models (feed-forward neural network (FFNN); support
vector regression (SVR); adaptive neuro-fuzzy inference system (ANFIS); and radial basis function
(RBF)) were applied in the Boostan Dam Watershed, Iran. The cross-correlation function (CCF) and
partial autocorrelation function (PAFC) approaches were applied to determine the effective lag times
of the flow rate and suspended sediment, respectively. Additionally, several input scenarios were
constructed, and finally, the best input combination and model were identified through trial and
error and standard statistics (coefficient of determination (R2); root mean square error (RMSE); mean
absolute error (MAE); and Nash–Sutcliffe efficiency coefficient (NS)). Our findings revealed that using
the C-factor can considerably improve model efficiency. The best input scenario in which the C-factor
was combined with hydrological data improved the NS by 16.4%, 21.4%, 0.17.5%, and 23.2% for SVR,
ANFIS, FFNN, and RBF models, respectively, compared with the models using only hydrological
inputs. Additionally, a comparison among the different models showed that the SVR model had
about 4.1%, 13.7%, and 23.3% (based on the NS metric) higher accuracy than ANFIS, FFNN, and
RBF for SSC estimation, respectively. Thus, the SVR model using hydrological data along with the
C-factor can be a cost-effective and promising tool in SSC prediction at the watershed scale.

Keywords: suspended sediment; intelligent algorithm; revised universal soil loss equation; artificial
neural network; support vector machine

1. Introduction

Considering the importance of soil and water resource conservation, access to ac-
curate and up-to-date data is required to provide appropriate solutions for river basin
management. Suspended sediment, which comprises about 75% to 95% of the total river
sediment, can be considered an indicator of soil erosion status and the ecological conditions
within the basin [1,2]. Suspended sediment also negatively affects water quality (e.g.,
adsorbed pollutants), reduces reservoir storage, and changes the channel dynamics and
ecological conditions of rivers [3,4]. Therefore, accurate estimates of suspended sediment
loads (SSLs)/suspended sediment concentrations (SSCs) are crucial for river engineer-
ing, water resource projects, and river basin management, especially in areas sensitive to
erosion [5,6]. Although numerical and physically based models have been developed to
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predict suspended sediment, these require many parameters with high accuracy, which
are generally not available in developing countries [7]. Furthermore, the complexity of
sediment production and transport and spatiotemporal changes in effective hydroclimatic
parameters cause poor performance of theoretical equations in estimating suspended sedi-
ment. Such issues have induced researchers to shift focus to data-driven (DD) models [8].
DD models are cost-effective and user-friendly with simple operation and high accuracy,
which do not require excessive parameterization [9,10]. These models are based only on
observational data without considering the physical processes and limitations, and attempt
to find a logical connection between inputs and outputs [11].

In recent decades, substantial growth in the application of smart DD models as the
predictors of hydrological and climatic phenomena has been achieved, including river
flow/runoff [12–17], the instantaneous peak flow [18], the groundwater level [19,20], dry-
land precipitation [21], drought [22], SSL/SSC [23–26], the river bed load [27–29] and the
total sediment load [30,31]. A review of previous studies related to SSL/SSC modeling
indicates that, in some cases, discharge is the only variable used in intelligent models [26],
while in other studies, the antecedent values of SSL/SSC (i.e., SSL/SSC with time lags)
were used in addition to discharge [32]. Some studies used meteorological variables, such
as rainfall, temperature, and potential evapotranspiration [33,34], and other variables, such
as the index of sediment connectivity [35], along with the previously mentioned hydro-
logical variables. These results revealed that a proper combination of inputs enhanced
model performance.

Most studies have compared different artificial intelligence (AI) models with each
other, with traditional regression models (e.g., the SRC model), and with conventional
hydraulic and hydrological functions [2,26,36–39]. These findings confirmed the superiority
of AI models as modeling tools, compared with other methods for similar conditions, due to
their nonlinear structure, robustness to the missing data, and high flexibility [40]. Moreover,
a comparison of the performance of various AI models (e.g., artificial neural network
(ANN), support vector regression (SVR), adaptive neuro-fuzzy inference system (ANFIS),
radial basis function (RBF), classification and regression tree (CART)) for the prediction of
SSL/SSC in different catchments lead to different results. For example, Chiang et al. [38]
reported that the SVR model produced better results than ANN in the Goodwin Creek
Watershed, USA; however, Nhu et al. [9] indicated that the random subspace (RS) model
outperformed the random forest (RF) and support vector machine (SVM) models in the
Haraz River, Iran. Additionally, in the Haraz River, Choubin et al. [32] showed that the
CART algorithm performed better in predicting SSL than ANFIS, multi-layer perceptron
(MLP) neural network, and two kernels of support vector machines (RBF-SVM and P-
SVM). Rezaei et al. [41] indicated that least square support vector machines (LS-SVMs)
generated superior results compared with ANN, ANFIS, and the group method of data
handling (GMDH) models in the Jajrood River, Iran. Kumar and Tripathi [42] concluded
that ANN with a single hidden layer is most suitable for the prediction of SSC in the
Cauvery Basin, India.

In fact, finding the appropriate intelligent models as modeling tools and determining
the correct architectural structure as well as the suitable and acceptable input vectors for
them are three effective steps in improving SSL/SSC predictions, especially when using
DD algorithms [32,35]. A review of the literature shows that, in spite of the investigation of
various variables in SSL/SSC modeling, the effect of the cover-management factor (C-factor)
of the revised universal soil loss equation (RUSLE) [43], which indicates the protective
effect of soil vegetation cover and management practices against the erosive action of
precipitation, has not been considered as an input in AI models. Different biotic/abiotic
factors influence the magnitude of sediment in river basins that erode the soil surface and
generate a considerable amount of sediment [44,45]. The C-factor is an important parameter
that indexes how land use/land cover, crops, and crop management affect soil loss and
sediment generation. Herein, our SSC modeling using smart DD techniques requires time
series data. Given that calculating the C-factor from field surveys is impossible in our
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study, to assess the C-factor, we used remotely sensed land cover datasets (i.e., normalized
difference vegetation index (NDVI)). An advantage of this approach is that using remote
sensing is low cost, and data analysis is rapid and precise [46].

To build on previous research, our study aims to improve SSC prediction by (1) the
determination of the best model among feed-forward neural network (FFNN), support
vector regression (SVR), adaptive neuro-fuzzy inference system (ANFIS), and radial basis
function (RBF) and the determination of the proper architectural structure within models;
(2) the determination of the most effective input scenario; and (3) an investigation of the
effect of the RUSLE C-factor on SSC prediction.

2. Materials and Methods

The general procedure used in this study includes the following steps: (1) the collection
and analysis of monthly data; (2) the determination of the best lag times of inputs; (3) the
normalization and then classification of the data into two groups of training and test sets;
and (4) SSC modeling and model evaluation. Figure 1 illustrates the flowchart of the
research methodology.
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2.1. Study Area and Database

The Boostan Dam Watershed in Golestan Province, Iran, was selected to test the
objectives of this study due to the availability of data and the absence of major abstractions
or dams in the upstream reaches. This watershed has an area of 1533.3 km2 and is located
between 37◦24′05” and 37◦47′33” north latitude and 54◦29′30” and 56◦05′35” east longitude
(Figure 2). The region has an average annual rainfall of 483 mm, an average annual
temperature of 17.8 ◦C, relative humidity of 68.5%, an average slope gradient of 23%, and
the minimum, maximum, and average elevations of 108, 2174, and 753 m a.s.l., respectively.

