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Abstract: Drought is a common and greatly influential natural disaster, yet its reliable estimation and
prediction remain a challenge. The object of this paper is to investigate the spatiotemporal evolution
of drought in the Yangtze River basin. The multi-time scale drought characteristics were analyzed
based on 19 models and 3 emission scenarios of CMIP6. The results show that the CMIP6 model
generally has moisture deviation in the Yangtze River basin, but the accuracy has been improved
after correction and ensemble. The drought conditions in the near future (2030–2059) of the Yangtze
River basin will be more severe than those in the historical period (1981–2010), with the drought
intensity increasing by 7.47%, 18.24%, 18.34%, and 41.48% in the order of 1-month, 3-month, 6-month,
and 12-month scales, but it will be alleviated in the far future (2070–2099) to 5.97%, 11.86%, −4.09%,
and −8.97% of the historical period, respectively. The 1-month scale drought events are few, and
the spatial heterogeneity is strong under different scenarios; areas of high frequency of the 3-month,
6-month, and 12-month scale drought events shift from the upper and middle reaches, middle and
lower reaches in the historical period to the southwestern part of the entire basin in the future, and
the harm of drought in these regions is also higher. The Yangtze River basin will get wetter, and the
variability will increase in the future. The larger the time scale is, the more intense the change will be,
with the 12-month scale varying about three times as much as the 1-month scale.

Keywords: meteorological drought; the Yangtze River basin; CMIP6

1. Introduction

Drought is a frequent disaster with serious effects on both human society and nature,
which hinders economic development, reduces primary productivity, and destroys ecologi-
cal balance [1,2]. More specifically, the economic loss caused by drought can amount to
USD 6–8 billion per year. In the context of climate change, droughts are likely to become
more frequent and more severe [3–6].

Drought characteristics derived from global-scale research are not equivalent to the
conclusions at a regional scale. Drought characteristics of the same region vary signifi-
cantly at different spatial scales, implying that drought characteristics are spatially scale-
dependent [7,8]. In addition, because the spatial details offered by large-scale studies are
insufficient for local decision making [9], regional studies are indispensable for providing
more helpful information for policy and planning. Many previous studies indicate that
drought conditions, such as extent, frequency, and intensity, have increased throughout
China over the last 50 years and will continue to do so in the future [10,11]. In particular,
the North China Plain to the lower reaches of the Yangtze River are among the regions
with severe droughts [12], and the droughts in the upper reaches of the Yangtze River are
becoming increasingly serious [13]. The Yangtze River basin is China’s first major basin,
which has an important impact on China’s economic development as well as industrial
and agricultural production, and it has a high vulnerability to natural disasters [14]. Many
scholars have investigated droughts in this region, but few have taken the characteristics of
drought events as the main research subject [15–18]. Furthermore, the remarkable monsoon
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climate of the region means that its response to climate change is complex and volatile,
which is reflected in droughts as drought events with short-term fluctuations; therefore,
studying droughts in the region is complex and requires consideration of time scales. At
present, the following drought indices are applicable worldwide: Standard Precipitation
Index (SPI), Standard Precipitation Evapotranspiration Index (SPEI), Palmer Drought Sever-
ity Index (PDSI), Standard Runoff Index (SRI), Crop Moisture Index (CMI), etc. The SPI is
easy to calculate and can reflect not only the intensity and duration of the drought but also
the drought conditions at different time scales.

In recent years, scientists have widely used model simulations output from the Cou-
pled Model Intercomparison Project (CMIP) for climate research [19,20]. For example,
based on the model data of CMIP5, the global continental drought was simulated, and
the results show that the accuracy needs to be improved [21]. Moreover, there was a
reproduction of China’s climate [22,23] and simulation, as well as prediction of extreme
climate events [24,25]. With the gradual release of CMIP6 data, some researchers have
conducted studies using the latest data, and a trend of increasing drought in numerous
regions throughout the globe has been concluded [26]. When compared with CMIP5,
CMIP6 has greater resolution and more comprehensive parameters and shows general
improvement in simulating temperature and precipitation in China [27–30]. However, the
climate simulation ability of CMIP6 for the Yangtze River basin is less clear.

