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Abstract: Chemical oxygen demand (COD) is one of the indicators used to monitor the level of
pollution in surface water. To recycle agricultural water resources, it is crucial to monitor, in a timely
manner, whether COD in surface water exceeds the agricultural water control standard. A diagnostic
model of surface water pollution was developed using visible near-infrared spectroscopy (Vis-NIR)
combined with partial least squares discriminant analysis (PLS–DA). A total of 127 surface water
samples were collected from Guangzhou, Guangdong, China. The COD content was measured using
the potassium dichromate method. The spectra of the surface water samples were recorded using
a Vis-NIR spectrometer, and the spectral data were pre-processed using four different methods. To
improve the accuracy and simplicity of the model, the synthetic minority oversampling technique
(SMOTE) and the competitive adaptive reweighted sampling (CARS) algorithm were used to enhance
model performance. The best PLS–DA model achieved an accuracy of 88%, and the SMOTE–PLS–DA
model had an accuracy of 94%. The SMOTE algorithm could improve the accuracy of the model
despite the sampling imbalance. The CARS–SMOTE–PLS–DA model achieved 97% accuracy, and the
CARS band selection technique improved the simplicity and accuracy of the discrimination model.
The CARS–SMOTE–PLS–DA model improved the discrimination accuracy by 9% over that of the
PLS–DA model. This method can not only save human and material resources but is also a new way
for real-time online discrimination of COD in surface water.

Keywords: surface water; vis-NIR spectroscopy; chemical oxygen demand; SMOTE; CARS; PLS–DA

1. Introduction

Sustainable development of the ecological environment is the common demand for the
survival of all mankind, and the recycling of agricultural water resources is urgent. Surface
water is one of the main sources of water for agricultural irrigation and an important
factor affecting the quality of crops [1,2]. With the rapid advancement of industrializa-
tion in modern society, the random discharge of industrial wastewater has become an
increasingly serious environmental problem. Extensive domestic garbage and industrial
chemical residues flow into surface water, resulting in the deposition of a variety of harmful
chemicals. This poses a serious threat to the recycling of agricultural water resources [3,4].
Accurate judgment of surface water pollution is one of the means to ensure the quality of
agricultural cultivation.

Surface water pollutants are mainly organic and are generally quantitatively indicated
by the chemical oxygen demand (COD). Conventional methods to test COD include the
dichromate method and the permanganate index method. These methods not only require
chemical reagents but also have the shortcomings of complex chemical reactions and long
time periods. Moreover, they are likely to cause secondary pollution if the chemical reagents
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are not handled properly [5]. Hence, to protect and recycle surface water resources, it is
necessary to develop a rapid, effective, and eco-friendly detection technology to accurately
evaluate the degree of surface water pollution [6].

Visible near-infrared spectroscopy (Vis-NIR) is a green, non-destructive, and rapid
detection technique. It is widely used in fields such as the ecological environment and
medicine through a combination of statistical modeling and chemometric methods [7].
This analytical technique not only provides rich qualitative and quantitative information
on substances but also has the advantages of being non-destructive and easy to apply.
Therefore, this technique is widely used to detect various water pollution indicators [8]. The
analytical method of this technique mainly involves the establishment of a calibration model
using the spectra and conventional values of the target components. Linear discriminant
models such as partial least squares discriminant analysis (PLS–DA) are commonly used in
spectral modeling owing to their simple structure and ease of operation [9]. PLS–DA is a
classification technique based on partial least squares. Its mathematical basis is principal
component analysis, and the regression model between the independent variable and the
categorical variable of the training sample is mainly established by the information of the
samples in the process of features selection, and then the characteristic variables related to
the classification are effectively extracted [10].