To conduct this research, the monthly flow discharge and SSC at the catchment outlet
(Tamar Hydrometric Station) from April 2000 to September 2013 (comprising 162 datasets)
were collected. The NDVI data of the relevant period were obtained from the MODIS/
MCD43A4_006_NDVI product available at https://explorer.earthengine.google.com/, ac-
cessed on 20 September 2022; this product with a resolution of 500 × 500 m is generated

https://explorer.earthengine.google.com/
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from the MODIS/006/MCD43A4 surface reflectance composites. Then, the time series
data were investigated to ensure they were continuous (without gaps). Finally, the dataset
was classified into two groups: 70% of the total data were selected for the training phase,
and the remaining 30% were selected for the test phase. The statistical parameters for
the training and test datasets, the total datasets of discharge, SSC, and the C-factor were
calculated and are presented in Table 1. Very small and very large values of SSC and high
skewness complicated the modeling process and yielded low model performance in the
Boostan Dam Watershed.
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Table 1. Statistical parameters of monthly SSC, discharge, and C-factor for the Boostan Dam
Watershed 1.

Variable Statistical Parameter
Boostan Dam Watershed

Training (70%) Test (30%) Total Data

(n) 114 48 162

SSC (mg/L)

Period (m/y) 4/2000–9/2009 10/2009–9/2013 4/2000–9/2013

xmin 0.01 0.24 0.01
xmax 9259.15 299.63 9259.15

x 199.99 45.14 154.11
σx 940.87 68.59 792.28
G1 8.46 1.97 10.07
β2 78.50 3.50 111.40

Q (m3/s)

xmin 0.00 0.01 0.00
xmax 10.40 3.13 10.40

x 1.04 0.84 0.98
σx 1.11 0.75 1.02
G1 2.96 1.53 2.93
β2 14.30 1.61 14.80

C

xmin 0.19 0.21 0.19
xmax 0.43 0.41 0.43

x 0.33 0.34 0.33
σx 0.05 0.04 0.05
G1 −0.86 −1.30 −0.98
β2 0.25 1.38 0.50

Note: 1 SSC is suspended sediment concentration, Q is flow discharge, C is C-factor in RUSLE model, (n) is
number of data, xmin is the minimum value of the data, xmax is the maximum value of the data, x is the mean of
the data, σx is the standard deviation, G1 is the skewness, and β2 is kurtosis.

2.2. C-Factor

The cover-management factor (C-factor) of the RUSLE model indicates the relationship
between soil loss in an area with specific vegetation cover and management and bare areas.
It reflects the effect of management practices and land use changes on soil erosion [46].
The amount, type, and stage of the growth of vegetation cover directly impact the C-factor
because vegetation cover dissipates the kinetic energy of rainfall before reaching the soil
surface and decreases erosion [47]. In our study, we estimated the C-factor using the
rescaled NDVI [46] as follows:

C = (
1−NDVI

2
) (1)

The C-factor values range from 0 to 1, where 0 indicates fully protected soil and dense
vegetation cover, and 1 denotes bare soil.

To determine the monthly NDVI values, we used moderate-resolution imaging spec-
troradiometer (MODIS) satellite imagery. Considering that NDVI variation is quite low
during each month, the images in the middle of the months without cloud cover were
used for the monthly NDVI [48]. A survey of the NDVI values in this watershed during
the 13-year period showed similar monthly patterns during the study years and temporal
variations in the NDVI, which caused variations in the C-factor. The monthly C-factor time
series compared with the monthly discharge data from 2000 to 2013 is shown in Figure 3.
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Figure 3. Monthly C-factor and flow discharge (Q) time series plot for Boostan Dam Watershed
(2000–2013).

2.3. Input Scenarios

We modeled SSC using six different scenarios: (1) only the discharge data, (2) only
the SSC data, (3) combining the discharge and SSC data, (4) combining the discharge and
C-factor data, (5) combining the SSC and C-factor data, and (6) combining the discharge,
SSC, and C-factor data. Identifying the optimum lag values of input vectors using DD
algorithms is an important step in the modeling process [49]. To address this problem
and avoid trial-and-error assessment, statistical parameters, such as the cross-correlation
function (CCF), which occurs in two different time series, and the partial autocorrelation
function (PACF), which occurs in two same time series, were used [36]. Finally, to improve
the analysis, two groups of input scenarios were established: (1) only the hydrological data
(group 1) and (2) a combination of the hydrological and C-factor data (group 2) (Table 2).

Table 2. Input and output scenarios.

Scenario Number Group Name Inputs Output

1

Group 1

Qt SSCt
2 Qt+Qt−1 SSCt
3 SSCt−1 SSCt
4 Qt+SSCt−1 SSCt
5 Qt+Qt−1+SSCt−1 SSCt

6

Group 2

Qt+Ct SSCt
7 Qt+Qt−1+Ct SSCt
8 SSCt−1+Ct SSCt
9 Qt+SSCt−1+Ct SSCt
10 Qt+Qt−1+SSCt−1+Ct SSCt

2.4. Data Preprocessing

Basically, entering the raw data reduces the speed and accuracy of AI models. To avoid
such problems, the conversion of the data in a specific range ensures that they receive the
same attention within the network. In this study, all the input data were normalized in the
range [0–1] using Equation (2) [50] before introduction to the network.

Xnorm =
Xi − Xmin

Xmax − Xmin
(2)

where Xmin and Xmax represent the minimum and maximum values among the original
data, Xi represents the original data, and Xnorm represents the normalized data.
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2.5. Model Theory Background
2.5.1. Support Vector Regression (SVR)

The SVR model is a supervised learning algorithm, introduced by Vapnik et al. [51],
which has been successfully applied in geoscience, water resources, and sediment load pre-
diction [26,36,52]. SVR is a version of SVM that performs regression instead of classification
and transforms the separator hyperplane in SVM into a data-fitting function. SVR uses the
structural risk minimization (SRM) principle leading to an overall optimal response and
elevating the power of the model [53]. The SVR algorithm uses different types of kernel
functions (e.g., linear, nonlinear, polynomial, the radial basis function (RBF), sigmoid),
among which the RBF kernel has better performance and has been used more than other
kernel functions in sediment studies [36,54]. The SVR and RBF algorithms (Equations (3)
and (4)) are as follows [55]:

y =
n

∑
i=1

(
α+i − α−i

)
k(x, xi) + b (3)

K(x, x i) = exp(
−||x− xi

∣∣∣∣2
2σ2 ) (4)

where y is the output, b is the bias term, α is the Lagrange multiplier, k(x,xi) is the kernel
function in which the RBF function is considered, and (σ) is the width of the Gaussian
kernel function.