In this study, we selected the Yangtze River basin as the study area. We analyzed the
distribution patterns of drought events at different time scales for a 30-year period from
1981 to 2010 based on the observed data. In addition, the precipitation simulation ability of
19 models in CMIP6 was evaluated, then the models with higher precision were selected
for the ensemble to predict the future drought changes according to the ranking. In this
way, we explored and analyzed the change characteristics of dry conditions in the Yangtze
River basin under different scenarios. The research results can help provide a reference for
drought disaster management and water resources planning, as well as provide a buffer
period and theoretical basis for relevant departments to formulate and implement response
strategies to mitigate the losses caused by drought disasters.

2. Date and Methods
2.1. Date

The Yangtze River basin (90◦33′ E–122◦25′ E, 24◦30′ N–35◦45′ N) is the third-largest
basin in the world, with a population of over 450 million (Figure 1). It covers a total area
of 1.8 × 106 km2, accounting for about one-fifth of China’s land area, with an area ratio
of 25:17:3 in the upper, middle, and lower reaches [31]. The source area of the Yangtze
River basin belongs to the plateau climate, whereas most of the rest areas have a typical
subtropical monsoon climate, with an average temperature of about 14°C and average
annual precipitation of about 1000 mm. The Yangtze River basin is an important resource-
rich region of China due to its advantageous geographical location. For example, its water
resources account for almost one-third of China’s total water resources, and it is also one
of China’s most developed economic regions, with its GDP accounting for about 41% of
China’s GDP [32]. In addition, the Yangtze River basin is also one of the three major grain
production bases in China, with its grain output accounting for roughly 30% of China’s
grain output in 2015 [33].

The daily precipitation grid data from 19 global climate models of CMIP6 (Table 1)
were used and processed into monthly average data. The historical reference period was
chosen as 1981–2010, and the future projection period was divided into two time periods:
2030–2059 (near future) and 2070–2099 (far future), all of which correspond to the 30-year
reference period. CMIP6 has eight future climate change scenarios, and three scenarios
(SSP2-4.5, SSP3-7.0, and SSP5-8.5) were selected for analysis in this paper. Because 19 global
climate models have different spatial resolutions, the bilinear interpolation method was
used to unify the data spatial resolution to 0.5◦ × 0.5◦. To assess the simulation capability of
climate variables output from the climate models over the historical period and to analyze
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the characteristics of drought events, the monthly precipitation grid data from CRU TS
v3.25 (Climatic Research Unit Timeseries version 3.25) were considered as observations
with a resolution of 0.5◦ × 0.5◦.
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Figure 1. Topographic map of the Yangtze River basin (Dem refers to Digital Elevation Model). The
sub-basins from left to right are the upper, middle, and lower reaches, respectively.

Table 1. Information on the 19 CMIP6 climate models used in this study.

Model Name Institute No. of Grids
(lat × lon)

ACCESS-CM2 Commonwealth Scientific and Industrial Research Organisation, Australian Research
Council Centre of Excellence for Climate System Science, Australia 144 × 192

ACCESS-ESM1-5 Commonwealth Scientific and Industrial Research Organisation, Australia 145 × 192
BCC-CSM2-MR Beijing Climate Center, China 160 × 320

CanESM5 Canadian Centre for Climate Modelling and Analysis, Canada 64 × 128
CESM2-WACCM National Center for Atmospheric Research, USA 192 × 288
CMCC-CM2-SR5 Euro-Mediterranean Centre for Climate Change, Italy 192 × 288

EC-Earth3 EC-Earth-Consortium, Europe 256 × 512
EC-Earth3-Veg EC-Earth-Consortium, Europe 256 × 512

GFDL-ESM4 National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics
Laboratory, USA 180 × 288

INM-CM4-8 Institute for Numerical Mathematics, Russia 120 × 180
INM-CM5-0 Institute for Numerical Mathematics, Russia 120 × 180

