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Abstract: Elder’s equation for the longitudinal dispersion coefficient in two-dimensional solute
transport analysis cannot be applied to curved channels because the vertical distribution of the
longitudinal velocity does not obey the logarithmic law in the bends of an open channel. In this study,
a two-dimensional longitudinal dispersion coefficient based on an equation that can appropriately
describe the vertical distribution of flow velocity in open-channel bends is derived theoretically. The
proposed equations for the vertical velocity distribution and dispersion coefficient are compared
and verified with values measured from two different types of open channels, i.e., a laboratory
channel and a natural-like channel. The increase in the longitudinal dispersion coefficient based on
the difference in the vertical distribution of the flow velocity is evaluated quantitatively. In terms of
the longitudinal dispersion coefficient, no significant difference is observed between the observed
dispersion coefficient based on the concentration data and the coefficient value calculated using
the equation proposed in this study. The dispersion equation proposed in this study can be easily
applied to assign the value of the longitudinal dispersion coefficient for the two-dimensional mixing
modelling in bends using basic hydraulic factors.

Keywords: two-dimensional mixing; vertical distribution of velocity; longitudinal dispersion coeffi-
cient; curved channel; hydraulic factor

1. Introduction

Herein, we discuss a theoretical method for estimating the longitudinal dispersion co-
efficient for solute transport in an open-channel flow. It is noteworthy that the longitudinal
dispersion coefficient in a one-dimensional analysis and that in a two-dimensional analysis
are not identical. The value of the two-dimensional longitudinal dispersion coefficient is
much lower than that of the one-dimensional dispersion coefficient. The former considers
only the vertical distribution of longitudinal shear flow, whereas the latter accounts for both
the vertical and horizontal distributions of shear flow [1–4]. There have been numerous
studies on the one-dimensional dispersion coefficient since 2000, such as [5–22]. Surpris-
ingly, there are few studies for the two-dimensional longitudinal dispersion coefficient
compared to studies for the one-dimensional coefficient [23,24].

For two-dimensional solute transport in an open-channel flow, for the first time,
Elder [25] theoretically derived the longitudinal dispersion coefficient, assuming the vertical
distribution of the longitudinal velocity as the logarithmic function proposed by van
Karman [26] in the infinitely wide-open channel:

u− u =
u∗
κ

(
1 + ln y′

)
(1)
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where u is the longitudinal velocity, u is the vertically averaged velocity, u∗ is the frictional
velocity, κ is the von Karman constant, y′ is the dimensionless vertical coordinate defined
as y/d, and d is the water depth. The longitudinal dispersion coefficient can be derived
using the triple integral [1,25,27]:

DL = −1
d

∫ d

0
u′
∫ y

0

1
ε

∫ y

0
u′dydydy (2)

where DL is the longitudinal dispersion coefficient; u′(= u− u) is the velocity deviation;
and ε is the vertical diffusion coefficient, which has a vertical distribution as follows [26]:

ε = κu∗y
(
1− y′

)
(3)

By substituting Equations (1) and (3) into Equation (2), the triple integral result is:

DL =
0.404

κ3 du∗ (4)

Elder [25] proposed a longitudinal dispersion coefficient with a van Karman constant
(κ) of 0.41 and added the depth-averaged value for Equation (3) (ε = 0.067 du∗), as follows:

DL = (5.86 + 0.067)du∗ = 5.93du∗ (5)

This expression has a theoretical background and is expressed using simple constants,
as shown in Equation (5); hence, it has been widely used to determine the longitudinal
dispersion coefficient in two-dimensional solute transport analysis.

However, Elder’s equation (Equation (5)) is inadequate for application to curved
channels because the vertical distribution of the longitudinal velocity does not obey the
logarithmic law in the bends of an open channel. The vertical distribution of longitudinal
velocity in the bends is shown in Figure 1. As shown in this figure, the maximum velocity
occurs near or below the center of the water depth [28]. According to Blankaert [29],
Blankaert and de Vriend [30], and Baek and Seo [31], the vertical distribution is more
similar to a parabolic function instead of a logarithmic one. Hence, an equation that can
describe the vertical velocity distribution of open-channel bends appropriately is to be
proposed.
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Figure 1. Comparison of vertical distribution for longitudinal flow velocity in straight and curved
channels (adapted from Mozaffari et al. [28]).