2.5.2. Adaptive Neuro-Fuzzy Inference System (ANFIS)

The ANFIS model uses a combination of an artificial neural network and fuzzy logic
algorithms to design a nonlinear mapping between the input and output vectors [56].
The most common type of fuzzy inference system that can be applied in an adaptive
network is the Takagi–Sugeno fuzzy system, the output of which is a linear function with
its parameters determined by using a combination of the least square and backpropagation
gradient descent methods. In general, the structure of the ANFIS model consists of 5 layers.
The first layer is the input nodes, which determine the degree of the membership of each
input according to its membership function. The second layer is the rule nodes; each node
in this layer calculates the degree of the activity of a rule. The third layer is the average
nodes, in which the normalized weight is calculated. The fourth layer is the consequent
nodes, and the fifth layer is the output nodes [57]. To generate fuzzy rules, there are two
methods: grid partitioning and subtractive fuzzy clustering. Grid partitioning is usually
applied when there are few input variables, as in our study [58].

2.5.3. Feed-Forward Neural Network (FFNN)

ANNs are promising and efficient tools for modeling hydrological processes due to
their ability to identify complex nonlinear relationships [24,46,59–61]. We used a widely
recommended feed-forward artificial neural network model for time series simulation [36].
This network comprises the input, hidden, and output layers, and each layer consists of
neurons that connect proximate layers, and there is no connection between the neurons
within each layer [62]. The optimal number of neurons in the hidden layer was selected
through trial and error. To train the network (i.e., weighting adjustment), we used a
backpropagation mechanism based on a gradient scheme to decrease the error between
the modeled and observed data [63]. Among the variants of the backpropagation training
scheme, the Levenberg–Marquardt algorithm was applied, which is widely used due to its
high speed in the training of neural networks [64].

2.5.4. Radial Basis Function (RBF)

The RBF Network, originally proposed by Broomhead and Lowe [65], is another
type of artificial neural network with three layers (i.e., input, hidden, and output layers)
which has been successfully applied in nonlinear system modeling such as the prediction
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of sediment transport [66–68]. In this type of ANN, the inputs from the input layer
are mapped to each of the hidden units, and the hidden layer units perform nonlinear
conversion operations without changing weights and parameters. To use the RBF networks,
it is necessary to define the functions and number of neurons in the hidden layer, as well
as the training algorithm to find the network parameters. Various activation functions
have been proposed for the hidden layer of the RBF network [69]. One of the most widely
used activation functions is the Gaussian function [70]. The training process includes
the determination of the hidden layer weight, the standard deviation of the hidden layer
neurons, and the output layer weight. The K-mean classification algorithm [69] and the
gradient descent backpropagation method were used to determine the weights of the
hidden layer and the connection weights between the hidden layer and the output layer,
respectively.

2.6. Model Evaluation

We applied four different standard statistics, namely the coefficient of determination
(R2), the root mean square error (RMSE), the mean absolute error (MAE), and the Nash–
Sutcliffe efficiency coefficient (NS), to evaluate the performance of the various models
during the training and test phases [24]:

RMSE =

√
1
n

n

∑
i=1

(Oi−Mi)
2 (5)

MAE =
∑n

i=1|Oi−Mi|
n

(6)

NS = 1−∑n
i=1(Oi −Mi)

2

∑n
i=1
(
Oi − O

)2 (7)

R2 =

 ∑n
i=1
(
Oi − O

)(
Mi −M

)√
∑n

i=1
(
Oi − O

)2
√

∑n
i=1
(
Mi −M

)2

2

(8)

where Oi and Mi are the observed and modeled SSC values, respectively; O and M are
the averages of the observed and modeled SSC values; and n is the number of data (i.e.,
the number of the training and test data). The RMSE and MAE describe the difference
between the observed and modeled data in the units of the variable. The RMSE and MAE
vary between 0 and +∞, where lower RMSE and MAE values represent higher model
performance, and their optimal value is zero [71]. The NS varies between −∞ and 1, and
R2 varies between 0 and 1. The closer the NS and R2 values are to 1, the better the model
prediction power [24].

3. Results and Discussion
3.1. Results of the Best Lag Times for Inputs

In this study, we applied the CCF and PACF to the training dataset to select the most
highly correlated antecedent discharges and SSCs with the SSCs of each month in the
Boostan Dam Watershed. Applying the CCF for the relationship between the monthly SSC
and monthly discharge (with 6-month time lags) showed that SSC was highly correlated
with discharge for the same month, followed by the discharge of the previous month
(Table 3). The PACF showed that the highest correlation occurred between the monthly SSC
and the SSC of the previous month (Table 3). Finally, based on our analysis of the previously
mentioned functions and using the relevant variables, 10 different input scenarios (Table 2)
were developed and tested in each of the FFNN, ANFIS, RBF, and SVR models.
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Table 3. Cross-correlation between monthly SSC and discharge data with 5% significance limits and
partial autocorrelation for monthly SSC data with 5% significance limits for Boostan Dam Watershed.

Lag Cross-Correlation Partial Autocorrelation

0 0.87 -
1 0.19 0.21
2 0.09 0.01
3 0.01 −0.03
4 −0.08 −0.14
5 −0.10 −0.15
6 −0.01 −0.03

3.2. Results of Optimal Structure for Different Models

In AI models, there are parameters whose changes will influence the performance
of the algorithms. In our study, to achieve the optimal network design and improve the
SSC estimates, we applied a trial-and-error technique, and the optimal values of model
parameters in all the scenarios were adjusted according to the lowest RMSE. The final
optimal structures of the FFNN, SVR, ANFIS, and RBF models are shown for all the groups
in Table 4.

Table 4. Optimal structure of FFNN, RBF, ANFIS, and SVR models for different inputs 2.

Scenario
Number

FFNN RBF ANFIS SVR

No. HN σ No. HN No. MF MF σ C ε

1 5 0.3 20 3 Gaussian-2 0.17 5 0.001
2 7 0.2 15 5 Gaussian 0.13 5 0.001
3 4 0.5 16 3 Gaussian-2 0.17 1 0.1
4 8 0.4 18 4 Bell 0.15 10 0.001
5 8 0.3 21 4 Gaussian-2 0.16 10 0.001
6 6 0.1 16 6 Gaussian 0.15 2.5 0.1
7 8 0.4 19 5 Gaussian-2 0.19 2 0.01
8 7 0.3 18 5 Bell 0.17 5 0.01
9 10 0.2 20 4 Gaussian-2 0.17 10 0.0001

10 10 0.7 16 4 Gaussian 0.21 10 0.0001

Note: 2 No. HN is number of hidden neurons, No. MF is number of membership function, MF is membership
function, σ is width of the Gaussian function, C is cost of constraint violation, and ε is error insensitive zone.

In FFNN, to determine the appropriate number of neurons in the hidden layer, the
trial-and-error method was used (see Table 4); 4 to 10 neurons in this layer were selected for
the training of the network. The activation functions used for the hidden and output layers
were a combination of sigmoid functions since these functions are efficient for extrapolating
the data beyond the training range [24]. Additionally, in the feed-forward neural network
backpropagation mechanism, the Levenberg–Marquardt algorithm and the epoch 100 were
used for training the network. For the RBF model, a trial-and-error technique was used
to assess the width parameter (spread constant) and the appropriate number of hidden
neurons (Table 4). The results showed that the RBF required more neurons in the hidden
layer to achieve a minimum error compared with the FFNN. The Gaussian and linear
functions were used for the hidden and output layers, respectively. The ANFIS model
based on the Takagi–Sugeno fuzzy inference system was developed. To train the system, a
hybrid algorithm was used due to its high efficiency in training the ANFIS systems [72],
and for data-fuzzifying and fuzzy rule extraction, a grid partitioning method was used.
For each input scenario, different input membership functions (e.g., trapezoidal, Gaussian,
Gaussian-2, triangular, bell, pi) and output membership functions (e.g., linear, constant)
were tested. The results, based on trial and error, indicated the superiority of Gaussian,
Gaussian-2, and bell for the input membership function in estimating the monthly SSC.
Additionally, the optimum number of membership functions for each input scenario was
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identified (Table 4). The SVR model was tested using the RBF kernel. The optimal values for
model parameters (namely, σ, C, and ε) were obtained for all the input scenarios through
trial and error and considering the lowest RMSE values (Table 4).