IPSL-CM6A-LR Institut Pierre Simon Laplace, France 143 × 144

KACE-1-0-G National Institute of Meteorological Sciences, Korea Meteorological
Administration, Korea 144 × 192

MIROC6
Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research

Institute, National Institute for Environmental Studies, and RIKEN Center for
Computational Science, Japan

128 × 256

MPI-ESM1-2-HR Max Planck Institute for Meteorology, Germany 192 × 384
MPI-ESM1-2-LR Max Planck Institute for Meteorology, Germany 96 × 192

MRI-ESM2-0 Meteorological Research Institutea, Japan 160 × 320
NorESM2-LM NorESM Climate modeling Consortium consisting of CICERO, Norway 96 × 144
NorESM2-MM NorESM Climate modeling Consortium consisting of CICERO, Norway 192 × 288
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2.2. Methods
2.2.1. Bias Correction

Based on observation data for the reference period and model data for the reference
period and the future period, the equidistant cumulative distribution function matching
method (EDCDFm) was used to correct the bias of the model data after bilinear interpola-
tion. This method reduces the systematic error of the model and improves the simulation
accuracy by adjusting the difference between the cumulative distribution function of the
climate elements simulated by the model and the measured climate elements [34]. The
corrected model precipitation value in the historical period is given by

Xm−c,adjust = F−1
o−c(Fm−c(xm−c)) (1)

where xm−c is the model precipitation value in the historical period; Fm−c is the CDF of the
model data in the historical period; F−1

o−c is the quantile function of the observation data.
The corrected model precipitation value in the future period is given by

Xm−p,adjust = xm−p
F−1

o−c
(

Fm−p
(
xm−p

))
F−1

m−c
(

Fm−p
(
xm−p

)) (2)

where xm−p is the model precipitation value in the future period; Fm−p is the CDF of the
model data in the future period; F−1

o−c and F−1
m−c are the quantile functions of the observation

data and model data in the historical period.

2.2.2. Precision Evaluation

(1) To evaluate the simulation ability of the model in the time dimension, we considered
the basin as a whole to find the basin means and then combined the correlation coeffi-
cient and standard deviation between the time series of the model and observations
into a quantified index T, which was used to assess the degree of model simulation
ability [35].

T =
4(1 + R)4(

σf + 1/σf

)2
(1 + R0)

4
(3)

where R is the correlation coefficient between the model and the observation; R0 is
the maximum correlation coefficient that can be achieved here it is taken as 0.999;
σf = STDm/STDo, STDm is the model standard deviation; and STDo is the observa-
tion standard deviation. The closer the model value is to the observed value, the
closer T is to 1, and the better its simulation ability is.

(2) To evaluate the simulation ability of the model in the spatial dimension, we presented
the spatial skills score (S), which takes into account the spatial correlation coefficient
between the model and the observation and bias [36].

S = 1− MSE(m, o)
MSE(o, o)

= r2
m,o − [rm,o − (sm/so )]

2 − [(m− o)/so]
2 (4)

where MSE(m,o) is the mean square error between the model and observation;
MSE(o,o) is the mean square error of the observation field; rm,o is the spatial cor-
relation coefficient between the model and observation; and sm and so are the standard
deviation of the model and observation, respectively. The closer the model value is to
the observed value, the closer S is to 1, and the better its simulation ability is.

(3) The ranking of each model can be obtained according to index T and index S, and
then we calculated the composite rating index [37]. The result is the final ranking.

MR = 1− 1
1× n×m

n

∑
i=1

ranki (5)
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where m is the total number of models, m = 19; n is the number of indicators, n = 2;
and ranki is the ranking of each model, with the best simulation ability being 1 and
the worst being 19. The closer to 1 the MR value is, the better the model’s capacity to
imitate each index is.