In this study, we theoretically derived a two-dimensional longitudinal dispersion
coefficient based on an equation that can appropriately describe the vertical distribution
of flow velocity in open-channel bends. The proposed equations for the vertical velocity
distribution and dispersion coefficient were compared and verified with values measured
from two different types of open channels, i.e., a small-scale laboratory channel and a mid-
scale natural-like channel. The increase in the longitudinal dispersion coefficient based on
the difference in the vertical distribution of the flow velocity was evaluated quantitatively.
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2. Materials and Methods
2.1. Velocity Profile in Bends

Owing to the channel curvature of natural rivers, the vertical distribution of flow
velocity does not always obey a logarithmic distribution; therefore, Elder’s equation tends
to underestimate the dispersion coefficient. In particular, the flow velocity distribution
becomes distorted in bends or reaches with a significant amount of vegetation [29,32–34].

In this case, the longitudinal dispersion coefficient can be calculated via the vertical
distribution of the flow velocity instead of the logarithmic distribution. Patil and Singh [33]
calculated the dispersion coefficient based on different vegetation densities using the power
law for the velocity distribution equation. Their method is advantageous in that the velocity
distribution and dispersion coefficient values can be calculated variously based on the
change in power. For a curved open channel, Mozaffari et al. [28] proposed an equation
that adds a sine function to a power function, as follows:

u− u =
Au∗

κ

(
y′ − 0.1

)0.5
+ Bsin2πy′ (6)

where A and B are regression coefficients that must be determined from experimental data.
Equation (6) is based on the power function form, as shown in Figure 2. By adding a sine
function form that exhibits the maximum value at the center, the convex flow velocity
distribution equation can be reproduced in the central region of the water depth. In
addition, because the sine function term can be regarded as an additional momentum term
caused by curvature, if constant B is set to zero, then it can be applied in a straight reach.
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In this study, Equation (6) was slightly modified, and the following equation was
derived:

u− u = u′ =
u∗
κ

(
1 + ln y′

)
+ asin2πy′ (7)

where a denotes the regression coefficient. In Equation (7), the logarithmic function pro-
posed by van Karman is used and a sine function is added. The formula is similar to
the “wake law” proposed by Coles [35]. This equation is advantageous because it can be
quantitatively compared with Elder’s results based on coefficient a when calculating the
dispersion coefficient.

2.2. Derivation of Longitudinal Dispersion Coefficient

The two-dimensional longitudinal dispersion coefficient in open-channel bends can
be obtained by substituting Equation (7) into Equation (2), followed by performing a
triple integration. In the calculation, the vertical diffusion coefficient ε is regarded as the
depth-averaged coefficient ε without using a distribution formula such as Equation (3) to
facilitate the integral calculation. The derivation procedure is included in Appendix A,
and the result is:

DL = − d2

ε

{
−0.0741

( u∗
κ

)2 − 0.0196 au∗
κ + 0.0258a2

}
= d2

ε

{
−0.0258

(
a− 0.38 u∗

κ

)2
+ 0.0778

( u∗
κ

)2
} (8)



Water 2022, 14, 2962 4 of 12

In this equation, if a = 0.38 u∗
κ , then the maximum value of the longitudinal dispersion

coefficient becomes:

DL max = 0.0778
(

d2

ε

)(u∗
κ

)2
(9)

If the effect of curvature does not apply, i.e., a = 0, then the longitudinal dispersion
coefficient becomes:

DL = 0.0741
(

d2

ε

)(u∗
κ

)2
(10)

Equation (10) should be identical to Elder’s result (Equation (4)). A difference was
observed between the two equations because Elder used a vertical distribution for the
diffusion coefficient (ε) during triple integration, whereas in this study, we used ε as the
averaged value (ε =0.067du∗) to ease calculation. If we set the von Karman constant
(κ) as 0.434 instead of 0.41, then the two equations are exactly the same. According to
Rozovskii [36], because a von Karman constant of 0.5 has been suggested for open-channel
bends, a slightly higher value can be adopted, as in this study.