On the one hand, the accuracy and stability of the model will be affected by less
representative sample data and the skewed distribution of sample categories [11]. Uneven
distribution can easily occur when collecting samples. Therefore, the key factor affecting
the performance of the classification model is the quantity distribution of the samples
in different categories. Common machine learning algorithms adopt a balanced training
set, where all categories are represented equally [12]. However, such treatment leads to
a certain error in the prediction of categories with a large number of samples, whereas
categories with a small number of samples are prone to misclassification [13]. On the
other hand, the accuracy and stability of the model will suffer from redundancy in the
spectral data. If the entire Vis-NIR band is used to train the model, it is often too complex
and may produce inefficient models [14]. Some spectral variables may contain irrelevant
or even noise information, which may distort the true relationship between the sample
information and Vis-NIR predictors. Spectral selection algorithms are applied to overcome
the drawbacks of spectral analysis. The competitive adaptive reweighted sampling (CARS)
algorithm is one of the most commonly used band selection strategies [15]. This algorithm
eliminates unimportant spectral variables when extracting the optimal subset of such
variables according to the regression coefficients. However, it has not been validated
whether this algorithm can effectively discriminate if the COD of surface water exceeds the
threshold through Vis-NIR.

In our last article, we achieved quantitative predictions for surface water, but not very
good predictions for COD greater than 120 mg/L [16]. In this experiment, samples that
were more seriously polluted and whose COD was greater than 600 mg/L were added, and
the method of qualitative discrimination was tried to achieve high-accuracy COD online
discrimination, which provided new ideas for surface water quality management.

The purpose of this study was to explore the best comprehensive modeling approach
of Vis-NIR to diagnose whether the COD of surface water exceeds its management value.
The following objectives were considered: (1) to understand the effect of spectral pre-
processing methods on the discrimination results of surface water COD; (2) to improve
the distribution of sample categories using the synthetic minority oversampling technique
(SMOTE) algorithm; (3) to develop a CARS-SMOTE-PLS-DA model for rapid determina-
tion of COD in surface water using the CARS band selection algorithm and the SMOTE
algorithm; and (4) to determine the important wavelengths for the discrimination of surface
water COD and the relevant components of surface water pollution.
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2. Materials and Methods
2.1. Study Area and Sample Collection

The samples for this study were provided by the South China Research and Monitoring
Analysis Center, South China Institute of Environmental Sciences, Ministry of Ecology
and Environment. These samples were from Guangzhou, Guangdong, China. Surface
water was collected from an inland river in Guangzhou that was often used as the water
source for agricultural irrigation and the daily life of residents. A total of 127 samples
were collected from 15 July to 15 October 2021. They were placed in sealed test tubes and
labeled in the sampling order, and then delivered to the laboratory at room temperature on
16 October 2021. The COD value of each sample was determined in all experiments using
the conventional permanganate index method [17]. The measured COD values were used
for the calibration and validation of spectral analysis.

2.2. Chemical Analysis and Contamination Assessment

To determine the COD content of surface water, a known amount of potassium dichro-
mate solution was added to 127 surface water samples with silver salts as the catalyst in a
strong acid medium. After boiling and refluxing, the unreduced potassium dichromate
in the samples was titrated with ferrous ammonium sulfate using the ferroin indicator
solution as the indicator. The mass concentration of oxygen consumed was calculated
based on the amount of potassium dichromate consumed, which was the specific value
of COD.

The collected surface water samples were divided into two categories according to the
COD threshold value (40 mg/L) required for Class V in the environmental quality standards
for surface water (GB3838-2002), which is applicable to surface water for agricultural use
and in the general landscape. They were further coded as binary 0 or 1 to indicate the COD
content of each water sample as below or above the threshold, respectively [18].

2.3. Spectrum Acquisition and Pre-Processing

An XDS Rapid Content liquid grating Vis-NIR spectrometer (with a transmission
attachment and a 2 mm quartz cuvette) from FOSS, Denmark was used for this study. The
spectra were collected in the range of 400–2500 nm, including most of the NIR region. The
wavelength sampling interval was 2 nm. An appropriate amount of sample was placed
in a quartz cuvette with an optical path of 2 mm to collect the spectra. Each sample was
scanned thrice in the NIR spectrometer. Then, the average spectrum of the three scans was
taken as the acquisition spectrum. At the end of each acquisition, the quartz cuvette was
cleaned with distilled water and dried with filter paper. The spectrum of each sample was
measured at room temperature (24 ± 1 ◦C) and humidity (46% ± 1% RH).