2.2.3. Drought Index

In this paper, the Standardized Precipitation Index (SPI) was used as the meteorological
drought index, which considers the time series of regional precipitation to obey a skewed
distribution [38]. In order to calculate SPI, it is first necessary to build monthly precipitation
sliding accumulation series for different time scales and divide them into 12 seasons
according to the end month of the precipitation sliding accumulation data, that is, to build
12 sets of time series. These 12 time series are then fitted with a skewed distribution
respectively (gamma distribution here) to account for seasonal differences in precipitation;
the SPI corresponding to the specific precipitation data can be calculated by normalizing
the precipitation data obeyed skew distribution. The standard normalization process needs
to be carried out for each of the 12 seasonal actual series at a specific time scale, and then
the calculated SPI is arranged in natural time order so as to obtain the monthly SPI time
series. It is easy to calculate and can analyze drought at different time scales, and the
specific calculation steps are described in the reference paper [39]. In this paper, the SPI of
1-month, 3-month, 6-month, and 12-month time scales were selected to study the drought
characteristics of monthly, seasonal, semi-annual, and annual scales in the Yangtze River
basin. Based on the calculated SPI series, the drought events were identified by using the
run theory, which is the most widely used identification method and can easily extract
the characteristics of drought events. Moreover, three characteristic variables (number of
events, drought duration, and drought severity) were selected. Drought duration is the
number of months that the drought event lasts, and drought severity is the accumulation
of SPI per month during the duration of the drought event. The conditions for identifying
drought events in this paper were set as SPI < −1, and the duration is 3 months or more.

3. Results
3.1. Model Correction and Selection

Taking ACCESS-CM2 as an example, it can be observed that the original model does
not accurately reproduce the precipitation distribution in the Yangtze River basin, and there
is a wide range of overestimation (Figure 2). The observed average annual precipitation
in 1981–2010 is 997.94 mm, while the average annual precipitation in the original model
is 1745.40 mm. Specifically, the observed precipitation in this area increases gradually
from northwest to southeast, while the spatial distribution of precipitation in the original
model has a high value in the upper reaches, and the overestimation rate in the west of the
upper reaches is within 300%. After bias correction, the absolute value of the difference
between the model and observed annual mean precipitation is mostly within 1 (Figure 2).
Accordingly, it is necessary to use the EDCDFm method for bias correction.
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Figure 2. Mean annual precipitation (mm/a) in the Yangtze River basin from 1981 to 2010:
(a) ACCESS-CM2, (b) corrected ACCESS-CM2, (c) observation, (d) the absolute value of the dif-
ference between the corrected model and observed annual mean precipitation (mm).

After bias correction, the simulation accuracy of the 19 models was quantitatively
evaluated and ranked (Table 2). The top 4 models in the index T are INM-CM4-8, EC-Earth3-
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Veg, EC-Earth3, and IPSL-CM6A-LR; the top 4 models in the index S are IPSL-CM6A-LR,
ACCESS-CM2, EC-Earth3, and EC-Earth3-Veg. In addition, the final rating index MR
was calculated by combining the two indicators, then we selected the models with MR
scores greater than 0.8, namely IPSL-CM6A-LR, EC-Earth3, and EC-Earth3-Veg. The
comprehensive simulation effect of these three models is the best. After averaging these
3 models, the model ensemble’s scores of index T and index S are better than the scores of
any one of the 19 models and also better than the scores of the 19 models ensemble.

Table 2. Ranking of precipitation simulation capability of 19 models.

Model Name T Rank S Rank MR Score

ACCESS-CM2 6 2 0.79
ACCESS-ESM1-5 7 15 0.42
BCC-CSM2-MR 13 14 0.29

CanESM5 17 19 0.05
CESM2-WACCM 11 13 0.37
CMCC-CM2-SR5 9 17 0.32

EC-Earth3 3 3 0.84
EC-Earth3-Veg 2 4 0.84
GFDL-ESM4 16 16 0.16
INM-CM4-8 1 18 0.50
INM-CM5-0 5 5 0.74