2.3. Experiments in Two Open Channels

The proposed equations for the vertical velocity distribution and dispersion coefficient
were compared and verified with the values measured from two different types of open
channels, i.e., a small-scale laboratory channel and a mid-scale natural-like channel. The
sinuosity of the laboratory channel in which the hydraulic experiment was performed was
1.32, and a schematic plan view is shown in Figure 3 [3]. As shown in this figure, the width
of the channel was 1 m; meanwhile, alternating curvatures with a central angle of 120◦ at
the center, as well as additional curvatures with a central angle of 60◦ at the inlet and outlet
were present. The cross-section of the channel was rectangular, and a smooth bed was
implemented using painted steel. Micro-acoustic Doppler velocimetry (ADV) was used
to measure the flow structure; micro-ADV is a high-precision velocimetry method that
measures a three-dimensional flow field. The flow velocity measurements were performed
on 12 sections of the channel, as shown in Figure 3. Three cases (Cases 301, 303, and 402) of
velocity field measurement were conducted based on the flow conditions in which the flow
rate was varied from 0.03 to 0.09 m3/s [31]. Tracer tests were performed under the same
flow conditions to elucidate the dispersion characteristics. A salt solution (NaCl) was used
as the tracer.
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A mid-scale nature-like channel was implemented at the Andong River Experiment
Center, operated by KICT (Korea Institute of Construction Technology) in Korea. Three
reaches with different sinuosity were connected in series, as shown in Figure 4 [37]. The
bottom of the channel was composed of sand, and the cross-section of the channel exhibited
a natural shape arising from the water flow. The length of the channel was 134 m for
1.5 sinuosity (A315 reach) and 155 m for 1.7 sinuosity (A317 reach). The three-dimensional
flow field was measured using an acoustic Doppler current profiler at six sections of the
channel, as shown in Figure 4. The average flow rate was 1.45 m3/s, and the average water
depth was 0.487 m in the channel. The average cross-sectional velocity was measured to
be 0.49–0.64 m/s in the A315 reach and 0.39–0.47 m/s in the A317 reach. A fluorescent
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substance (rhodamine WT) was used as the tracer in the mixing experiment. The tracer
was released at the injection point (shown in Figure 4) in each reach.
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3. Results and Discussion
3.1. Flow Characteristics in Meandering Channels

Before verifying the longitudinal dispersion coefficient proposed herein (Equation (8)),
the vertical distribution equation for longitudinal velocity (Equation (7)) was fitted to the
velocity data acquired from the meandering channels, and the regression coefficient a in
Equation (7) was determined for all verticals. Figure 5 shows a comparison between the
velocity obtained using the proposed equation and the observed velocity for each vertical
section of Section U1 in the laboratory channel. As shown in this figure, in some cases,
the flow velocity distribution equation agreed well with the observed value based on each
vertical in one section. In particular, the flow velocity distribution was opposite to the
logarithmic distribution (a distribution in which the flow velocity increases from the water
surface to the bottom) in a certain vertical direction. In such cases, the velocity equation
cannot appropriately describe the observed values. It is noteworthy that the point where
the vertical distribution of the longitudinal velocity distorted significantly coincided with
the point where the rotational cell of the secondary flow occurred.
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To observe the structure of the secondary flow, the transverse and vertical velocity
vectors occurring at the cross-sections were plotted, as shown in Figure 6A. In this figure,
the evolution of the helical motion of the secondary flow along the channel is clearly
illustrated. A typical two-cell system had developed weakly in Section D1 due to the effect
of the entrance bend with a central angle of 60◦. After the first bend zone (Sections D3–D5),
this two-cell helical motion disappeared, and a single large cell rotating in the clockwise
direction appeared. This clockwise helical motion continued to develop until the entrance
of the next alternating bend (Section U1). Proceeding to the apex of the bend, a cell that
rotated in a counterclockwise direction began to develop at the lower section of the channel
due to the centrifugal force (Section U3). The other cell, which occupied the upper section
of the channel in Section U3, appeared to have prevented the development of the lower cell
generated by the centrifugal force in the entire cross-section. This phenomenon is typically
observed in curved channels with rectangular cross-sections and smooth roughness [38].Water 2022, 14, x FOR PEER REVIEW 7 of 13 
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As show in Figure 5, the vertical distribution of the longitudinal velocity near the
left bank of Section U1 was severely distorted, such that the velocity near the bottom was
almost twice that of the water surface. By contrast, the vertical distribution near the right
bank exhibited a typical shape. It can be confirmed from Figure 6A that a strong rotating
cell was generated on the left side of Section U1.

In the nature-like channel, as shown in Figure 6B, the pattern of the secondary flow
differed from that in the laboratory channel. The typical helical motion behavior observed
in streams with natural bed roughness and geometry can be observed in the nature-like
channel. A large rotating cell with secondary flow occurred at the channel apexes of the
even-numbered sections. The centrifugal force induced by the geometrical properties of
the meandering channel transported the top of the water body to the outer bank at the
channel apex. Clockwise and counterclockwise helical motion occurred alternatively in
the bends. A strong cell was generated in the apex areas, whereas its strength decreased in
the cross-over sections; as such, the growth and decay of the transverse flow was observed
throughout the apex and cross-over areas in the channel.

Figures 7 and 8 show a comparison between the velocity obtained using the proposed
equation and the measured velocity for each vertical section in the nature-like channel. By
applying the proposed equation to the channel, the velocity distribution equation for each
section was discovered to be relatively consistent with the measured values, and showed a
higher applicability than the existing logarithmic formula.
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In the straight reach (odd-numbered sections), the observed velocity values and the
values obtained using the proposed equation agreed well at all verticals (see Figure 8),
whereas the values observed in the bends (even-numbered sections) differed from those of
the logarithmic distribution at the verticals near the channel banks (see Figure 7). Conse-
quently, in the section where strong rotational flow occurred in the nature-like channel, the
flow velocity distribution distorted significantly, which is consistent with the experimental
results of the laboratory meandering channel.