The measured spectrum was inevitably affected by instrument noise and the ambient
environment. Therefore, four spectral pre-processing methods were used for the spectra
of the water samples: first derivative (FD), second derivative (SD), multiplicative scatter
correction (MSC), and standard normal variate (SNV) [19].

2.4. Sample Set Partitioning and Model Evaluation Parameters

The sample set partitioning based on joint X-Y distance (SPXY) [20,21] was used. The
training and test sets were partitioned with a ratio of 3:1. The training set could identify
different classes of spectral patterns upon fitting the classification model, whereas the test
set was used to evaluate the performance of the model. The specific partitioning results
with the surface water sample information are shown in Table 1.
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Table 1. Statistics of surface water COD values and partitioning of sample set.

Sample Type Set The Range of PH Number of
Samples Min (mg/L) Max (mg/L) Mean (mg/L) Median (mg/L) COD Value > 40 mg/L COD Value < 40 mg/L

Surface water

All 5.63–8.92 127 4 688 61.98 27 39 88

Training set 5.63–7.85 95 4 688 58.65 20 25 70

Testing set 6.52–8.92 32 5 313 50.25 18 14 18

Notes: COD: chemical oxygen demand; Min: minimum; Max: maximum.
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2.5. Evaluation of the Model Performance

The accuracy, sensitivity, and specificity were used to evaluate the overall performance
of the classification models. The classification accuracy refers to the ratio of the number of
samples correctly discriminated to the total number of samples in the classification model
when testing the established model using the prediction set. Sensitivity and specificity
are two key metrics for the classification model that indicate the percentage of positive
and negative samples correctly classified, respectively. When the accuracy, specificity, and
sensitivity are closer to 1, the classification model has better performance.

Accuracy = TP+TN
TP+FP+TN+FN (1)

Sensitivity = TP
TP+FN (2)

Specificity = FP
FP+TN (3)

where TP denotes the number of positive samples in the predication set correctly classified
by the mode; FN denotes the number of positive samples in the test set incorrectly classified
by the model; FP denotes the number of negative samples in the test set incorrectly classified
by the model; and TN denotes the number of negative samples in the test set correctly
classified by the model.

2.6. Synthetic Minority Oversampling Technique

When modeling algorithms are applied directly to data with uneven and unbalanced
sample distribution, samples in the categories with smaller quantities are prone to misclas-
sification, which reduces the overall accuracy [22]. Therefore, improving the discrimination
accuracy of minority samples in discriminant analysis is a key issue. The numbers of
collected surface water samples with COD values below and above the threshold were
quite different; the number of samples with COD values above the threshold was small.
Therefore, the oversampling method of the SMOTE algorithm was used to improve the
sample distribution. New surface water categories were generated in the training set such
that below-threshold and above-threshold samples obtained balanced observations (equal
number of samples per category in the training set). The SMOTE algorithm proposed
by Chawla et al. [23] is an efficient oversampling technique that can be used to avoid the
overfitting that arises from the direct replication of a small quantity of samples. The SMOTE
technique runs the oversampling difference by introducing synthetic examples into the
spectral space and adding K-nearest neighbors. The K value was set to five to control the
newly generated examples. For the original dataset, the sample training set corresponding
to each pre-processing method generated a SMOTE-processed training set.

2.7. Competitive Adaptive Reweighted Sampling

CARS is a wavelength selection method that adopts the Darwinian evolution theory
of “survival of the fittest”. The key wavelengths selected are those with relatively large
absolute coefficients in the multiple linear regression model. This selection method conducts
a wavelength selection based on the exponential decay function (EDF) and then selects the
key wavelengths based on the competitive wavelength selection of adaptive reweighted
sampling [24,25]. The algorithm implementation is divided into the following four steps:

(1) Perform monte carlo sampling and select a certain proportion of samples to build a
calibration model;

(2) Use EDF to remove the number of wavelengths with low absolute values of
regression coefficients;

(3) Calculate the root mean square error cross-validation (RMSECV) and filter out signifi-
cant wavelengths using adaptive reweighted sampling (ARS);