IPSL-CM6A-LR 4 1 0.87
KACE-1-0-G 10 11 0.45

MIROC6 8 10 0.53
MPI-ESM1-2-HR 14 12 0.32
MPI-ESM1-2-LR 19 7 0.32

MRI-ESM2-0 12 6 0.53
NorESM2-LM 18 8 0.32
NorESM2-MM 15 9 0.37

3.2. Drought Characteristics in Historical Period

Table 3 was obtained after the regional statistics of Figure 3. From the comparison
of different time scales, the number of drought events increases first and then decreases
as the time scale becomes larger. That is, it is the least on a monthly scale with the mean
value of 1.22 per unit grid point and the most on a seasonal scale with the mean value of
7.79. Spatially, the drought frequency area gradually moves from upstream to middle and
downstream with the increase of time scale. At the same time, the average duration and
average intensity of drought events both increase as the time scale becomes larger, and
spatially, the damage upstream is greater.

Table 3. Variable Statistics of Drought Characteristics in sub-basins of the Yangtze River basin,
1981–2010.

Time Scale Sub-Basin Number of Drought Events
Per Unit Grid Point

Average Duration
(Month) Average Severity

1-month
upstream 1.70 3.16 −4.96

midstream 1.16 3.13 −4.93
downstream 0.80 3.02 −5.01

3-month
upstream 8.01 3.81 −6.35

midstream 7.85 3.77 −6.09
downstream 7.50 3.79 −6.00

6-month
upstream 7.57 5.20 −8.53

midstream 7.76 4.96 −7.67
downstream 7.09 5.06 −7.92

12-month
upstream 5.78 8.81 −14.01

midstream 6.66 7.37 −11.07
downstream 6.57 7.51 −11.43
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Figure 3. Drought Characteristics in the Yangtze River basin from 1981 to 2010 in the 1-month (a–c),
3-month (d–f), 6-month (g–i) and 12-month (j–l) scale, with the first column showing the number
of drought events, the second showing the average duration (month), and the last showing the
average severity.

The drought characteristics vary greatly at different time scales. For the 1-month
scale, the number of drought events decreases from upstream to downstream (Figure 3),
and the high values of average time and intensity are located in the midstream mainstem
area. Of note is the southern part of the downstream, where droughts are less frequent
and shorter but more intense. For the 3-month scale, the distribution of drought events
is relatively uniform. The average duration and intensity are spatially consistent. They
increase from the middle to the surrounding in the upstream; in the middle and lower
reaches, the Dongting Lake basin and the northern part of the downstream have a relatively
long average duration and stronger intensity. The northwestern part of the midstream
and the southern part of the downstream have more drought events but less duration and
intensity, i.e., less harmful, while the Dongting Lake basin and the northern part of the
downstream have fewer drought events but are more harmful. The absolute values of
duration and intensity characteristics of monthly and seasonal scale drought events in the
Yangtze River basin do not differ much. For the 6-month scale, the regions with a higher
number of drought events are concentrated in the midstream, and the spatial distribution
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of average duration and intensity is very close to the distribution of the 3-month scale but
with an increase in the absolute values. For the 12-month scale, the regions with more
drought events are concentrated in the middle and downstream, with spatial consistency
in duration and intensity, and the spatial pattern of both is opposite to the number of
events. There are fewer drought events in the upstream, but the average duration reaches
8.8 months, and the average intensity reaches−14, which is 1.4 months longer and 2.8 more
than that in the middle and downstream. The annual scale drought events are less frequent
and more hazardous in the upstream and more frequent and less hazardous in the middle
and downstream.

3.3. Drought Characteristics Projection

Similar to the reference period, the number of drought events increases and then
decreases as the time scale becomes larger. The monthly scale has the least number of
drought events, with the mean value of unit grid point in the near future and far future being
1.65 and 1.48, respectively, and the seasonal scale has the most, 7.03 and 5.48, respectively.
With the increase in time scale, the drought frequency area gradually shifts from the middle
and downstream to the southwestern part of the basin. The duration and intensity of
drought events both increase with time scale, and spatially, the more hazardous areas
transfer from the midstream to the downstream and then to the upstream and downstream
with the time scale.