3.3. Evaluations and Results of Different Models and Input Scenarios for Estimating SSC

According to the results from the different input scenarios in the SVR model (Table 5),
the best input scenario for estimating the monthly SSC during the test phase of the
first group (i.e., only considering the hydrological data), was Qt+Qt−1+SSCt−1 with the
RMSE, MAE, NS, and R2 of 201.8 mg/L, 96.9 mg/L, 0.61, and 0.66, respectively, and
in the second group (i.e., a combination of hydrological inputs and the C-factor) was
Qt+Qt−1+SSCt−1+Ct with the RMSE, MAE, NS and R2 of 171.8 mg/L, 73.6 mg/L, 0.73,
and 0.78, respectively. Therefore, Qt+Qt−1+SSCt−1+Ct was the best input combination
among all of these. Assessing the results of the best input scenario (compared with the
best scenario using only hydrological inputs) showed that using the C-factor as an input
improved the NS by 16.4% and R2 by 15.4% and decreased the RMSE by 17.5% and MAE
by 31.5%.

Table 5. Results of monthly SSC modeling by SVR with different input patterns during training and
test phases.

Input Patterns Training Test

RMSE
(mg/L) NS MAE

(mg/L) R2 RMSE
(mg/L) NS MAE

(mg/L) R2

Qt 214.01 0.66 92.58 0.70 203.19 0.56 99.11 0.66
Qt+Qt−1 221.52 0.64 93.09 0.73 223.24 0.54 106.63 0.63
SSCt−1 439.23 0.35 201.63 0.38 444.11 0.29 222.71 0.33

Qt+SSCt−1 199.32 0.68 88.71 0.76 211.96 0.55 99.76 0.63
Qt+Qt−1+SSCt−1 195.51 0.72 79.50 0.79 201.85 0.61 96.92 0.66

Qt+Ct 181.81 0.71 77.41 0.80 199.64 0.65 91.76 0.69
Qt+Qt−1+Ct 178.65 0.74 72.31 0.83 191.54 0.69 84.39 0.71
SSCt−1+Ct 297.96 0.39 166.35 0.49 317.68 0.35 177.19 0.44

Qt+SSCt−1+Ct 168.95 0.83 64.45 0.90 183.12 0.71 78.39 0.76
Qt+Qt−1+SSCt−1+Ct 159.71 0.89 61.56 0.92 171.82 0.73 73.67 0.78

In the ANFIS model (Table 6), the best input combination for estimating the monthly
SSC during the test phase in the first group was Qt+Qt−1+SSCt−1 with the RMSE, MAE,
NS, and R2 of 227.9 mg/L, 101 mg/L, 0.55, and 0.65, respectively, and in the second
group, it was Qt+SSCt−1+Ct with the RMSE, MAE, NS and R2 of 198.9 mg/L, 79.2 mg/L,
0.70, and 0.73, respectively. An evaluation of the results of the best input combination
(i.e., Qt+SSCt−1+Ct) compared with the best scenario using only hydrological inputs
(i.e., Qt+Qt−1+SSCt−1) showed that including the C-factor improved the NS by 21.4% and
R2 by 10.9% and decreased the RMSE by 14.6% and MAE by 27.5%.

Table 6. Results of monthly SSC modeling by ANFIS with different input patterns during training
and test phases.

Input
Patterns

Training Test

RMSE
(mg/L) NS MAE

(mg/L) R2 RMSE
(mg/L) NS MAE

(mg/L) R2

Qt 237.37 0.60 99.11 0.65 239.66 0.53 121.07 0.54
Qt+Qt−1 232.07 0.61 100.15 0.70 241.33 0.49 118.17 0.59
SSCt−1 509.11 0.28 209.29 0. 35 592.23 0.21 276.91 0.30

Qt+SSCt−1 222.59 0.63 96.47 0.74 231.88 0.50 108.09 0.61
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Table 6. Cont.

Input
Patterns

Training Test

RMSE
(mg/L) NS MAE

(mg/L) R2 RMSE
(mg/L) NS MAE

(mg/L) R2

Qt+Qt−1+SSCt−1 201.15 0.67 92.53 0.78 227.95 0.55 101.05 0.65
Qt+Ct 196.87 0.69 81.68 0.79 225.05 0.57 99.08 0.65

Qt+Qt−1+Ct 193.94 0.71 79.20 0.81 221.88 0.61 94.91 0.68
SSCt−1+Ct 310.39 0.37 178.74 0.44 369.28 0.34 198.32 0.40

Qt+SSCt−1+Ct 177.90 0.81 67.95 0.89 198.95 0.70 79.24 0.73
Qt+Qt−1+SSCt−1+Ct 183.87 0.75 73.06 0.87 216.41 0.67 91.20 0.71

Our evaluation of the results of the different input scenarios in the FFNN and RBF
models (Tables 7 and 8, respectively) showed that, in the first group, Qt+Qt−1+SSCt−1
was the best input combination. Additionally, Qt+SSCt−1+Ct with RMSE = 201.95 mg/L,
MAE = 85.24 mg/L, NS = 0.63, and R2 = 0.69, and Qt+Qt−1+SSCt−1+Ct with RMSE =
231.01 mg/L, MAE = 99.89 mg/L, NS = 0.56, and R2 = 0.65 were the best input scenario
among all the 10 different input scenarios for SSC estimation using the FFNN and RBF
models, respectively. Adding the C-factor was effective in improving model performance;
the NS increased by 17.5% and 23.2%, R2 increased by 11.6% and 21.5%), the RMSE
decreased by 13.8% and 4.3%, and the MAE decreased by 16.5% and 21.4% for the FFNN
and RBF models, respectively.

Table 7. Results of monthly SSC modeling by FFNN with different input patterns during training
and test phases.

Input
Patterns

Training Test

RMSE
(mg/L) NS MAE

(mg/L) R2 RMSE
(mg/L) NS MAE

(mg/L) R2

Qt 257.37 0.41 129.17 0.47 269.66 0.38 131.57 0.44
Qt+Qt−1 241.11 0.50 120.13 0.59 253.33 0.43 128.06 0.51
SSCt−1 571.11 0.19 224.02 0. 25 634.23 0.11 299.98 0.17

Qt+SSCt−1 212.39 0.55 106.47 0.67 242.88 0.48 117.19 0.56
Qt+Qt−1+SSCt−1 207.15 0.59 98.53 0.71 229.95 0.52 99.29 0.61

Qt+Ct 208.87 0.57 101.68 0.68 239.05 0.47 109.16 0.51
Qt+Qt−1+Ct 201.94 0.61 99.20 0.71 231.88 0.51 98.91 0.58
SSCt−1+Ct 333.19 0.30 191.41 0.39 401.28 0.24 208.21 0.34

Qt+SSCt−1+Ct 186.90 0.74 74.95 0.79 201.95 0.63 85.24 0.69
Qt+Qt−1+SSCt−1+Ct 196.62 0.67 81.22 0.77 226.51 0.59 97.30 0.66

Table 8. Results of monthly SSC modeling by RBF with different input patterns during training and
test phases.