(4) Select the subset with the lowest RMSECV as the best wavelength combination.
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EDF can realize the rapid elimination and selection of wavelengths. In each sampling
process, the wavelength ratio to be retained is calculated by using EDF. The calculation
formula of the wavelength ratio is as follows:

ri = aeki (4)

Among them, a is related to two fast constants, which are related to the number of
spectral wavelengths p and the number of sampling runs N in CARS.

a =
( p

2
) 1

N−1 (5)

k =
ln( p

2 )
N−1

(6)

After forced wavelength reduction by EDF, ARS is used to imitate the principle of
survival of the fittest, and wavelengths are eliminated in a competitive manner. In ARS,
variables will be randomly weighted and sampled, and variables with larger weights will
be selected.

The aforementioned algorithms were run in MATLAB (R2018a, Math Works, Inc.,
Natick, MA, USA).

3. Results and Discussion
3.1. Descriptive Statistics

The statistics of the COD values for surface water samples measured in the laboratory
and the partitioning of the sample set are shown in Table 1. The PH of these samples
ranges from 5.63 to 8.92. The COD values of all surface water samples varied between 4
and 688 mg/L, with a mean value of 61.98 mg/L and a median value of 27 mg/L. It was
also evident that the number of samples with a COD value below the threshold value far
exceeded that of samples with a COD value above the threshold value. Samples with a
COD value larger than the threshold value may be influenced by human activities and
natural factors related to landscape changes, such as domestic wastewater discharge. The
training and test sets were divided using the SPXY method with a ratio of 3:1. A total of 95
and 32 samples in the dataset were divided into the training and test sets, respectively. The
results of the division are shown in Table 1.

Figure 1a shows the distribution of COD content of surface water samples. Most COD
values were between 1 and 100 mg/L. Samples with COD values greater than 40 mg/L
were designated as contaminated samples and those with COD values less than 40 mg/L
were uncontaminated samples. A total of 25 samples in the training set were contaminated
and 70 samples were uncontaminated, whereas 14 samples in the test set were contaminated
and 18 samples were uncontaminated. This indicated a large gap between the number of
uncontaminated and contaminated samples in the training set, which was likely to affect
the modeling results. Therefore, in the subsequent analysis, the SMOTE algorithm was used
to generate new surface water categories in the training set, so that the uncontaminated
and contaminated samples achieved balanced observations. The impact of the excessive
gap between the number of categories on the modeling was examined by comparing this
with the modeling results without using the SMOTE algorithm. Additionally, the feasibility
of the SMOTE algorithm was verified. With the application of the SMOTE algorithm, the
uncontaminated samples (<40 mg/L) in the training set increased from 25 to 70, forming
a new training set. The numbers of uncontaminated and contaminated samples in the
training set are shown in Figure 1b.
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Figure 1. (a) Histogram of surface water COD value distribution, (b) distribution of training set
samples before and after SMOTE expansion, (c) t−SNE visualization results plot.

The Vis-NIR spectral data were mapped into two-dimensional space using the t-
distributed stochastic neighbor embedding (t-SNE) visualization algorithm. Thus, the vari-
ability and inherent characteristics of the Vis-NIR spectral datasets of the uncontaminated
and contaminated samples could be understood more intuitively. During visualization, the
t-SNE method can preserve the nonlinear structure of the spectral dataset [26]. In contrast
to principal component analysis, t-SNE searches for the data structure based on a random
probability distribution over the domain graph [27]. The visualization results of the surface
water sample dataset upon using the t-SNE algorithm are shown in Figure 1c. The dataset
forms two distinct clusters, wherein each point represents a sample, and the axes represent
the first two dimensions of the t-SNE features. These t-SNE visualization results further
validate the feasibility of using the Vis-NIR spectral technique for discriminant analysis of
surface water COD.