For the 1-month scale, the areas without drought events in SSP245 and SSP370 are
mainly in the upstream, while those in SSP585 are concentrated in the upstream and
midstream. Because of the rapid change of SPI on a monthly scale, the spatial characteristics
of drought events under different scenarios and periods are very different. In SSP245, the
number of droughts is the most in the downstream in the near future and the most in
the midstream in the far future (Figure 4); in SSP370, the most in the midstream in both
periods; in SSP585, the most in the downstream in both periods. For duration and severity,
the differences in absolute values between regions within the basin are small from an
overall perspective, and only the near future in SSP370 has a large difference, which is
midstream > upstream > downstream.

For the 3-month scale, the regions with more droughts in the near future are concen-
trated in the Minjiang River basin, Tuojiang River basin, the southern part of the upstream,
Dongting Lake basin, and Poyang Lake basin (Figure 5); in the far future, the overall
number of drought events in the Yangtze River basin decreases, but still shows a spatial
pattern of high values in the south and low in the north, with high values still concentrated
in the southern part of the upstream. There is a no drought region in the northwestern part
of the upstream. In addition, the number of drought events in SSP370 is the most among
the three scenarios. The spatial patterns of the mean duration and severity are similar in
SSP245 and SSP370, which is higher in the north and lower in the south, with the high
values concentrated in the Hanjiang River basin and the downstream in the near future
(Figure 5) and in the Dongting Lake basin and the downstream in the far future. In SSP585,
the high values move from the upstream to the east of the upstream and the west of the
midstream. Only the downstream is high in different scenarios and different periods.

For the 6-month scale, the spatial distributions of drought frequency, mean duration,
and intensity (Figure 6) are very similar to those of the 3-month scale. In addition, the
differences are mainly in the northern midstream in the near future under the SSP370
scenario and the central midstream in the far future under the SSP245 scenario. These
areas are all of higher severity in the 3-month time scale, while their severity is low in the
6-month scale.
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Figure 4. Spatial distribution of the number of drought events (a,d,g,j,m,p), average duration
(b,e,h,k,n,q), and average severity (c,f,i,l,o,r) in the 1-month scale in the Yangtze River basin from
2030–2059 (a–i) and 2070–2099 (j–r) under the three scenarios of SSP245 (a–c,j–l), SSP370 (d–f,m–o),
and SSP585 (g–i,p–r).

For the 12-month scale, the spatial distribution of drought frequency is very similar
to that on the 3-month scale. In the near future, more drought events will occur in the
southern part of the upstream and the southwestern part of the midstream, and by the
far future, the north of the basin will have a region without drought events, with high
values still concentrated in the south of the upstream. The mean duration and severity have
different characteristics under different scenarios in the near future. The high values in
SSP245 are located in the northwest of the upstream, especially in the Minjiang River basin,
Tuojiang River basin, and the downstream mainstem area (Figure 7); in the SSP370, the
spatial distribution is relatively uniform, but the characteristics of high values in the north
and low in the south can also be observed; in SSP585, they decrease from the upstream to
the downstream. The common point of all three scenarios is that the upstream values are
higher, which indicates that the drought hazard in the upstream is higher. In the far future,
the characteristics of the three scenarios are similar, with the high values in the south of
the upstream.
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Figure 5. Spatial distribution of the number of drought events (a,d,g,j,m,p), average duration
(b,e,h,k,n,q), and average severity (c,f,i,l,o,r) in the 3-month scale in the Yangtze River basin from
2030–2059 (a–i) and 2070–2099 (j–r) under the three scenarios of SSP245 (a–c,j–l), SSP370 (d–f,m–o),
and SSP585 (g–i,p–r).