Input
Patterns

Training Test

RMSE
(mg/L) NS MAE

(mg/L) R2 RMSE
(mg/L) NS MAE

(mg/L) R2

Qt 267.37 0.31 139.17 0.43 269.66 0.28 146.57 0.34
Qt+Qt−1 254.11 0.41 130.13 0.46 273.33 0.32 139.06 0.41
SSCt−1 593.11 0.11 244.02 0. 19 664.23 0.09 301.98 0.13

Qt+SSCt−1 231.39 0.49 126.47 0.51 252.88 0.39 137.19 0.45
Qt+Qt−1+SSCt−1 216.15 0.53 116.53 0.61 240.95 0.43 121.29 0.51

Qt+Ct 228.87 0.50 124.68 0.59 243.05 0.42 131.16 0.48
Qt+Qt−1+Ct 211.94 0.55 119.20 0.64 239.88 0.46 128.91 0.54
SSCt−1+Ct 351.19 0.25 198.41 0.31 452.28 0.19 226.21 0.27

Qt+SSCt−1+Ct 204.90 0.61 98.95 0.69 235.95 0.52 108.24 0.59
Qt+Qt−1+SSCt−1+Ct 198.12 0.65 89.13 0.75 231.01 0.56 99.89 0.65
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The SVR model showed superior performance (NS = 0.73), followed by ANFIS
(NS = 0.70), FFNN (NS = 0.63), and RBF (NS = 0.56) (see Tables 5–8). The accuracy of
the SVR model was about 4.1%, 13.7%, and 23.3% higher than that of ANFIS, FFNN,
and RBF for SSC estimation, respectively. Based on the NS metrics, the SVR and ANFIS
models showed good performance (0.65<NS ≤ 0.75), and the FFNN and RBF models
had lesser performance but were satisfactory (0.55<NS ≤ 0.65). However, based on the
RMSE observation–standard deviation ratio (RSR) (i.e., RMSE/SDobs), the results were not
satisfactory. Because, RMSE values less than half of the standard deviation (SD) of the
observed data is considered low and satisfactory [71,73,74].

Comparing the results of the best input scenarios for groups 1 and 2 showed that the
inclusion of the C-factor improved model performance (based on the NS metric) by 16.4%,
21.4%, 17.5%, and 23.2% for SVR, ANFIS, FFNN, and RBF, respectively. Additionally, to
assess the efficiency of the developed models, the correlations between the observed and
modeled SSC during the test phase are presented for the best input patterns of the SVR,
ANFIS, FFNN, and RBF models (Figure 4). These comparisons showed that the RBF model
had the lowest correlation among all the tested models, and the SVR model had the best
correlation.
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Comparing the observed versus the simulated SSC using the models (i.e., MLP, ANFIS,
RBF, and SVR) for the best input scenarios in groups 1 and 2 showed good agreement
between the observed and simulated SSC using the SVR model, followed by ANFIS, FFNN,
and RBF models, respectively (Figure 5). However, these models could not simulate the
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peak values accurately, a typical problem in modeling [7,75]. In general, all four models
overestimated SSC, similar to findings by Choubin et al. [32]. Additionally, these graphs
confirmed the better agreement between the observed and modeled SSC values during the
test period when the C-factor was used along with hydrological inputs than when only
using hydrological inputs.
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Figure 5. Time series plots of the observed and estimated SSC based on the best input scenarios of
group 1 (a) and group 2 (b) during test phase.

Based on our findings, generally, the SVR model provided more accurate results in all
the cases with lower error values and higher NS and R2 than the ANFIS, FFNN, and RBF
models. Other studies have confirmed the superiority of the SVR over ANN, ANFIS, and
RBF models for suspended sediment estimation [5,32,36,38,76,77]. In fact, the application
of the structural risk minimization (SRM) principle in the SVR modeling process, which
minimizes the upper limit of the expected error, equips the SVR model with a promising
tool for generalization, while the application of the empirical risk minimization (ERM)
principle in the ANN modeling process minimizes the training data error [53]. The ANFIS
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model was the next best-performing model for estimating SSC. The better performance of
the ANFIS model, compared with FFNN, indicates that the combination of fuzzy logic with
neural network analysis increases model efficiency in estimating sediment similar to other
findings [28,49,78]. The FFNN model performs better than RBF. The weak performance of
RBF for estimating SSC is likely because this network divides the patterns before creating
the mapping and creates a nonlinear mapping for each class, causing poorer performance of
the network. Research also shows that RBFs often perform better in classification problems,
and ANNs are more suitable for curve fitting [79].

Our results showed that only using discharge as a model input does not provide
accurate estimates of the suspended sediment load because other variables control the
supply and transport of the suspended sediment load (e.g., rainfall, land use, the sediment
from antecedent flooding, watershed physiography, anthropogenic change) [26]. Similarly,
Rodríguez-Blanco et al. [80] indicated that the flow discharge explained only 19% of the
variation in SSL. Additionally, Nhu et al. [9] and Salih et al. [81] confirmed that discharge
alone does not accurately estimate SSC.

Based on our results from the Boostan Dam Watershed, incorporating the discharge
and SSC data of the previous month increased model accuracy compared with using
only the discharge during the same month. This denotes the importance of antecedent
values of these data in the suspended sediment generation process [32]. Moreover, the
results achieved from all the applied models showed that including the C-factor along with
hydrological inputs led to greater efficiency of the models; without the C-factor, even the
best combination of the discharge and SSC data produced a higher modeling error than
when the C-factor was included.

To assess the performance of the models, in addition to a good fit, an accurate simula-
tion of the peak SSC values is important. To check this, we assessed the relative error of
the best model for predicting the peak SSC (%RE P) using only hydrological variables and
using both hydrological variables and the C-factor as follows [82]:

%REP =
MP − OP

OP
× 100 (9)

where OP and MP are the observed and modeled peak SSC, respectively. The results
indicated that the peak SSC values were more accurately predicted when adding the
C-factor to hydrological inputs in all four models (Table 9).

Table 9. Assessment of models based on relative error in peak SSC for the best model using only
hydrological variables and the best model using hydrological variables along with C-factor for
Boostan Dam Watershed.