3.2. Spectral Absorption Characteristics

Figure 2a–d present the original spectra of surface water and those after SD pre-
processing for 400–2500, 1200–1500, and 1800–2200 nm, respectively. In Figure 2a, the
spectra of uncontaminated and contaminated samples show similar trends and shapes.
However, after SD pre-processing, the spectra show multiple peaks and troughs. Since
there are large peaks and troughs near 1800 nm, the spectra after SD pre-processing were
locally amplified to obtain Figure 2c,d. These figures show more pronounced absorptions
at 1400, 1450, and 1980 nm, which may be caused by the stretching vibrations of the O-H,
C-H, and N-H bonds, respectively [28–30]. They also show that the uncontaminated and
contaminated samples exhibited large differences in these three bands.

3.3. Correlation Analysis between Wave Bands

Figure 3 shows the correlation between wavelength points. Vis-NIR is an indirect
technique for rapid measurement and discrimination that requires a small amount of pre-
pared samples and does not use harmful chemicals. It can qualitatively discriminate COD
contamination in surface water using spectral absorption characteristics [31]. However,
interference of instrument noise and high coincidence of information bands of various com-
ponents occur during measurement. Vis-NIR also has a wide wavelength range. Therefore,
there is extensive irrelevant band information. Figure 3 shows that the correlation between
the 1050 wavelength points is different, with some features showing a strong correlation
and others showing a weak correlation. Therefore, it is necessary to choose the appropriate
wavelength band for modeling and obtain a model with high performance by removing
non-informative bands.
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3.4. Comparison of Classification Results

The discrimination results of the PLS–DA, SMOTE–PLS–DA, and CARS–SMOTE–
PLS–DA models with different pre-processing methods for surface water samples are
summarized in Table 2. The sample sets were divided using the SPXY method and saved
as the training and test sets. The raw spectra were pre-processed differently. In the PLS–
DA model, the spectral pre-processing had different effects on surface water pollution
discrimination. FD and SD had positive impacts on the accuracy of the model. The model
achieved the best prediction results after SD pre-processing. The accuracy of the training
set and the accuracy, sensitivity, and specificity of the test set of the PLS–DA model were
0.88, 0.88, 0.83, and 0.93, respectively. However, the MSC and SNV pre-processing methods
had a negative impact on the accuracy of the model. With either pre-processing method,
the accuracy of the modeling results decreased compared to that with the original spectra.
The pre-processed training and test sets were saved separately. The training set was
SMOTE-processed to obtain a new training set, which was then subjected to PLS–DA. The
SMOTE–PLS–DA modeling results are shown in Table 2. Compared with those of the PLS–
DA model, the SMOTE–PLS–DA model accuracy with the FD, SD and MSC pre-processing
methods was improved. Among them, for the FD pre-processing method, the training
and test set accuracies of the model improved by 7% and 7%. For the SD method, the
training and test set accuracies of the model improved by 9% and 6%. For the MSC method,
the training and test set accuracies of the model improved by 12% and 3%. However,
the accuracy of the SMOTE–PLS–DA model of the SNV pre-processing method was not
improved, but the sensitivity of the model was greatly improved.

Table 2. Summary of discrimination results of partial least squares discriminant analysis (PLS–DA),
synthetic minority oversampling technique (SMOTE)–PLS–DA, and competitive adaptive reweighted
sampling (CARS)–SMOTE–PLS–DA models with different pre-processing methods for surface water.

Sample
Type

Model
Algorithm Pre.p * Number of

Bands
Number of

Training Sets
Number of

Test Sets
Accuracy of

Training Sets
Accuracy of

Test Sets Sensitivity Specificity

Surface
water

PLS–DA

RS

1050

95 32 0.85 0.84 0.83 0.86
FD 95 32 0.87 0.84 0.82 0.90
SD 95 32 0.88 0.88 0.83 0.93

MSC 95 32 0.74 0.69 0.68 0.69
SNV 95 32 0.76 0.75 0.73 0.80

SMOTE–
PLS–DA

RS 140 32 0.89 0.88 0.96 0.63
FD 140 32 0.94 0.91 0.95 0.90
SD 140 32 0.97 0.94 0.89 0.93

MSC 140 32 0.86 0.72 0.63 0.85
SNV 140 32 0.75 0.75 0.82 0.70

CARS–
SMOTE–
PLS–DA

RS 8 140 32 0.88 0.88 0.83 0.93
FD 10 140 32 0.94 0.94 1.00 0.80
SD 38 140 32 0.99 0.97 0.94 1.00

MSC 47 140 32 0.83 0.78 0.84 0.69
SNV 85 140 32 0.85 0.84 0.91 0.70

Notes: * Pre.p: Pre-processing; The boldfaced rows indicate the best pretreatment methods and their results.