Under different time scales and different scenarios, most of the probability distribu-
tions show the trend that the average value moves in the positive direction and the peak
value decreases, which means that the Yangtze River basin will become wetter in the future
(Figure 8). The magnitude of the positive shift of the probability mean increases with the
increase of the time scale. The probability mean of the 1-month, 3-month, 6-month, and
12-month scales will increase from 0 to 0.09, 0.14, 0.19, and 0.24 in the near future, and
0.26, 0.44, 0.59, and 0.80 in the far future, respectively. The probability of basic drought
(SPI < −1) decreases as the time scale becomes larger in the future, unlike the reference
period, where it becomes larger with a larger time scale.
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Figure 6. Spatial distribution of the number of drought events (a,d,g,j,m,p), average duration
(b,e,h,k,n,q), and average severity (c,f,i,l,o,r) in the 6-month scale in the Yangtze River basin from
2030–2059 (a–i) and 2070–2099 (j–r) under the three scenarios of SSP245 (a–c,j–l), SSP370 (d–f,m–o),
and SSP585 (g–i,p–r).

Under the 1-month time scale (Figure 8), the probability distributions of all three
scenarios widen with time, especially in the far future of SSP585; the peak value decreases
from 38.5% to 32% since the historical period, indicating a substantial increase in its
variability. While the probability mean value shifts to the right in both SSP245 and SSP585,
the difference is that the mean value of the near future under SSP370 does not move
significantly compared with that in the historical period, which is only 0.03. Therefore, it
can be seen from Figure 4 that drought events of the 1-month scale in the near future under
SSP370 are much more than those under the other two scenarios. Under the 3-month time
scale, the probability changes are similar to those in the 1-month scale. In the 1-month and
3-month scales, it can be seen that the risk of extreme drought tends to remain stable, and
the area with a larger change in the probability distribution is in the right humid zone. The
probability of extreme drought (SPI <−2) is relatively constant, about 2.48% in the historical
period, 2.74% in the near future, and 2.25% in the far future. Under the 6-month scale, the
probability mean value for the far future starts to move more sharply toward the positive
direction, so the probability of basic drought (SPI < −1) decreases from 11.86% in the
3-month scale to 9.29%, and the probability of extreme drought (SPI < −2) decreases from
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2.27% in the 3-month scale to 1.60%. Under the 12-month scale, the probability distribution
of SPI changes more drastically than that in the 1-month, 3-month, and 6-month scales. In
the near future, the peak values in all three scenarios decline from 38% of the historical
period to 35%, 35%, and 32% in the order of SSP245, SSP370, and SSP585, respectively,
and the frequency of extreme drought events is higher than that in the historical period,
from 1.92% to 2.79%, 3.97%, and 3.11%, respectively. By the far future period, drought
events will be less than the historical period because the probability averages are all shifted
significantly to the right, 0.65, 0.74, and 1.00, respectively. The probability characteristic
of SPI < −1 is that it gradually decreases over time for both SSP245 and SSP585, while
SSP370 is slightly higher in the near future than in the historical period, increasing first
and then decreasing. It is worth noting that the probability of SPI < −1 on the 12-month
scale will be significantly reduced in the far future. Comparing the three scenarios, SSP370
is characterized by a smaller rightward shift of the probability mean in the near future
than the other two scenarios, so it is reflected in the drought event characteristics. As
shown in Figures 4–7, the drought events under SSP370 are more than those under the
other two scenarios.
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Figure 7. Spatial distribution of the number of drought events (a,d,g,j,m,p), average duration
(b,e,h,k,n,q), and average severity (c,f,i,l,o,r) in the 12-month scale in the Yangtze River basin from
2030–2059 (a–i) and 2070–2099 (j–r) under the three scenarios of SSP245 (a–c,j–l), SSP370 (d–f,m–o),
and SSP585 (g–i,p–r).
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Figure 8. Probability distributions of 1-month (a,e,i), 3-month (b,f,j), 6-month (c,g,k), and 12-month
(d,h,l) scale SPI under SSP245 (a–d), SSP370 (e–h), and SSP585 (i–l) scenarios. The black, blue, and
red lines represent the probability distributions for the historical period (1981–2010), 2030–2059, and
2070–2099, respectively, and the black, blue, and red letters represent the probabilities (%) of SPI < −2
and SPI < −1 for the corresponding periods.