Model
The Best Input

Pattern in
Group 1

%REp

The Best Input
Pattern in
Group 1

%REp

SVR Qt+Qt−1+SSCt−1 21.13 Qt+Qt−1+SSCt−1+Ct −12.21
ANFIS Qt+Qt−1+SSCt−1 27.39 Qt+Qt−1+SSCt−1 −12.28
FFNN Qt+Qt−1+SSCt−1 70.56 Qt+SSCt−1+Ct 49.94
RBF Qt+Qt−1+SSCt−1 88.89 Qt+Qt−1+SSCt−1+Ct 51.28

This poor simulation of peak values can arise from several sources. First, only a few
SSC samples were collected at high flows, causing a bias in the representation of the peak
conditions within our database (e.g., Ziegler et al. [83]). Secondly, the uncertainties of
the suspended sediment data can contribute to poor performance [26]. A third reason
is that the rainfall data were not used, and the peak of SSC data is affected by intense
rainfall [83]. The choice of the data range during the training phase can also affect the peak
flow prediction [36]. Finally, geomorphic perturbations in the watershed (e.g., landslides,
bank collapse) can affect the peak sediment fluxes [7,83].
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Moreover, the utilization of climatic variables, (e.g., rainfall, temperature, potential
evapotranspiration) [33,34] and hydrogeomorphic variables (e.g., the index of sediment
connectivity) [35] along with the inputs used in this study can most likely improve the
estimation of SSC. Overall, our results showed that, for an accurate estimation of SSC, in
addition to the modeling tool, acceptable and effective input data are necessary for building
an efficient model [26,32].

4. Conclusions

The determination of soil loss within a basin is not simple because soil erosion and
sediment transport are complex hydrodynamic phenomena that are influenced by various
dynamic and static parameters. On the other hand, an accurate estimation of SSL/SSC
is a key step in river basin and water resource management, including the design of
hydraulic structures. This study was carried out to improve SSC estimation using the
FFNN, SVR, RBF, and ANFIS models and different input patterns for the Boostan Dam
Watershed in Iran. To construct an effective input scenario, we added the C-factor of the
RUSLE along with hydrological variables to estimate the monthly SSC and found that
this strategy improved model performance, as reflected the soil cover dynamics. Given
that field surveys for collecting information on parameters such as the C-factor are time-
consuming, using remote sensing combined with GIS can efficiently supply such data to
the employed models. Our results showed that to accurately estimate SSC, in addition to
the model type and structure, finding the relevant variables is necessary. Our findings are
summarized as follows:

1. The use of the C-factor in models elevated the performance of SSC modeling;
2. Using only the discharge values of the same month did not accurately estimate SSC;

other variables such as the monthly discharge with a 1-month time lag and the SSC
within a 1-month time lag played important roles in this process;

3. The SVR models performed best, followed by the ANFIS, FFNN, and RBF models,
respectively. Based on the NS metric, the SVR and ANFIS models had good lev-
els of performance, and the FFNN and RBF models had a lesser but satisfactory
performance;

4. The best input combination for models was determined as Qt+Qt−1+SSCt−1+Ct;
5. To construct an effective input scenario for estimating the monthly SSC, using the

C-factor of the RUSLE as an input along with hydrological variables is important;
6. Given that our optimization of the model parameters was accomplished through

trial and error, we recommend surveying the meta-heuristic optimization algorithms,
including the multi-objective and single-objective algorithms, for selecting those
parameters that increase the accuracy of SSC estimation.
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24. Zounemat-Kermani, M.; Kişi, Ö.; Adamowski, J.; Ramezani-Charmahineh, A. Evaluation of data driven models for river

suspended sediment concentration modeling. J. Hydrol. 2016, 535, 457–472. [CrossRef]
25. Talebi, A.; Mahjoobi, J.; Dastorani, M.T.; Moosavi, V. Estimation of suspended sediment load using regression trees and model

trees approaches (Case study: Hyderabad drainage basin in Iran). ISH J. Hydraul. Eng. 2017, 23, 212–219. [CrossRef]
26. Asadi, H.; Dastorani, M.T.; Sidle, R.C.; Shahedi, K. Improving Flow Discharge-Suspended Sediment Relations: Intelligent

Algorithms versus Data Separation. Water 2021, 13, 3650. [CrossRef]
27. Roushangar, K.; Koosheh, A. Evaluation of GA-SVR method for modeling bed load transport in gravel-bed rivers. J. Hydrol. 2015,

527, 1142–1152. [CrossRef]
28. Riahi-Madvar, H.; Seifi, A. Uncertainty analysis in bed load transport prediction of gravel bed rivers by ANN and ANFIS. Arab. J.

Geosci. 2018, 11, 688. [CrossRef]
29. Asheghi, R.; Hosseini, S.A. Prediction of bed load sediments using different artificial neural network models. Front. Struct. Civ.

Eng. 2020, 14, 374–386. [CrossRef]

http://doi.org/10.1016/j.geomorph.2014.01.015
http://doi.org/10.1016/j.geomorph.2006.07.010
http://doi.org/10.2307/1551645
http://doi.org/10.15233/gfz.2015.32.2
http://doi.org/10.1007/s11269-017-1581-1
http://doi.org/10.1016/j.jhydrol.2022.127963
http://doi.org/10.1016/j.scitotenv.2009.05.016
http://www.ncbi.nlm.nih.gov/pubmed/19520419
http://doi.org/10.1080/02626667.2020.1754419
http://doi.org/10.1080/02626667.2021.1928673
http://doi.org/10.1016/j.asoc.2005.02.002
http://doi.org/10.1016/j.jhydrol.2011.01.017
http://doi.org/10.1007/s10661-009-1012-8
http://www.ncbi.nlm.nih.gov/pubmed/19543999
http://doi.org/10.3923/ajaps.2010.399.410
http://doi.org/10.2166/hydro.2013.245
http://doi.org/10.1016/j.gsd.2019.100237
http://doi.org/10.1016/j.cageo.2016.03.002
http://doi.org/10.3923/jas.2010.2387.2394
http://doi.org/10.1016/j.agwat.2010.12.012
http://doi.org/10.1016/j.jhydrol.2016.02.012
http://doi.org/10.1080/09715010.2016.1264894
http://doi.org/10.3390/w13243650
http://doi.org/10.1016/j.jhydrol.2015.06.006
http://doi.org/10.1007/s12517-018-3968-6
http://doi.org/10.1007/s11709-019-0600-0


Water 2022, 14, 3011 17 of 18

30. Yang, C.T.; Marsooli, R.; Aalami, M.T. Evaluation of total load sediment transport formulas using ANN. Int. J. Sediment Res. 2009,
24, 274–286. [CrossRef]

31. Noori, R.; Ghiasi, B.; Salehi, S.; Esmaeili Bidhendi, M.; Raeisi, A.; Partani, S.; Meysami, R.; Mahdian, M.; Hosseinzadeh, M.;
Abolfathi, S. An Efficient Data Driven-Based Model for Prediction of the Total Sediment Load in Rivers. Hydrology 2022, 9, 36.
[CrossRef]

32. Choubin, B.; Darabi, H.; Rahmati, O.; Sajedi-Hosseini, F.; Kløve, B. River suspended sediment modelling using the CART model:
A comparative study of machine learning techniques. Sci. Total Environ. 2018, 615, 272–281. [CrossRef]

33. Gao, G.; Ning, Z.; Li, Z.; Fu, B. Prediction of long-term inter-seasonal variations of streamflow and sediment load by state-space
model in the Loess Plateau of China. J. Hydrol. 2021, 600, 126534. [CrossRef]

34. Banadkooki, F.B.; Ehteram, M.; Ahmed, A.N.; Teo, F.Y.; Ebrahimi, M.; Fai, C.M.; Huang, Y.F.; El-Shafie, A. Suspended sediment
load prediction using artificial neural network and ant lion optimization algorithm. Environ. Sci. Pollut. Res. 2020, 27, 38094–38116.
[CrossRef]

35. Asadi, H.; Shahedi, K.; Sidle, R.C.; Kalami Heris, S.M. Prediction of Suspended Sediment Using Hydrologic and Hydrogeomorphic
Data within Intelligence Models. Iran-Water Resour. Res. 2019, 15, 105–119.