To simplify the model and further improve its prediction performance, the raw spectra
were pre-processed using four different methods and subjected to feature selection. Then,
the training set was processed using the SMOTE algorithm to obtain the results of CARS–
SMOTE–PLS–DA, as shown in Table 2. The accuracy of the model improved after CARS
feature selection. After SD pre-processing, the training and test set accuracies of the
model improved by 11% and 9%, respectively, compared to those of the PLS–DA model.
The sensitivity and specificity were greatly enhanced. The simplicity of the model also
improved, with 1050 wavelength points being reduced to 38. The CARS algorithm further
improved the model performance and simplified the model, compared to the SMOTE–
PLS–DA model. The training set accuracy of the model improved and the sensitivity and
specificity increased to a greater extent.
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To further investigate the performance of the three models, the receiver operating
characteristic (ROC) curves of the four different pre-processing methods and surface water
score map were plotted and analyzed, the ROC is a comprehensive evaluation index
reflecting the continuous variables of the sensitivity and specificity in the classification
problem [32], as shown in Figure 4. The points of each curve in Figure 4c are closer to
the upper left corner than those in Figure 4a,b, indicating that the prediction accuracy
corresponding to each pre-processing method improved with the application of CARS and
SMOTE algorithms. However, for the PLS–DA model, the ROC curve is closer to the dashed
line after pre-processing with MSC and SNV. In other words, the model performance was
reduced. For the SMOTE–PLS–DA model, the ROC curve of the original spectra is closer to
the dashed line, i.e., the model performance was poorer. For the CARS–SMOTE–PLS–DA
model, compared with Figure 4a, all five curves are closer to the upper left corner, whereas
the ROC curves of MSC and SNV are below that of the original spectra. In other words,
the MSC and SNV pre-processing methods reduced the model performance. Moreover,
the ROC curve of SD is closer to the upper left corner, i.e., the modeling effect with SD
pre-processing was better.
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Figure 4. Receiver operating characteristic (ROC) curves and surface water score map: (a,d) partial
least squares discriminant analysis (PLS–DA) model, (b,e) synthetic minority oversampling technique
(SMOTE)–PLS–DA model, (c,f) competitive adaptive reweighted sampling (CARS)–SMOTE–PLS–DA
model. FD: first derivative; SD: second derivative; MSC: multiple scattering correction; SNV: standard
normal variate.

In Figure 4d, it can be seen that a large number of samples with a label value of 1 have
scores below 0 and a number of samples are misclassified; in Figure 4e, after SMOTE, it can
be seen that for samples with the label value of 1, the score has improved significantly, but
there are still a number of samples with scores below 0. In order to further improve the
score, we used the CARS algorithm to improve the performance of the model. In Figure 4f,
we can see that only two samples with the sample label of 1 have scores below 0, at the
same time, the scores of the samples with the label −1 are all located below 0, and the
model prediction was greatly improved.
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4. Discussion
4.1. Band Analysis by CARS Algorithm

The results of the CARS feature selection of the SD pre-processed spectra are shown in
Figure 5a. A total of 38 bands were selected as key variables from 1050 wavelength points,
mainly located near 430–500, 550–600, 700–860, 1050–1080, 1900–2000, and 2350–2400 nm.
To verify whether the selected 38 bands could represent the variability between uncon-
taminated and contaminated surface water samples, the scores of the bands were plotted,
as shown in Figure 5b. There was large variability in the scores of the 38 bands; this also
proved the feasibility of these bands selected by CARS. The greatest variability in the
scores was found near 498 nm; this may be caused by C-H bond vibrations of aromatic
hydrocarbons in the vicinity [28,33].
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The chemical bonds corresponding to the main bands of the Vis-NIR region screened
by CARS and the possible corresponding contamination components are shown in Table 3.
The band most screened by CARS was near 400–860 nm; this may arise from the vibration
of C-H and N-H chemical bonds, such as those in aromatic hydrocarbons [28,34].