4. Discussion

Climate change affects the hydrological cycle of the world [40], and the response varies
greatly among regions. However, the low resolution and systematic errors of global climate
models make it difficult to apply to regional scale directly [41]; therefore, downscaling
and bias correction are needed. At present, there is no single model that can well simulate
the characteristics of precipitation in the Yangtze River basin in both time and space
dimensions [42], and a multi-model ensemble can improve the simulation efficiency and
reduce uncertainty [43,44]; however, a multi-model ensemble can be less accurate due to
models with larger errors [45], so we selected better models from 19 models, and then
averaged the optimal model set, with the obtained results being used for future forecasting.

Compared with the previous studies’ results, the drought prediction in China based on
CMIP5 indicated that the precipitation would increase, i.e., there would be an alternating
short period of drought and flooding, and the drought would be aggravated, especially in
the southwest [46,47]. Moreover, the global research based on CMIP6 also observed that
the Yangtze River basin is trending to become wetter in the future, and the intensity of
drought increases with high values in the upper reaches [48,49]. CMIP6 has a significant
improvement over CMIP5; however, the multi-model ensemble of CMIP6 is still not very
effective for simulating precipitation in western China, mainly because of the complex
topography [30] and different circulation systems [42]. The drought under SSP370 is the
most severe in the results of this study because the setting conditions of this path are that
both emission mitigation and human adaptation face great challenges, while SSP585 has
a strong human adaptation ability with only emission mitigation facing challenges. The
increasing harmfulness of drought in the future will pose greater challenges to people’s
life, food production, and resource allocation in the Yangtze River basin, so supporting
measures should be implemented in different regions in conjunction with the predicted
results of droughts at different time scales.

In this paper, the SPI was selected to evaluate drought in the Yangtze River basin. The
SPI assesses drought with only precipitation as input, without considering evapotranspi-
ration. The temperature is another factor affecting drought, and increasing future global
temperature [50] may weaken the benefit of increased precipitation. In the future, we will
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add the temperature factor for prediction, as well as compare multiple drought indicators
for improvement.

5. Conclusions

This paper quantitatively evaluated the simulation performance of CMIP6 models on
precipitation in the Yangtze River basin and analyzed the characteristics of drought events
in the historical period and future under three SSP scenarios in terms of the number of
drought events, average duration, and average intensity based on SPI and the run theory.
The main conclusions are as follows.

(1) The correction results using the EDCDFm method fit well with the observed data, and
the correction results of three models, IPSL-CM6A-LR, EC-Earth3, and EC-Earth3-Veg,
are more suitable for the Yangtze River basin. The simulation accuracy of the ensemble
of these three models is higher than any single model used in this paper.

(2) Within the same period, as the time scale becomes larger, the number of drought
events in the Yangtze River basin increases first and then decreases, and the average
duration and intensity increase, i.e., the number of monthly scale events is the least,
the number of seasonal scale events is the most, and the annual scale events are the
most hazardous. Within the basin, the drought frequency area moves from upstream
to middle and downstream with increasing time scale in the reference period, and
from middle and downstream to the southwestern part of the basin in the future;
as for the area with strong harmfulness, it is upstream in the reference period and
moves from midstream to upstream and downstream with increasing time scale in
the future. All three drought characteristics in the 1-month scale are increasing first
and then decreasing with time, and the number of droughts in the 3-month, 6-month,
and 12-month scale is gradually decreasing, but the severity is increasing first and
then decreasing, so the drought in the near future is to be more serious than that in
the historical reference period.

(3) The probability distribution of SPI increases in average value and decreases in peak
value with time, and the range of changes increases with time scale, i.e., the Yangtze
River basin will become wetter and more variable in the future, and the larger the time
scale, the more drastic the change. As the time scale becomes larger, the probability
of occurrence of basic drought (SPI < −1) decreases in the future, from 15.43% on a
monthly scale to 14.86% on an annual scale in the near future, and from 13.62% to
7.14% in the far future.
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