36. Kumar, D.; Pandey, A.; Sharma, N.; Flügel, W.-A. Daily suspended sediment simulation using machine learning approach. Catena
2016, 138, 77–90. [CrossRef]

37. Khan, M.Y.A.; Tian, F.; Hasan, F.; Chakrapani, G.J. Artificial neural network simulation for prediction of suspended sediment
concentration in the River Ramganga, Ganges Basin, India. Int. J. Sediment Res. 2019, 34, 95–107. [CrossRef]

38. Chiang, J.-L.; Tsai, K.-J.; Chen, Y.-R.; Lee, M.-H.; Sun, J.-W. Suspended sediment load prediction using support vector machines
in the Goodwin Creek experimental watershed. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna,
Austria, 3–8 April 2011; p. 5285.

39. Kisi, O.; Haktanir, T.; Ardiclioglu, M.; Ozturk, O.; Yalcin, E.; Uludag, S. Adaptive neuro-fuzzy computing technique for suspended
sediment estimation. Adv. Eng. Softw. 2009, 40, 438–444. [CrossRef]

40. Khosravi, K.; Mao, L.; Kisi, O.; Yaseen, Z.M.; Shahid, S. Quantifying hourly suspended sediment load using data mining models:
Case study of a glacierized Andean catchment in Chile. J. Hydrol. 2018, 567, 165–179. [CrossRef]

41. Rezaei, K.; Pradhan, B.; Vadiati, M.; Nadiri, A.A. Suspended sediment load prediction using artificial intelligence techniques:
Comparison between four state-of-the-art artificial neural network techniques. Arab. J. Geosci. 2021, 14, 1–13. [CrossRef]

42. Kumar, A.; Tripathi, V.K. Capability assessment of conventional and data-driven models for prediction of suspended sediment
load. Environ. Sci. Pollut. Res. 2022, 29, 50040–50058. [CrossRef]

43. Renard, K.G. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE);
United States Government Printing: Washington, DC, USA, 1997.

44. Kastridis, A.; Stathis, D.; Sapountzis, M.; Theodosiou, G. Insect outbreak and long-term post-fire effects on soil erosion in
mediterranean suburban forest. Land 2022, 11, 911. [CrossRef]

45. Ferreira, C.S.; Seifollahi-Aghmiuni, S.; Destouni, G.; Ghajarnia, N.; Kalantari, Z. Soil degradation in the European Mediterranean
region: Processes, status and consequences. Sci. Total Environ. 2021, 805, 150106. [CrossRef] [PubMed]

46. Durigon, V.; Carvalho, D.; Antunes, M.; Oliveira, P.; Fernandes, M. NDVI time series for monitoring RUSLE cover management
factor in a tropical watershed. Int. J. Remote Sens. 2014, 35, 441–453. [CrossRef]

47. Ghosal, K.; Das Bhattacharya, S. A review of RUSLE model. J. Indian Soc. Remote Sens. 2020, 48, 689–707. [CrossRef]
48. Asadi, H.; Shahedi, K.; Jarihani, B.; Sidle, R.C. Rainfall-runoff modelling using hydrological connectivity index and artificial

neural network approach. Water 2019, 11, 212. [CrossRef]
49. Kumar, A.; Kumar, P.; Singh, V.K. Evaluating different machine learning models for runoff and suspended sediment simulation.

Water Resour. Manag. 2019, 33, 1217–1231. [CrossRef]
50. Vafakhah, M. Comparison of cokriging and adaptive neuro-fuzzy inference system models for suspended sediment load

forecasting. Arab. J. Geosci. 2013, 6, 3003–3018. [CrossRef]
51. Vapnik, V. The nature of statistical learning theory. IEEE Trans. Neural Netw. 1995, 195, 5.
52. Kazemi, M.S.; Banihabib, M.E.; Soltani, J. A hybrid SVR-PSO model to predict concentration of sediment in typical and debris

floods. Earth Sci. Inform. 2021, 14, 365–376. [CrossRef]
53. Cristianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods; Cambridge

University Press: Cambridge, UK, 2000.
54. Wang, H.; Xu, D. Parameter selection method for support vector regression based on adaptive fusion of the mixed kernel function.

J. Control Sci. Eng. 2017, 2017. [CrossRef]
55. Chen, S.-T.; Yu, P.-S. Pruning of support vector networks on flood forecasting. J. Hydrol. 2007, 347, 67–78. [CrossRef]
56. Jang, J.-S. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [CrossRef]
57. Chen, S.H.; Lin, Y.H.; Chang, L.C.; Chang, F.J. The strategy of building a flood forecast model by neuro-fuzzy network. Hydrol.

Processes: Int. J. 2006, 20, 1525–1540. [CrossRef]
58. Jang, J.-S.R.; Sun, C.-T. Neuro-fuzzy modeling and control. Proc. IEEE 1995, 83, 378–406. [CrossRef]
59. Pumo, D.; Francipane, A.; Lo Conti, F.; Arnone, E.; Bitonto, P.; Viola, F.; La Loggia, G.; Noto, L. The SESAMO early warning

system for rainfall-triggered landslides. J. Hydroinformatics 2016, 18, 256–276. [CrossRef]

http://doi.org/10.1016/S1001-6279(10)60003-0
http://doi.org/10.3390/hydrology9020036
http://doi.org/10.1016/j.scitotenv.2017.09.293
http://doi.org/10.1016/j.jhydrol.2021.126534
http://doi.org/10.1007/s11356-020-09876-w
http://doi.org/10.1016/j.catena.2015.11.013
http://doi.org/10.1016/j.ijsrc.2018.09.001
http://doi.org/10.1016/j.advengsoft.2008.06.004
http://doi.org/10.1016/j.jhydrol.2018.10.015
http://doi.org/10.1007/s12517-020-06408-1
http://doi.org/10.1007/s11356-022-18594-4
http://doi.org/10.3390/land11060911
http://doi.org/10.1016/j.scitotenv.2021.150106
http://www.ncbi.nlm.nih.gov/pubmed/34537691
http://doi.org/10.1080/01431161.2013.871081
http://doi.org/10.1007/s12524-019-01097-0
http://doi.org/10.3390/w11020212
http://doi.org/10.1007/s11269-018-2178-z
http://doi.org/10.1007/s12517-012-0550-5
http://doi.org/10.1007/s12145-021-00570-0
http://doi.org/10.1155/2017/3614790
http://doi.org/10.1016/j.jhydrol.2007.08.029
http://doi.org/10.1109/21.256541
http://doi.org/10.1002/hyp.5942
http://doi.org/10.1109/5.364486
http://doi.org/10.2166/hydro.2015.060


Water 2022, 14, 3011 18 of 18

60. Nourani, V.; Kisi, Ö.; Komasi, M. Two hybrid artificial intelligence approaches for modeling rainfall–runoff process. J. Hydrol.
2011, 402, 41–59. [CrossRef]

61. Goyal, M.K.; Bharti, B.; Quilty, J.; Adamowski, J.; Pandey, A. Modeling of daily pan evaporation in sub tropical climates using
ANN, LS-SVR, Fuzzy Logic, and ANFIS. Expert Syst. Appl. 2014, 41, 5267–5276. [CrossRef]

62. Kim, T.-W.; Valdés, J.B. Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural
networks. J. Hydrol. Eng. 2003, 8, 319–328. [CrossRef]

63. Hagan, M.T.; Menhaj, M.B. Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 1994, 5,
989–993. [CrossRef]

64. Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501.
[CrossRef]

65. Broomhead, D.S.; Lowe, D. Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks; Royal Signals and
Radar Establishment Malvern: UK, 1988.