Table 3. Basic chemical bonds, absorption wavelengths, and possible associated water pollution
components of main spectral bands screened by competitive adaptive reweighted sampling (CARS)
for visible near-infrared region.

Locations of Selected
Spectral Variables (nm) Possible Fundamental Bonds Possible Related

Constituents

800 C-H Organics (aromatics)
1000 N-H Organics (amine)
1100 C-H Organics (aromatics)
1200 C-H Organics (aromatics)
1380 O-H Water
1500 C-O Organics (aromatics)
1800 C-H Organics
2100 N-H Organics (amine)
2400 C-O Organics (Carbohydrates)

4.2. Implication of Proposed Strategy

The CARS–SMOTE–PLS–DA modeling approach proposed in this paper not only
improves the discrimination accuracy of the PLS–DA model but also simplifies the model
input variables. When using Vis-NIR as the input for the PLS–DA model, most spectral
variables may be redundant; on the other hand, fewer spectral input variables may result in
the loss of COD-related information. A spectral selection algorithm can solve both problems,
and the optimal number of input spectra for a balanced model can be found using spectral
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variable selection. The modeling effect can reduce due to the large difference between the
number of contaminated and uncontaminated surface water samples collected. To solve
this problem, the feasibility of the SMOTE algorithm in solving the problem of uneven
sample distribution was explored. The feasibility of PLS–DA and SMOTE–PLS–DA was
experimentally verified before conducting CARS–SMOTE–PLS–DA. The discrimination
accuracy improved after SMOTE solved the problem of the uneven sample distribution.
Finally, the Vis-NIR spectra of surface water were subjected to band selection after the
pre-processing with four different methods. Combining the CARS selection algorithm with
the SMOTE algorithm not only improved the discrimination accuracy of the model but also
reduced the input of the discrimination model.

In this study, the surface water samples were collected for a total of 4 months, covering
both the rainy and non-rainy seasons in Guangzhou. Changes in the rainy season will
lead to changes in COD because the runoff generated by the rainfall in the rainy season
will cause pollutants from land sources to enter the water, resulting in an increase in COD.
From the principle of COD chemical detection, these pollutants are all aerobic substances.
The aerobic substances in the surface water during the rainy season and non-rainy season
have a general law and there will be no major changes in components due to the rainy
season. We carried out Vis-NIR detection on a large number of samples and used a surface
water model to grasp the quantitative relationship between all aerobic substances and COD
values as much as possible. We used the CARS–SMOTE–PLS–DA model to realize the
online monitoring of large COD values, which provides a new way of discriminating for
the management of seriously polluted surface water.

5. Conclusions

This study employed a new approach with CARS–SMOTE–PLS–DA and Vis-NIR to
judge whether surface water can meet the COD standard (40 mg/L) for agricultural use
and the general landscape. It demonstrated the feasibility and effectiveness of introducing
the CARS band selection technique and the SMOTE algorithm into Vis-NIR analysis. The
CARS–SMOTE–PLS–DA modeling approach not only had a higher overall accuracy but
also produced a more simplified model. The optimal pre-processing method for all three
modeling methods was SD, with PLS–DA yielding an accuracy of 88% with the input of
1050 wavelength points. Compared to the PLS–DA model, the CARS–SMOTE–PLS–DA
model exhibited an 11% improvement in accuracy and a 96% reduction in wavelength
input. The CARS–SMOTE–PLS–DA model experienced a 5% improvement in accuracy and
a 96% reduction in wavelength input compared to the SMOTE–PLS–DA model. Overall, the
surface water COD discrimination method (CARS–SMOTE–PLS–DA model) proposed in
this paper has the advantages of novelty, eco-friendliness, simplicity, and broad prospects.
It is a novel method for real-time online surface water COD discrimination, which is
conducive to the management and development of surface water resources.
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