3.2. Longitudinal Dispersion Coefficient in Meandering Channels

The longitudinal dispersion coefficient of the proposed equation (Equation (8)) was
compared with the observed dispersion coefficient acquired from the two-dimensional
routing procedure, which was based on the concentration data obtained from tracer ex-
periments in the laboratory channel. Baek et al. [3] developed a two-dimensional routing
procedure and calculated the longitudinal and transverse dispersion coefficients for identi-
cal cases in a laboratory channel. The comparison results are presented in Table 1. In this
table, the value of a in Equation (7) when the longitudinal dispersion coefficient has the
maximum value, and the corresponding maximum value of the dimensionless coefficient
(DL/du∗) are included as well.
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Table 1. Comparison between observed dispersion coefficients and estimated ones for laboratory
and nature-like channels.

Channel Case
Number

a
(Maximum Value)

DL/du*

This Study
(Maximum Value)

Adapted from Elder [5]
(a = 0)

(Minimum Value)

Observed
Value

Lab.

301 0.0059 6.22

5.93

9.2

303 0.0178 6.22 4.5

402 0.0092 6.22 4.3

Nature-
like

A315 0.092 6.89 4.72~8.58

A317 0.103 6.90 5.38~9.82

The observed coefficient based on laboratory concentration data and the coefficient
calculated using the formula proposed herein did not differ significantly. However, the
fact that the velocity equation proposed in this study does not appropriately describe the
velocity distribution in many verticals and that the longitudinal dispersion coefficients in
natural rivers are much larger than the values presented in the laboratory channel suggest
the necessity to perform a comparison with data obtained from the nature-like channel.

The comparison results for the nature-like channels are summarized in Table 1. The
observed dispersion coefficient was obtained using the two-dimensional stream-tube rout-
ing procedure [39], which can reflect the irregularities of the channel’s geometry. The
dispersion coefficient calculated using Equation (8), and the observed dispersion based on
the concentration data, showed relatively similar results, although the observation-based
value range was higher.

In terms of the formula proposed herein, the range of the calculated dispersion co-
efficient is limited because it is a transformation formula based on a logarithmic velocity
distribution. The maximum value of the dimensionless dispersion coefficient (DL/du∗)
obtained using the formula is 6.90, whereas the observed value is approximately 10.

4. Conclusions

In this study, an equation that can appropriately describe the vertical distribution of
flow velocity in an open-channel bend was proposed, and a two-dimensional longitudi-
nal dispersion coefficient was theoretically derived based on the velocity equation. The
proposed velocity equation and dispersion coefficient were verified using two datasets
acquired from a laboratory curve channel and a nature-like channel.

In terms of flow velocity, depending on each vertical in one section, the flow veloc-
ity distribution equation proposed herein agreed well with the measured values in only
some cases. In particular, the flow velocity distribution was opposite to the logarithmic
distribution (a distribution in which the flow velocity increases from the water surface
to the bottom). In this case, the velocity equation did not describe the observed values
appropriately. The continuous increase in flow velocity toward the bottom not only oc-
curred in the laboratory artificial channel, but also in natural rivers. It is noteworthy that
the point where the vertical distribution of the longitudinal flow velocity was severely
distorted coincided with the point where the secondary rotational cell occurred. In terms of
the longitudinal dispersion coefficient, no significant difference was observed between the
observed dispersion coefficient based on the concentration data and the coefficient value
calculated using the equation proposed herein.

The range of the calculated dispersion coefficient was limited because it is a transfor-
mation formula based on a logarithmic distribution of the velocity distribution. Therefore,
the equation for dispersion proposed herein is reasonable for the longitudinal dispersion
coefficient of bends of an open channel. However, the fact that the velocity distribution
equation proposed herein did not appropriately describe the velocity distribution in some
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verticals should be investigated more comprehensively in the future. In other words, a
distribution formula that can describe a severely distorted flow velocity distribution, such
as an inverted log distribution, should be identified in the future.
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Appendix A

Derivation of longitudinal dispersion coefficient.

DL = −1
d

∫ d

0
u′
∫ y

0

1
ε

∫ y

0
u′dydydy
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1. y′ = y

d
2. u′ = u∗

κ (1 + ln y′) + asin2πy′

3. ε : constant∫ y
0 u′dy =

∫ y
0
{ u∗

κ (1 + ln y′) + asin2πy′
}

dy . . . (1)

(1) = d
∫ y′

0
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Then
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