66. Alp, M.; Cigizoglu, H.K. Suspended sediment load simulation by two artificial neural network methods using hydrometeorologi-
cal data. Environ. Model. Softw. 2007, 22, 2–13. [CrossRef]

67. Ebtehaj, I.; Bonakdari, H.; Zaji, A.H. An expert system with radial basis function neural network based on decision trees for
predicting sediment transport in sewers. Water Sci. Technol. 2016, 74, 176–183. [CrossRef] [PubMed]

68. Isa, M.M.M. Comparative study of MLP and RBF neural networks for estimation of suspended sediments in Pari River, Perak.
Res. J. Appl. Sci. Eng. Technol. 2014, 7, 3837–3841.

69. Haykin, S. Neural Networks, a comprehensive foundation, Prentice-Hall Inc. Up. Saddle River New Jersey 1999, 7458, 161–175.
70. Sudheer, K.; Jain, S. Radial basis function neural network for modeling rating curves. J. Hydrol. Eng. 2003, 8, 161–164. [CrossRef]
71. Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic

quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [CrossRef]
72. Jang, J.-S.R.; Sun, C.-T.; Mizutani, E. Neuro-fuzzy and soft computing-a computational approach to learning and machine

intelligence [Book Review]. IEEE Trans. Autom. Control 1997, 42, 1482–1484. [CrossRef]
73. Kastridis, A.; Theodosiou, G.; Fotiadis, G. Investigation of Flood Management and Mitigation Measures in Ungauged NATURA

Protected Watersheds. Hydrology 2021, 8, 170. [CrossRef]
74. Singh, J.; Knapp, H.V.; Arnold, J.G.; Demissie, M. Hydrological modeling of the Iroquois river watershed using HSPF and SWAT.

JAWRA J. Am. Water Resour. Assoc. 2005, 41, 343–360. [CrossRef]
75. Sichingabula, H.M. Factors controlling variations in suspended sediment concentration for single-valued sediment rating curves,

Fraser River, British Columbia, Canada. Hydrol. Processes 1998, 12, 1869–1894. [CrossRef]
76. Lafdani, E.K.; Nia, A.M.; Ahmadi, A. Daily suspended sediment load prediction using artificial neural networks and support

vector machines. J. Hydrol. 2013, 478, 50–62. [CrossRef]
77. Kisi, O.; Dailr, A.H.; Cimen, M.; Shiri, J. Suspended sediment modeling using genetic programming and soft computing

techniques. J. Hydrol. 2012, 450, 48–58. [CrossRef]
78. Samet, K.; Hoseini, K.; Karami, H.; Mohammadi, M. Comparison between soft computing methods for prediction of sediment

load in rivers: Maku dam case study. Iran. J. Sci. Technol. Trans. Civ. Eng. 2019, 43, 93–103. [CrossRef]
79. Pantazi, X.; Moshou, D.; Bochtis, D. Chapter 2—Artificial intelligence in agriculture. In Intelligent Data Mining and Fusion Systems

in Agriculture; Pantazi, X.E., Moshou, D., Bochtis, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 17–101.
80. Rodríguez-Blanco, M.; Taboada-Castro, M.; Palleiro, L.; Taboada-Castro, M. Temporal changes in suspended sediment transport

in an Atlantic catchment, NW Spain. Geomorphology 2010, 123, 181–188. [CrossRef]
81. Salih, S.Q.; Sharafati, A.; Khosravi, K.; Faris, H.; Kisi, O.; Tao, H.; Ali, M.; Yaseen, Z.M. River suspended sediment load prediction

based on river discharge information: Application of newly developed data mining models. Hydrol. Sci. J. 2020, 65, 624–637.
[CrossRef]

82. Hosseini, S.M.; Mahjouri, N. Integrating support vector regression and a geomorphologic artificial neural network for daily
rainfall-runoff modeling. Appl. Soft Comput. 2016, 38, 329–345. [CrossRef]

83. Ziegler, A.D.; Benner, S.G.; Tantasirin, C.; Wood, S.H.; Sutherland, R.A.; Sidle, R.C.; Jachowski, N.; Nullet, M.A.; Xi, L.X.;
Snidvongs, A. Turbidity-based sediment monitoring in northern Thailand: Hysteresis, variability, and uncertainty. J. Hydrol. 2014,
519, 2020–2039. [CrossRef]

http://doi.org/10.1016/j.jhydrol.2011.03.002
http://doi.org/10.1016/j.eswa.2014.02.047
http://doi.org/10.1061/(ASCE)1084-0699(2003)8:6(319)
http://doi.org/10.1109/72.329697
http://doi.org/10.1016/j.neucom.2005.12.126
http://doi.org/10.1016/j.envsoft.2005.09.009
http://doi.org/10.2166/wst.2016.174
http://www.ncbi.nlm.nih.gov/pubmed/27386995
http://doi.org/10.1061/(ASCE)1084-0699(2003)8:3(161)
http://doi.org/10.13031/2013.23153
http://doi.org/10.1109/TAC.1997.633847
http://doi.org/10.3390/hydrology8040170
http://doi.org/10.1111/j.1752-1688.2005.tb03740.x
http://doi.org/10.1002/(SICI)1099-1085(19981015)12:12&lt;1869::AID-HYP648&gt;3.0.CO;2-G
http://doi.org/10.1016/j.jhydrol.2012.11.048
http://doi.org/10.1016/j.jhydrol.2012.05.031
http://doi.org/10.1007/s40996-018-0121-4
http://doi.org/10.1016/j.geomorph.2010.07.015
http://doi.org/10.1080/02626667.2019.1703186
http://doi.org/10.1016/j.asoc.2015.09.049
http://doi.org/10.1016/j.jhydrol.2014.09.010

	Introduction 
	Materials and Methods 
	Study Area and Database 
	C-Factor 
	Input Scenarios 
	Data Preprocessing 
	Model Theory Background 
	Support Vector Regression (SVR) 
	Adaptive Neuro-Fuzzy Inference System (ANFIS) 
	Feed-Forward Neural Network (FFNN) 
	Radial Basis Function (RBF) 

	Model Evaluation 

	Results and Discussion 
	Results of the Best Lag Times for Inputs 
	Results of Optimal Structure for Different Models 
	Evaluations and Results of Different Models and Input Scenarios for Estimating SSC 

	Conclusions 
	References

